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Abstract

The concept of quantum walks was proposed around 25 years ago and they have be-
come experimentally feasable and controllable in the last ten years. The experimental
implementation of a time-discrete quantumn walk studied in this thesis comes with ad-
ditonal effects which are investigated for a better theoretical understanding of the walk.
We consider the two most dominant ones by analytical treatment and via simulations
with respect to their impacts on the walk. Because it requires a certain quantum reso-
nance condition we investigate in small experimental deviations from the ideal case from
a theoretical viewpoint. The results are compared with recent experimental findings.
The studied effects allow for a better engineering of the implemented quantum walk and
are of experimental interest of the quantum walk applications. Experimentally feasible
and thus investigated ones are for example a steered walk, its transition to classical
behaviour or the reversal of any walk step.

Zusammenfassung

Obwohl Quantum Walks konzeptionell bereits vor etwa 25 Jahren vorgeschlagen wor-
den sind, können sie erst seit den letzten 10 Jahren experimentell kontrollierbar um-
gesetzt werden. In dieser Bachelorarbeit beschäftigen wir uns mit der Implementierung
eines solchen zeitdiskreten Quantum Walks. Bei jener Umsetzung treten zusätzliche Ef-
fekte auf, die für ein tieferes theoretisches Verständnis des Walks untersucht werden. Wir
behandeln die zwei hauptsächlichen Effekte. Ihr jeweiliger Einfluss auf den Walk kann
sowohl durch eine analytische Beschreibung, als auch durch Computersimulationen er-
kennbar gemacht werden. Da für den Walk eine bestimmte Quantenresonanz-Bedingung
erfüllt sein muss, berücksichtigen wir kleine experimentelle Abweichungen vom Idealfall
auf theoretischer Basis. Die Resultate werden anschließend mit neuen experimentellen
Daten verglichen.
Ein Verständnis der Einflüsse auf den Walk führt zu einer höheren experimentellen Kon-
trolle und macht die experimentelle Umsetzung interessant für Anwendungen. Darunter
befinden sich der hier untersuchte einseitig gerichtete Walk, ebenso wie dessen Übergang
zu klassischem Verhalten oder die Reversibilität des Walks.
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1. Theoretical background
Since the pioneer paper [1] by Aharonov et al. in 1993 where random walks relying on
quantum rather than classical properties were introduced there has always been a great
interest of research regarding the fact that quantum walks may play a key role in search
algorithms run on quantum computers [2]. Using entanglement and superposition as
a ressource there are hopes of gaining an exponential speed-up in computation time
performing a quantum algorithm over a classical one [3, 4, 5]. However, this hope is
questionable. It neglects the fact that for n used qubits the number of imposed gates in
order to carry out the algorithm grows exponentially leaving no speed-up for the algo-
rithm.
Even though the proposed walk was initially attributed the property of randomness, this
characteristics is misleading in the absence of any noise or decoherence. Since the quan-
tum walks are based on the evolution of the corresponding Schrödinger equation they
are completely deterministic. The distinction made nowadays is between continous and
time-discrete quantum walks. Randomness can then only be introduced by decoherence
or noise. The latter will be used in section 4.2.2 in order to study the transition from
pure quantum to classical behaviour.
The experimental proposals and actual implementations range from single- [6, 7, 8, 9]
over two- [7, 10, 11] to many-particle [12] walks using (ultracold) atoms [6, 11, 13, 14],
photons [15, 9, 10] or ions [7, 8]. They can be conducted in real [6, 9, 11, 13, 14],
momentum [16] or phase space [7, 8] using e.g. optical lattices [13, 14] or ion traps [7,
8].The implementation of interest for this thesis stems from a proposal by Summy and
Wimberger for a time-discrete quantum walk [16]. Its backbone is the well-studied atom
optics kicked rotor (AOKR), whose properties for the walk are explained in the first
section, combined with quantum ratchets (explained in section 1.1.3).
The experimental implementation is reviewed in the sections 1.3 - 1.3.3. The walk is,
however, affected by small deviations from the quantum resonance which we will con-
sider theoretically in chapter 2. For the resonant walk, an analytical desription was
already found in [17] which is reviewed in chapter 3. A comparison between the theory
and the experiment, including feasable walk applications, is presented in the chapters 4
& 5.
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1.1. Atom optics kicked rotor

θ

k

Figure 1.1.: Kicked rotor

The AOKR has always been a toymodel for deter-
ministic chaos and a good approximative local de-
scription in the energy space for periodically driven
systems [18, 19]. Such an example would be the
short but periodic interactions in an excited Ry-
dberg atom [20]. A single particle is placed on
a rigid ring. At a fixed temporal period a force
is applied instantaneously such that its effective
strength depends on the particle’s position, see fig.
1.1. The circular property can be translated to a
rotor on the line with the help of the Bloch theo-
rem; it will be discussed in the next section. The
first group to implement an AOKR were the Raizen
group from Austin, Texas [21]. Nowadays, Bose-
Einstein-condensates (BEC) are used.

The δ-kicked rotor is described by the Hamiltonian (in SI-units) [21]

Ĥ ′ =
p̂′2

2m
+ V0 cos

(
2kLx̂

′)∑
z∈Z

δ(t′ − zTp) (1.1)

with the momentum and position operators p̂′ and x̂′, particle mass m, kicking period
Tp ≫ kick duration ∆T with strength (induced by the potential) V0 of a standing laser
wave with wave vector kL. For practical purposes, eq. 1.1 is redimensionalized by
quantising the position

θ̂ = x̂′ mod (2π) (1.2)

in units of (2kL)
−1. The commutator relation [x̂′, p̂′] = iℏ then fixes the momentum

in units of ℏ · (2kL). The mass is not rescaled and therefore in units of m which fixes
the energy E to be in units of (2ℏkL)2

m . The factor 1/2 is not included to ensure the
contravariance of the Hamiltonian. Since time is in units of ℏ

[E] , it is rescaled into m
ℏ(2kL)2

and the kicking period is made dimensionless via τ =
Tp

[Tp]
= ℏTp (2kL)

2

m , also leaving a
dimensionless time t = t′

τ .
The rescaled Hamiltonian now reads

Ĥ =
p̂2

2
+ k cos θ̂

∑
z∈Z

δ(t− z) (1.3)

with a rescaled potential
∫
∆T V0(t) dt ≈ Ṽ0 ·∆T and a (dimensionless) kicking strength

k = Ṽ0 ·∆T (1.4)
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Of course, a true δ-kick is not implementable in an experiment (hence the pulse duration
∆T ), but with a kicking pulse duration of lower than a microsecond compared to kick
periods of several dozen microseconds this is a justifiably good approximation.

The time evolution of the system can be obtained by integrating eq. 1.3 over one
period and applying it to the Schrödinger equation which yields a unitary time evolution
operator

Û = exp
(
−i
∫ t+τ

t
H(t′)dt′

)
= e−

i
2
τ p̂2e−ik cos θ̂ (1.5)

called the Floquet operator [22]. Due to the δ-like kicking, the operator factorizes into
a kicking part and one corresponding to the free evolution of the system between two
consecutive kicks after a kick.
As stated earlier, there is a mapping between the rotor on a circle and the atom optic
kicked rotor on the line which is of interest for the experiment. It can be formulated
with the help of the Bloch theorem in the next section.

1.1.1. Bloch theorem
As seen in eq. 1.2 the periodicity of the potential implies spatial periodic boundaries. For
these potentials the Bloch theorem states that the corresponding stationary Schrödinger
equation is composed of a coherent superposition of all basis solutions such that the
wave function in position space corresponds to

ψ(x) = eiβxψβ(x) (1.6)

where ψβ(x) is a 2π-periodic function just like the potential. The theorem also implies
that momenta can only be altered by integer values while conserving the non-integer
part that is called the quasi-momentum β. The total momentum p can thus be split into

p̂ = n̂+ β (1.7)

where n is the integer momentum class und β ∈ [0, 1) is the conserved fractional quasi-
momentum. The integer momenta n are the eigenvalues to the angular momentum
operator

n̂ = −i ∂
∂θ

(1.8)

The generell solution will then be a coherent superposition of all Bloch waves, the so
called Bloch fibration, with a quasi-momentum distribution ρ(β)

Ψ(x) =

∫ 1

0
dβρ(β)eiβxψβ(x) (1.9)
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As it can be seen in eq. 4.6 we will not treat the coherent superposition but rather
assume that each particle contributes its own (conserved) quasi-momentum to the BEC
ensemble. A very similar result to the coherent superposition is obtained when averaging
classically over all contributing particles in the BEC. A comprehensive discussion can be
found in [20, 23]. The Bloch wave describing each initialisation p0 = n0+β0 is therefore

ψβ(θ) = ⟨θ|ψβ⟩ =
1√
2π
ein0θ (1.10)

ρ(β) = δ(β − β0) (1.11)

Substituting eq. 1.7 in eq. 1.5 finally yields

Û = e−
i
2
τ(n̂+β)2e−ik cos θ̂ (1.12)

in the most general form. Interesting behaviour however arises for specific values of
quasi-momentum and kick durations. These are called quantum resonances and treated
in the next section.

1.1.2. Quantum resonance
Interesting behaviour is found for specific values for the kick period τ and the quasimo-
mentum which are referred to as quantum resonance of the atomic optics kicked rotor
[24]. For these resonances the free evolution only contributes a global phase which can
be dropped as we are solemnly interested in the momentum distribution. This means
that during the free evolution the system evolves back into the state it started evolving
from and thus it cannot be distinguished between T kicks with strength k and a single
one with strength kT . Expressing

τ = 2πl l ∈ N (1.13)

β =
1

2
+
i

l
mod 1 i = 0, 1, . . . , l − 1 (1.14)

gives a criterion for period and corresponding (resonant) quasimomentum. The periods
2π (l = 1) and 4π (l = 2) can be viewed as half and full Talbot time respectively, now
only in a temporal domain [22]. We will focus on experiments tuned into the full Talbot
time later on in section 1.3
Another ansatz investigated in [23] is defining ξ = πl(2β ± 1) mod 2π which simplifies
eq. 1.12 into

Ûξ = e−iξn̂e−ik cos θ̂ (1.15)

A single application, i.e. one walk step, is now equivalent to the mapping ψβ(θ, t = 0) 7→
ψβ(θ− ξ, t = 1) and the quasimomentum can be interpreted as a rotation in the periodic
spatial domain. In [23] the momentum distribution of the initial state in eq. 1.10 was
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calculated to be

P (n, T ;n0, β0, k) = J2
n−n0

(|WT |) (1.16)

with J being the Bessel function of the first kind. A brief overview about Bessel functions
of the first kind and some useful relations can be found in appendix A. The argument
of the Bessel function is evaluated to be

WT = kT for ξ = 0 (1.17)

WT = k

∣∣∣∣∣∣
sin
(
Tξ
2

)
sin
(
ξ
2

)
∣∣∣∣∣∣ for ξ ̸= 0 (1.18)

In the resonant case ξ ≡ 0 a linear energy growth over time within the kicked system
(i.e. ballistic motion) is expected. This fundamentally differs from classical diffusion
phenomena having an energy growing with

√
t which makes the quantum resonant case

possibly useful for novel quantum algorithms. We note a formula similar to eqs. 1.17 &
1.18 to be found in the experimental walk implementation (compare eqs. 2.31 & 2.32).

1.1.3. Quantum ratchets
Ratchets in a classical sense refer to a directed transport due to a biased potential. A
prominent example would be the toothsaw potential [25] where particles are confined
at grid positions yet with a tilt to one of the neighbouring grid positions. Turning off
the potential for a short evolution time and on again will result in a mean transport of
particles to the preferred direction induced by the potential.

In the quantum case - as the potential is symmetric in position space - the symmetry
is broken by the initial state itself and not the potential [26, 27, 28]. This can be realized
by an initial choice of two adjacent momentum classes but breaking the spatial symmetry
with a relative phase. Such a ground state would be

|ψ(ϕ)⟩ = 1√
2

(
|n = 0⟩+ eiϕ |n = 1⟩

)
(1.19)

This state is symmetric around momentum p = 1/2 now and breaks the spatial symmetry
for ϕ ̸= 0, π. A rigorous calculation [22, 29] yields for the change in mean momentum

⟨p⟩T+1 − ⟨p⟩T = −k
2

sinϕ (1.20)

Thus for the initialised state in the experimental section 1.3 where ϕ = ±π
2 and k ≈ 2

this would correspond to a mean momentum shift of ∓1 respectively.
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1.2. Time-discrete quantum walk
The quantum walks are the quantum counter parts to classical random walks that are
widely used in computer science (e.g. search algorithms), observed in biology (e.g. cell
diffusion) and further sciences [30]. For a comprehensive overview we refer to [31] by
Kempe.
As already mentioned it is distinguished between continuous and time-discrete quantum
walks, here we will investigate the latter. In a classical walk on the line the walker will
flip a coin which determines its direction taken for the following step. Repeating this
walk a multitude of times we classically expect the grid position distribution to trend
towards a Gaussian (as the limit from the binomial distribution). In the quantum case,
each step is a superposition of going left and right at the same time. This is achieved
by two different internal states (such as the two spin states |↑⟩ & |↓⟩ for example) which
determine the walk direction, opposite to each other. This internal state will act as a
‘coin’ for the walk direction on the external level (such as position or momentum space).
Such a walk step can be represented with the following unitary shift operator

T̂ =
∑
i

[
|↓⟩⟨↓| ⊗ |i⟩⟨i− 1|+ |↑⟩⟨↑| ⊗ |i⟩⟨i+ 1|

]
(1.21)

The shift operator thus entangles the two degrees of freedom. If the walker starts in
a symmetric state in the internal level, a walk driven by eq. 1.21 will correspond to
simultanously walking to the left and right in the external level. In order to garantuee
such a superposition, the internal levels have to be mixed with each other using a so
called balanced coin. The often used Hadamard coin

ĈHad =
1√
2

(
1 1
−1 1

)
(1.22)

would be such a balanced one. After the initialisation the two internal levels have to be
seperated from each other during the mixing. This can be done by e.g. initialising with
the Hadamard coin (eq. 1.22) and mixing with

Ĉwalk =
1√
2

(
1 i
i 1

)
(1.23)

which is still a balanced coin. However, the two internal levels are now kept from each
other by seperating one into the imaginary domain [31]. The schematic of this walk
procedure is depicted in fig. 1.2. Red, filled grid positions correspond to populated ones
whereas the adjacent, unfilled ones are not reached by the walk at the same walk step.
This is a feature of the shift operator in eq. 1.21 which moves all walkers from odd to
even grid positions and vice versa. If it is started for example at an even grid position
the next step will only have non-zero probabilities at odd grid positons.

It is now quite peculiar how two walkers interfere with each other when they come
from different grid positions to the same one. In the case of the unitary shift operator in

13



−2 −1 ±0 +1 +2

·1 ·i

·1 ·i·1 ·i
T

±n

reached

unreached

Figure 1.2.: A scheme of the quantum walk using the shift operator (eq. 1.21) and starting
in a single arbitrary momentum class (upper row). Each row corresponds to the
following walk step. Only the exactly adjacent momentum classes are reached (red
circles). The phase gain due to the mixing with eq. 1.23 is indicated at each
transition.

eq. 1.21 most of the walkers around the centre positions (from where the walk started)
will interfere destructively leaving only a small final momentum distribution which was
proven to approach a uniform shape [32]. Therefore the momentum distribution will
mainly have two distinctive peaks spreading further away from the starting point, see
fig. 1.3. This corresponding walker initialisation used eq. 1.19 with a phase of −π/2
and the Hadamard coin in eq. 1.22. The momentum distributions for 50 (blue with ·
on the lines) and 100 (green with × on the lines) are shown, demonstrating the linear
spread. For that the respective grid position of the maximal probability is drawn with
dashed lines. It doubles for twice the walk steps implying ballistic motion. We note that
the distinctive peak feature can be enhanced by an initial state choice that consists of
more momentum classes [33, 34, 35].

Whereas the distribution converges to a Gaussian shape in the classical walk, the
quantum walk in resonance does not have such a feature due to the ballistic motion. As
it will be demonstrated in section 2.1, the symmetry of the walk depends on the initial
and mixing coin chosen.

The AOKR Hamiltonian in eq. 1.3 can feature the needed grid shift in eq. 1.21 if seen
as a walk in momentum and not position space. It corresponds to a unitary operator
shifting the external level either left or right when in quantum resonance. What is
missing there is the internal level structure needed for the coin toss. In the next section
we will have a closer look on how to experimentally implement both the shift operator
(in both possible directions) and the mixing of the internal levels.
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Figure 1.3.: Grid probability for the quantum walk using eq. 1.21 and eqs. 1.22 & 1.23 as
initialisation and walk coin respectively. The walk starts at grid position 0 and 1
according to eq. 1.19 and the number of kicks is T = 50, 100 to demonstrate the
ballistic motion. The grid positions of the respective (right-wing) maxima are also
indicated for that purpose.

1.3. Experimental set-up
The experiment uses an ultracold 87Rb Bose-Einstein-condensate (BEC) which is trapped
in an optical lattice created by a standing wave laser. A scheme of the set-up is given
in fig. 1.4. The BEC is created using evaporative cooling techniques and trapped by a
focused CO2 laser beam. The preparation eventually leaves roughly 70,000 Rb atoms
in the condensate. Details on cooling methods or the used magneto-optical trap can be
found elsewhere [36].

In this set-up the external degree of freedom corresponds to the centre of motion mo-
mentum of the BEC. After releasing the ultracold atoms from the trap a sequence of
kicks is applied by the optical lattice. The counterpropagating laser beams making up
the standing wave are tuned half way between the energies of the internal hyperfine
levels at λ ≈ 780nm. Deviating from fig. 1.4 the two lasers are aligned with a relative
angle of 53◦ to each other corresponding to a spatial period of λG = λ/(2 sin(53◦)). As
mentioned earlier in 1.1.2 we work at full Talbot time giving τ = 103µs. The ac-Stark
shift for the internal levels then differs in sign leaving a positive or negative kicking
strength

k =
Ωτpulse

∆
(1.24)
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Figure 1.4.: Scheme of the experimental set-up of the quantum walk. A sequence of kicks is
applied on a BEC at quantum resonance by a pulsed optical lattice. The internal
hyperfine levels of 87 Rb can be adressed by microwaves. Taken from [16].

with a Rabi frequency Ω, pulse duration τpulse ≈ 380ns≪ τ (the so-called Raman-Nath
regime) and respective detuning from the internal levels ∆. With eq. 1.20 this gives two
ratchet currents in opposite directions.
For these internal levels, the hyperfine levels of Rb (being a pseudospin ±1/2 system whose
configurations we note with |F = 2⟩ ≡ |↑⟩ and |F = 1⟩ ≡ |↓⟩) will serve as a governour
for the coin flip and hence the walk direction. The mixing between both levels is achieved
by microwaves and can be represented with the unitary rotation matrix

M̂(α, χ) =

(
cos α

2 e−iχ sin α
2

−eiχ sin α
2 cos α

2

)
(1.25)

where α = Ωτ (this means a constantly active radiation. But due to the Raman-Nath
regime the influence during the kick is negligible and afterwards uncoupled to the free
evolution; i.e. the instantenous form of eq. 1.25 is justified) and χ is a phase tunable
by an acusto-optical modulator. This way it is straight-forward to implement eqs. 1.22
& 1.23. The state initialisation is realized by applying an off-resonant Bragg pulse [19]
(with the correct phase −π/2) onto |n = 0⟩ ⊗ |↓⟩ and applying the Hadamard gate:

|n = 0⟩ ⊗ |↓⟩ Bragg7→ |n = 0⟩ − i |n = 1⟩√
2

⊗ |↓⟩ (1.26)

ĈHad7→ |n = 0⟩ − i |n = 1⟩√
2

⊗ |↑⟩+ |↓⟩√
2

(1.27)

The whole scheme is shown in fig. 1.5.
The final momentum distribution is obtained by time-of-flight imaging. For that the
atoms are released from the lattice and will expand under gravity and their momentum
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until they are exposed to near-resonant light. The following flourescence is captured by
a CCD-camera and reconverted into the momentum distribution.

Figure 1.5.: Representation of the experimental protocoll. The Bragg pulse and the gate mi-
crowave initialise the wave function which is then exposed to the kicking sequence.
Time-of-flight imaging afterwards not shown here. Taken from [37].

1.3.1. The time step operator in quantum resonance
At quantum resonance the free evolution part of the Floquet operator vanishes. Thus,
a kicking sequence then consists of the actual kick (denoted by the operator K̂) and a
mixing M̂ of the internal two levels. We will use α = π

2 and χ = −π
2 , resulting in eq.

1.23. The kick is done via

K̂ = exp
(
−ik cos θ̂ · σz

)
=

(
e−ik cos θ̂ 0

0 eik cos θ̂

)
(1.28)

where σz is the third Pauli matrix. This leads to

Ûkick = M̂Û =
1√
2

(
e−ik cos θ̂ ieik cos θ̂

ie−ik cos θ̂ eik cos θ̂

)
(1.29)

for single walk step. A walk with T steps is therefore described via ÛT
kick.

1.3.2. Elimination of the phase Φ in the kicking matrix
A rigorous treatment [20, 17] of the system reveals two phases, treating the two levels
differently from each other. One is induced by the energy difference of the the two levels,
the other comes from the conversion of cos2(x) = 1

2 (cos(2x) + 1) since the quantum
mechanical treatment of the effective two-level system yields the square and not the
desired cosine. Both add up to an effective phase Φ altering eq. 1.28 into(

e−ik cos θ̂ 0

0 eik cos θ̂ · eiΦ

)
(1.30)
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It is easy to show that

M̂ (π, 0) · M̂ (π,Φ/2) = −ei
Φ
2 · 1 (1.31)

Application of the two pulses before each kick leads to a proper removal of the phase,
leaving only a global one which has no effect on the overall probability distribution.

The BEC however has a small momentum width around the integer values n - due to
Heisenberg’s uncertainty principle - which is assumed to be Gaussian [38] with mean of
0 (the resonant case) and some full width half maximum βFWHM . Including this into
the theoretical treatment of the system could be achieved for the AOKR [23] but not
yet for the quantum walk present in the experiment. Due to entanglement of the two
degrees of freedom the same method as applied for the AOKR could not be repeated.
However, by reformulating the Floquet operator in eq. 1.12 a similar result could be
obtained in chapter 2.
A full analytical description of the resonant case is already given in [17] which is shortly
presented in chapter 3 and compared to the new theory in the limit β → 0.

1.3.3. Experimental limitations
There are three main aspects in the experiment that limit the implementation for high
kick numbers T . Firstly, in the experimental data (see chapter 4) there is always a
Gaussian peak around the centre of the walk (i.e. its starting point) even for small
and intermediate step numbers. This is the effect of the thermal cloud surrounding the
BEC but not responding to the optical pulses. In this cloud there is a wide range in
quasimomenta (contrary to the ideal walk in resonance) which mostly are off-resonant
and thus not responding to the kicking scheme. This always leaves a Gaussian peak,
centred around 0, in the momentum distribution for all time steps.
The second effect arises from near-resonant quasimomenta which are considered in chap-
ter 2. Their momentum distributions only follow the resonant one up to a few steps
until the induced dephasing gets so strong that the momentum distribution freezes into
a Gaussian and is not altered by the kicking afterwards.
The last investigated effect is spontaneous emission (SE) which decoherently destroys
the walk spread approaching a Gaussian momentum distribution and thus classical be-
haviour at higher walk steps. A master equation treatment for the SE was already
developed in [17]. Simulations involving the SE using a so called quantum jump method
[39] showed a negligible effect. Since the per kick probability was estimated to be less
than one percent the effect only becomes significant after over 20 kicks and is there-
fore experimentally negligible for the experiment going maximally up to 20 kicks at the
moment.
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2. Including the off-resonant
quasi-momentum β

In this chapter, we derive an analytical expression for the momentum distribution that
depends on the quasi-momentum β of a single particle. There is a close relation to the
structure of a Galton board on which the quantum walk takes place [31] due to the
relation between the unitary shift operator and the kicking part of eq. 1.28. For the
quantum resonance limit β → 0, an analytical expression for the momentum distributions
was already found in [17]. Its derivation is reviewed in chapter 3. As shown in section
4.2.1, the two theories predict the same outcome for every single walk step in resonance.
Therefore, the theory developed in section 2.3 extends the calculations of [17] to arbitrary
quasi-momenta but with an approximative constraint.
Preceeding the calculations however, we have a closer look on how the walk symmetry is
related to the choice of coins for the initialisation and the mixing of the internal levels.
The relation is illustrated in the following section 2.1.

2.1. The symmetry of the walk with respect to the coin choice
This section is meant to illustrate how the choice of the coins for initialisation and
mixing between consecutive steps effects the symmetry of the corresponding momentum
distribution. This really is a feature of the coins acting on the internal levels only and
independent from the external state. As mentioned already in section 1.2, the symmetry
is only obtained for different coins such as eqs. 1.22 & 1.23. The relation between
the experimentally used kicking matrix K̂ and the shift operator T̂ (eqs. 1.29) & 1.21
respectively) is given in the next section 2.2 and we therefore demonstrate the effect of
the coin choice for the walk driven by T̂ e.g. in fig. 1.3.
For better illustration we will only consider a plane wave in position space and therfore
choose an arbitrary initial state of |n = 0⟩ ⊗ |↓⟩. This is the experimental state without
the application of the Bragg-pulse in eq. 1.26 and is mixed by the Hadamard coin in eq.
1.22. We can now either choose the same coin ĈHad or the walk coin Ĉwalk for all the
following mixings.
This yields

|0⟩ ⊗ |↑⟩+ |↓⟩√
2

Ĉwalk◦T̂7→ 1 + i

2

[
|1⟩ ⊗ |↑⟩+ |−1⟩ ⊗ |↓⟩

]
(2.1)

|0⟩ ⊗ |↑⟩+ |↓⟩√
2

ĈHad◦T̂7→ i |1⟩ ⊗ |↑⟩ (2.2)
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|↓⟩

|↑⟩

|↓⟩

|↑⟩

/∈ R

∈ R

/∈ R

∈ R

destructive
interference

constructive
interference

a)

b)

c)

general case

different coins

same coins

±0−1 +1

±n

Figure 2.1.: Comparison of how the coin choice affects the walk symmetry. The first step (a)
shows generally how the walker moves from a specific momentum class (first row)
to the exactly adjacent ones during one walk step. Due to the mixing both inter-
nal levels will effect the momentum class population. For different balanced coins
(b) one internal level will give a real contribution whereas the other level solely
contributes an imaginary part and thus the two internal level contributions cannot
interfere with each other. This is different if the same coin is chosen for initialisation
as well as for the walk (c). Depending on the relative phases within the coins the
level contributions interfere either constructively or destructively. This results in a
net momentum flux during this walk step and thus breaks the existing symmetry
of the momentum distribution.

Whereas a different coin (with a phase difference in the off-diagonal elements) results
in a symmetric momentum probability around n = 0, using the same coin for the walk
produces a mean momentum change. As a consequence, the momentum distribution
is now symmetric around n = 1. The walk simultaneously propagates to the adjacent
momentum classes in each internal level with a specific phase. The mixing recombines
the two levels and the wavefunctions for the external level may interfere with each other.
This is illustrated in fig. 2.1. Case a) shows the four possible pathways during one step
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in general. Due to the mixing of the levels there a two possible paths to each adjacent
site. The previous grid position is now unpopulated due to the structure of eq. 1.21.
The two paths may now interfere with each other.
In the case of a differently chosen coin from the Hadamard coin in b), the path amplitudes
are seperated from each other by keeping one amplitude purely real and the other purely
imaginary. No interference can happen in this first step then. If the same coin is chosen
for the walk in c), the minus sign in eq. 1.22 leads to destructive interference in one
direction and constructive one in the other. It is also interesting to note that the next
walk step is equivalent to a new initialisation and thus the second next walk step will
again shift the mean momentum by one integer.
The direction of the momentum shift can also be inverted by initialising the state in the
other internal level, i.e. |↑⟩.

2.2. Reformulating the kicking operator
The free evolution part of the Floquet operator in eq. 1.12 can be examined further by
splitting the momentum p into an integer part n and the missing quasi-momentum β.
It follows

e−iτ p̂2

2 = e−iτ β2

2 e−iτ n̂2

2 e−iτβn̂ (2.3)

7→ e−iτ n̂
2︸ ︷︷ ︸

=1 for τ=4π

e−iτβn̂ (2.4)

= e−iτβn̂ (2.5)

where the phase could be dropped in the second step as it does not contribute to the
final momentum distribution in our apprximation of single β-trajectories (see discussion
around eq. 1.9).
An important relation being used [40] will be

e±ik cos θ̂ =
∑
m

imJm(±k)eimθ̂

=
∑
m

(±i)mJm(k)eimθ̂
(2.6)

with Jm the Bessel function of the first kind and order m. This is the mentioned
relation between the experiment and the shift operator in eq. 1.21. Each kick can be
interpreted as a weighted sum of infinitely but countably many shift operators connecting
the momentum classes l and n with an amplitude of in−lJn−l(k). Fig. 2.2 gives a
comparison between one walk step using the shift operator in a) with the kicking operator
expressed in eq. 2.6 in b).

Obviously, the two operators acting during a single kick are in different bases. Mo-
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Jn+1(k)
Jn+2(k)

Jn−1(k)
Jn−2(k)

Jn(k)

a)

b)

Shift operator T̂

Kicking operator K̂

Figure 2.2.: The comparison between the quantum walk using the shift operator T̂ which only
couples adjacent momentum classes (a) with the experimentally implemented quan-
tum walk relying on the kicking operator K̂ (b). In this case each momentum class
|n⟩ is coupled with every other momentum class |m⟩ with weight Jn−m(k).

mentum n and position θ are however connected via

|n⟩ = einθ√
2π

|θ⟩ (2.7)

making the shift operator in the kicking operator expressible in momentum space:

e±imθ̂ |n⟩ = einθ√
2π
e±imθ̂ |θ⟩ = ei(n±m)θ

√
2π

|θ⟩ (2.8)

= |n±m⟩ =
∑
j

|j ±m⟩ ⟨j|n⟩ (2.9)

meaning e±imθ̂ =
∑
j

|j ±m⟩⟨j| (2.10)

This explains the name as it shifts particles being in the momentum state n by ±m
momentum classes. As a consequence eq. 2.6 can be understood as an effective coupling
of any momentum class with all (adjacent) ones with a weight given by the Bessel
function of the first kind, Jm(±k) where m is the length of the coupling. This differs a
bit from the shift operator in eq. 1.21 where only next neighbours were connected but -
however with decreasing weight - a coupling to all other classes (and the same meaning
staying at the current momentum class) is made.
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In the next chapter we decompose the two Floquet components in the above fashion.
Furthermore, we transform the position shift operator into momentum space.

2.3. Successive application of the kicking operator Ûkick

A single kicking sequence consists of three steps: the δ-kick K̂ itself, following free
evolution F̂ and finally a mixing of the internal states via Ĉwalk. As shown in appendix
B, a recurrence relation for the matrix element of the T -time application of the kicking
sequence is given by

ÛT
kick =

(
Ĉwalk · F̂ · K̂

)T
=

1
√
2
T

∑
m1,...,mT

i
∑T

i=1 mi

(
T∏
i=1

Jmi(k)

)

×
∑
j

e−iτβ(Tj+
∑T

i=1(T+1−i)mi)

∣∣∣∣∣j +
T∑
i=1

mi

⟩⟨
j

∣∣∣∣∣RMT

(2.11)

where RMT = RMT (m1, . . . ,mT ) denotes a recurrent 2×2 matrix whose elements have
the form of

RMT =

(
(−1)m1 [AT − 1] i [BT + 1]

i(−1)m1

[
ÃT + 1

]
−
[
B̃T − 1

]) (2.12)

The variables AT , . . . depend on the values of {m2, . . . ,mT } due to the mixing of the
internal levels. Their recurrence relation can be calculated to be

AT+1 = (−1)mT+1AT − (−1)mT+1 − ÃT BT+1 = (−1)mT+1BT + (−1)mT+1 − B̃T

ÃT+1 = (−1)mT+1AT − (−1)mT+1 + ÃT B̃T+1 = (−1)mT+1BT + (−1)mT+1 + B̃T
(2.13)

The recurrence start values1 are found to be

A1 = 2, Ã1 = 0, B1 = 0, B̃1 = 0 (2.14)

2.4. Calculating the matrix elements
The initial state in momentum space is prepared to be

|φ0⟩ =
1

N

∑
l

(−i)l |l⟩ ⊗ (|↑⟩+ |↓⟩) (2.15)

1Due the structure of eq. B.10, this form of matrix and thus the recurrence is only valid for T > 0. The
case for T = 0 is however trivial: RM0 = 1, the identity.
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where {l} are the prepared momentum classes and N the normalization factor. In this
particular case N =

√
2 · #l with #l the number of initialized classes.

The momentum probability distribution is the absolute square of the matrix elements,
ending with a particular momentum n and in one of the two internal levels, |↑⟩ and |↓⟩:

P (n;T, k, β) =
∣∣∣⟨n ↑

∣∣∣ÛT
kick

∣∣∣φ0

⟩∣∣∣2 + ∣∣∣⟨n ↓
∣∣∣ÛT

kick

∣∣∣φ0

⟩∣∣∣2 (2.16)

The former summand is calculated step-wise in the appendix and the later one follows
the calculations analogously.
For T = 1 this gives

∣∣∣⟨n ↑
∣∣∣Ûkick

∣∣∣φ0

⟩∣∣∣2 = 1

2N2

∣∣∣∣∣∑
l

(−1)l [Jn−l(−k) + iJn−l(k)]

∣∣∣∣∣
2

(2.17)

∣∣∣⟨n ↓
∣∣∣Ûkick

∣∣∣φ0

⟩∣∣∣2 = 1

2N2

∣∣∣∣∣∑
l

(−1)l [iJn−l(−k) + Jn−l(k)]

∣∣∣∣∣
2

(2.18)

The joint probability for the first kick does not depend on the quasi-momentum β: as
the free evolution only contributes a dephasing between two consecuting kicks, here it
solely gives a global phase on the matrix elements for a single kick which vanishes by
taking the absolute value.
The two kick directions with a respective strength of k and −k can be easily identified and
are separated from each other via splitting into a real and imaginary part respectively.
For higher kick counts, e.g. T = 2 it is straight-forward to arrive at⟨

n ↑
∣∣∣Û2

kick

∣∣∣φ0

⟩
=
ine−iτβn

2N

∑
l

(−1)le−iτβl

×
∑
m1

(∗ ↑)2

∣∣∣∣
m2=

n−l−m1

Jm1(k)Jn−l−m1(k)e
−iτβm1

(2.19)

with (∗)2 being the sum of the upper two entries of the RM2 matrix and shortened for
simplicity.
The idea is to use an addition rule for the two intertwined Bessel functions (note their
respective indices), namely:

Jn(y + z) =
∑
r∈Z

Jr(z)Jn−r(y) (2.20)

Since (∗)2 only contains summands of the order (−1)x, they can be contained in the
Bessel functions by only adding a minus sign for the argument. The only interfering
term here is e−iτβm1 . An approximation will be made following the characteristics of
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Bessel functions with complex arguments [41]

elnπiJn(z) = Jn

(
z · elπi

)
l ∈ Z (2.21)

that - since β is significantly small - above eq. 2.21 still holds true for values l close to
being an integer. The approximation is justified for almost all n except 0 and 1, as can
be seen in fig. 2.3.

Figure 2.3.: Real and imaginary part of the function and its approximation. For better visibility
of the accordance for higher n, the functions were rescaled in height to be comparable
with each other, i.e. each of the four graphs per box was multiplied with the factor
R in the title for comparable plots.

The impact on the probability distribution will be discussed later on.
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The approximation results in

∣∣∣⟨n ↑
∣∣∣Û2

kick

∣∣∣φ0

⟩∣∣∣2 ≈ 1

4N2

∣∣∣∣∣∑
l

(−1)le−iτβl
(
Jn−l

[
−k
(
1 + e−iτβ

)]

−Jn−l

[
k
(
1− e−iτβ

)]
+ iJn−l

[
k
(
e−iτβ − 1

)]
+ iJn−l

[
k
(
1 + e−iτβ

)]) ∣∣∣∣∣
2 (2.22)

∣∣∣⟨n ↓
∣∣∣Û2

kick

∣∣∣φ0

⟩∣∣∣2 ≈ 1

4N2

∣∣∣∣∣∑
l

(−1)le−iτβl
(
iJn−l

[
−k
(
1 + e−iτβ

)]

+iJn−l

[
k
(
1− e−iτβ

)]
− Jn−l

[
k
(
e−iτβ − 1

)]
+ Jn−l

[
k
(
1 + e−iτβ

)]) ∣∣∣∣∣
2 (2.23)

Figure 2.4.: Comparison of the approximation derived
above with the walk simulation after two
kicks. A good agreement is met except at the
position of the initial momentum classes due
to the approximation. Grid drawn for better
illustration of the symmetry of the walk.

The four summands in each
matrix element are now the re-
sult of having mixed two times
with eq. 1.23. Each mixing gives
two summands (one being kicked
to the left, the other one to the
right) hence higher orders of T
will have a lot more terms to
deal with. The quasimomentum
β influences the momentum dis-
tribution now: there is one ad-
ditional multiplicator e−iτβl and
the quasi-momentum is also con-
tained in the kick strengths. In
the limit β → 0, kick strengths of
2k, 0 and −2k are obtained with
the two contributions to 0 being
separated by an i and thus not
interfering with each other once
more. In this resonant case, eqs. 2.22 & 2.23 are no longer approximations but exact
expressions.
For T = 1 there are only two kick strengths of ±k whereas there are now the four above.
A mathematical comparison to the Galton board will be given later on in section 2.5.

Averaging over five thousand of β-trajectories, a still good agreement with the simu-
lation can be found in fig. 2.4. As already mentioned, the approximation is rather poor
for momentum classes n = 0 and 1. This can be seen as a higher probability remaining
at the initial momentum classes compared to the simulation. More about the simulation
can be found in section 4.1.
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The general case for T > 2

Using the same approximation and addition T repeated times, a similar structure for
the matrix elements is found. The calculation in the appendix B is started using eq.
2.11 and leads to⟨

n ↑
∣∣∣ÛT

kick

∣∣∣φ0

⟩
≈ i

ne−iτβn

√
2
T
N

∑
l

(−1)le−iτβ(T−1)l

×
∑

m1,...,mT−2

(
T−2∏
i=1

Jmi

[
k · e−iτβ(T−i)

])

×
∑
mT−1

JmT−1

(
k · e−iτβ

)
Jn−l−

∑T−2
i=1 mi−mT−1

(k) (∗ ↑)T

∣∣∣∣∑
mi

=n−l

(2.24)

The recurrence formulas found in eq. 2.13 have to be translated into a sum in the same
fashion as done in eq. B.28. If done correctly, a T -time application of the addition
rule gives back the similar structure as in eqs. 2.17 or 2.22 but now with 2T Bessel
summands.
Two preliminary calculations have to be carried out beforehand. The first one will show
the consecution of further walk steps just by adding them to the argument of the Bessel
function. For that assume (∗ ↑)T ≡ 1. Then

∑
m1,...,mT−2

(
T−2∏
i=1

Jmi

[
k · e−iτβ(T−i)

])

×
∑
mT−1

JmT−1

(
k · e−iτβ

)
Jn−l−

∑T−2
i=1 mi−mT−1

(k)

︸ ︷︷ ︸
=J

n−l−
∑T−2

i=1
mi
[k(1+e−iτβ)]

(2.25)

=
∑

m1,...,mT−3

(
T−3∏
i=1

Jmi

[
k · e−iτβ(T−i)

])

×
∑
mT−2

JmT−2

[
k
(
1 + e−iτβ

)]
Jn−l−

∑T−3
i=1 mi−mT−2

(
k · e−iτ2β

)
︸ ︷︷ ︸

=J
n−l−

∑T−3
i=1

mi
[k(1+e−iτβ+2e−iτβ)]

(2.26)

iter.
= Jn−l

k T−1∑
j=0

e−iτjβ

 (2.27)

It is easy to include terms like (−1)mi which then give the corresponding summands a
negative sign instead of the positive one in eq. 2.27.
The second conclusion comes from the recurrence form in eq. B.10. A single mixing
(including terms of (−1)m which come from the opposite kicking directions and omitting
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the normalisation factor for now) is given by(
(−1)m i
(−1)mi 1

)
(2.28)

The diagonal entries are the two ratchet currents if there was no mixing present. The
opposite signs indicate the opposite directions of the currents. If a walker has already
been shifted e.g. to the right, it will be further driven in this direction with each
consecutive kick.
The off-diagonal entries now couple the two currents. If a walker was once again shifted
to the right, the cross terms shift it to the left and add a phase i. Due to the balanced
coin the same holds for the opposite directions. The final momentum distribution will
then contain 2T summands each being a Bessel function Jn−l (k · ∗) where ∗ is a linear
combination of the elements

{
1, e−iτβ , . . . , e−iτβ(T−1)

}
, i.e.

∗ =
T−1∑
j=0

aj

(
e−iτβ

)j
with aj = ±1 ∀j

The summands will be weighted with an additional prefactor iα where α denotes the
amount of turns during the whole walk. The final momentum distribution for an arbi-
trary walk number T ≥ 1 can then be expressed as

∣∣∣⟨n ↑
∣∣∣ÛT

kick

∣∣∣φ0

⟩∣∣∣2 ≈ 1

2TN2

∣∣∣∣∣∑
l

(−1)le−iτβ(T−1)l

×
∑

c∈{0,1}T
iα(c)Jn−l

k T−1∑
j=0

(−1)cj
(
e−iτβ

)j ∣∣∣∣∣
2 (2.29)

∣∣∣⟨n ↓
∣∣∣ÛT

kick

∣∣∣φ0

⟩∣∣∣2 ≈ 1

2TN2

∣∣∣∣∣∑
l

(−1)le−iτβ(T−1)l

×
∑

c∈{0,1}T
iβ(c)Jn−l

−k T−1∑
j=0

(−1)cj
(
e−iτβ

)j ∣∣∣∣∣
2 (2.30)

where c = (c0, c1, . . . , cT−1) with ci ∈ {0, 1} ∀i and α(c) & β(c) are the mentioned num-
ber of turns during one walk. The only difference is the opposite sign in the kicking
strength and different prefactors (since α(c) ̸= β(c) in general) for the summands.

A look on the terms having the highest energy E(T ) =
∑
P (n, T ) · n2

2 (which is equiv-
alent to the terms contributing the most to the walk spread) yields eq. 2.27 (for kicking
strengths k and −k respectively) since it corresponds to the walker going throughoutly
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in one of the directions. Evaluating the argument (≡WT ) gives

WT = kT β = 0 (2.31)

WT = exp
(
−iτβ T − 1

2

)
·

sin
(
τβ T

2

)
sin
(
τ β
2

) β ̸= 0 (2.32)

which is quite similar to the findings for the AOKR in eqs. 1.17 & 1.18. The difference
can be explained by the approximation made using eq. 2.21 which is also why there
is now a complex part left in the argument. In the resonance the ballistic motion is
however refound because eqs. 2.29 & 2.30 are exact expressions (since no approximation
is applied).

2.5. An analogy between the experimental quantum walk and
the walk via the shift operator

The experimentally implemented walk has some interesting parallels to the initially
formulated one using the unitary shift operator in eq. 2.33. For a better comparison the
matrix elements of the first two steps for both walks (in the resonance limit β → 0) with
an initial external momentum class |l⟩ will be calculated below (once again omitting the
prefactors and the phase eiτβ(T−1)l here).
We have the unitary shift operator

T̂ =
∑
i

[
|↓⟩⟨↓| ⊗ |i⟩⟨i− 1|+ |↑⟩⟨↑| ⊗ |i⟩⟨i+ 1|

]
(2.33)

compared to the kicking matrix

K̂ = e−ik cos θ̂ ⊗ |↑⟩⟨↑|+ e−ik cos θ̂ ⊗ |↓⟩⟨↓| (2.34)

Both walks are initialised with the Hadamard coin and mixed during the walk with

Ĉ =
1√
2

(
1 i
i 1

)
(2.35)

The respective matrix elements with respect to their internal levels are(
⟨n|l⟩
⟨n|l⟩

)
Ĉ◦T̂7→

(
⟨n|l + 1⟩+ i ⟨n|l − 1⟩
i ⟨n|l + 1⟩+ ⟨n|l − 1⟩

)
Ĉ◦T̂7→

(
⟨n|l + 2⟩+ (i− 1) ⟨n|l⟩+ i ⟨n|l − 2⟩
i ⟨n|l + 2⟩+ (i− 1) ⟨n|l⟩+ ⟨n|l − 2⟩

)

(
⟨n|l⟩
⟨n|l⟩

)
Ĉ◦K̂7→

(
Jn−l(−k) + iJn−l(k)
iJn−l(−k) + Jn−l(k)

)
Ĉ◦K̂7→

(
Jn−l(−2k) + (i− 1)Jn−l(0) + iJn−l(2k)
iJn−l(−2k) + (i− 1)Jn−l(0) + Jn−l(2k)

)
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Jn−l(−k) Jn−l(k)

Jn−l(0)Jn−l(−2k) Jn−l(2k)

a) b)

Figure 2.5.: Sketch of the analogy between the Galton board in a) in the quantum mechani-
cal interpretation for the walk and the arguments of the single summands in the
momentum distribution for the implemented walk in b).

The momentum shift l 7→ l ± 1 maps to applying a single kick with strength ∓k.
Due to the plethora of couplings in the experimental implementation the momentum
distribution on the right is not as coarse grained as the one on the left. However, the
general structure of both walks is very similar. Fig. 2.5 underlines the similarity. In a) a
Galton board is sketched where the walk starts at one grid position. The superposition
in the walk directions leads to a departing of the walker in both directions for the first
step. This procedure repeats itself at each populated grid position for every walk step.
In the implemented quantum walk the system is equivalent to the superposition of single
ratchets that differ in the effective kicking strength from each other. In the first step,
only kicking strengths of ±k are obtained (whereas on the Galton board two opposite
grid positions are reached). The next step yields four ratchets with strengths −2k, 0
and 2k with two ratchets having the same effect kicking strength in the resonant limit.
The Galton board also has the three grid positions l − 2, l and l + 2 populated.
The populated grid positions on the Galton board can therefore be related to the effektive
kicking strengths (in multiples of k) of the implemented quantum walk.

2.6. Summary
The reformulation of the kicking operator into momentum space revealed a structure of
summands in the final momentum distributions similar to the Galton board (quincunx).
There is no direct match, as on the Galton board one shifts to the very adjacent mo-
mentum classes, whereas in the quantum walk the similar structure is contained in the
effective kick strengths of each summand. Thus, a shift from momentum class 0 to ±2
on the Galton board corresponds to an effective kick strength of ∓2k. We note, how-
ever, that the respective summand still couples all other momentum classes (but with
decreasing weight). A scheme of the comparison is shown in fig. 2.5. This structure will
also be obtained for higher kick counts T but will grow exponentially in the number of
summands for the momentum distribution. In the shown limit β → 0 the complexity
can be reduced with the help of the symmetry property of the Bessel functions. This
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way, the effective growth in summands goes linearly since only a maximal kick strength
of kT can be reached by T kicks, giving T summands.2.
In the non-ideal case a similar method might be applicable by further examination of
the properties of eqs. 2.29 & 2.30. These two formulas contain the main result of above
calculations.

The resulting momentum distributions are given in chapter 4 where they are compared
to walk simulations using a quantum map. For the resonance limit β → 0 a comparison
is also drawn with the analytical theory for the ideal walk case which is reviewed in the
following chapter, based on [17].

2Because the relative sign of the momentum class can be ignored due to the symmetry property.
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3. Recap of the analytic theory for the ideal
walk

An analytic expression for the resonant walk, i.e. β = 0, was already given by Caspar
Groiseau in [17]. The main train of thought is summarized briefly and then compared
to the theory developed in section 2.2.

Finding the recursion
The kicking matrix in eq. 1.29

Ûkick =
1√
2

(
e−ik cos θ̂ ieik cos θ̂

ie−ik cos θ̂ eik cos θ̂

)

=:
1√
2

(
a11 a12
a21 a22

) (3.1)

contains a general property, that is the relations between the cross-paired elements. They
are related by

a∗11 = a22 (3.2)
a∗12 = −a21 (3.3)

which stems from the property of each kick matrix K̂ and mixing M̂ (eqs. 1.28 & 1.25)
having this property already. A multiplication conserves the characteristics.
With the short hand notations

E := eik cos θ̂ (3.4)

E∗ := e−ik cos θ̂ (3.5)
z := E∗ + E (3.6)
z̃ := E∗ − E (3.7)
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and omitting the
√
2-prefactor the first few step operators are

Û1 =

(
E∗ iE
iE∗ E

)
(3.8)

Û2 =

(
E∗z̃ iEz
iE∗z Ez̃

)
(3.9)

Û3 =

(
E∗ (z̃z − 2) iE

(
z2 − 2

)
iE∗ (z2 − 2

)
−E (z̃z + 2)

)
(3.10)

Û4 =

(
E∗ (z2z̃ − 2z − 2z̃

)
iE
(
z3 − 4z

)
−iE∗(. . . )∗ E(. . . )∗

)
(3.11)

· · · (3.12)

ÛT+1 =

(
E∗pT1 iEpT2
. . . . . .

)
(3.13)

The outer structure in form of the original mixing matrix is conserved and only altered
by polynomials of z and z̃. They differ slightly for the two relevant entries and will
be denoted p1,T and p2,T respectively or p1/2,T , if both are addressed. From the above
matrix elements it can be proven via induction that the recursion

p1/2,T = z · p1/2,T−1 − 2 · p1/2,T−2 (3.14)

relates the kick step to its precessors.

Solving the recursion relation
The recurrence relation in eq. 3.14 was already solved in [17] where two non-trivial
solutions could be found. We will now add a short proof that the found solutions are
the only solution of eq. 3.14.

The ansatz here is to assume p1/2,T ≡
(
p1/2

)T , i.e. ∃ x ∈ C \ {0} : p1/2,T = xT .
Be L the set of all solutions1 of eq. 3.14 which is assumed to be finite for now, that
means L = {x1, x2, · · · , xl}.
A general solution is of the form

p1/2,N =

l∑
i=1

cix
N
i , N ∈ N

1Trivially, 0 is also a solution of the recursion. It is, however, the one indicating the absence of a kick
and not of interest here
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⇒ p1/2,N+1 =
∑

cix
N+1
i =

∑
(xi) · cixNi

=z
(∑

cix
N
i

)
− 2

(∑
cix

N−1
i

)
=
∑

(z)cix
N
i −

∑(
2

xi

)
cix

N
i

=
∑(

z − 2

xi

)
cix

N
i

⇔ xi = z − 2

xi
∀ i ∈ {1, · · · , l}

⇔ x2i = zxi − 2 ∀ i ∈ {1, · · · , l}

where in the last two steps the underlined terms were compared to each other. The
problem is thus reduced to a quadratic formula (l ≡ 2) with the only two possible
solutions

x1/2 =
z ±

√
z2 − 8

2
(3.15)

p1/2,T = c1x
T
1 + c2x

T
2 (3.16)

where the constants ci can be found looking at the first two matrix polynomials in eqs.
3.8 & 3.9 which gives

pT1 =
1

2

(
1 +

2z̃ − z√
z2 − 8

)(
z +

√
z2 − 8

2

)T

+
1

2

(
1− 2z̃ − z√

z2 − 8

)(
z −

√
z2 − 8

2

)T

(3.17)

pT2 =
1

2

(
1 +

z√
z2 − 8

)(
z +

√
z2 − 8

2

)T

+
1

2

(
1− z√

z2 − 8

)(
z −

√
z2 − 8

2

)T

(3.18)

Rewriting the general solution
The quite tedious solutions are now cast into polynomials with E and/or E∗ as their
arguments. ∀N ∈ 2N the calculations of the two relevant matrix elements in eq. 3.1
yield

a11,N =
N∑
l=0

al,1e
ik cos θ̂(N−2l−1) (3.19)

a22,N = i

N∑
l=0

al,2e
ik cos θ̂(N−2t+1) (3.20)
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and their respective prefactors

al,1 =
1

2N

N
2∑

j=0

[(
N

2j

)
−
(

N

2j + 1

)] l∑
m=0

(
j

m

)(
N − 2m

l −m

)
(−8)m

− 2

2N

N
2∑

j=0

(
N

2j + 1

) l∑
m=0

(
j

m

)(
N − 2m− 1

l −m

)
(−8)m

+
2

2N

N
2∑

j=0

(
N

2j + 1

) l−1∑
m=0

(
j

m

)(
N − 2m− 1

l −m− 1

)
(−8)m

(3.21)

al,2 =
1

2N

N
2∑

j=0

(
N + 1

2j + 1

) l∑
m=0

(
j

m

)(
N − 2m

l −m

)
(−8)m (3.22)

Final momentum distribution
Carrying out the calculations leads to

P (n,N) =|⟨n ↑|φ(N)⟩|2 + |⟨n ↓|φ(N)⟩|2 (3.23)

=
1

2N+2

[(
N∑
l=0

al,1

[
Jn[(N − 2l − 1)k]− Jn−1[(N − 2l − 1)k]

])2

+

(
N∑
l=0

al,2

[
Jn[(N − 2l + 1)k]− Jn−1[(N − 2l + 1)k]

])2

+

(
N∑
l=0

al,1

[
Jn[−(N − 2l − 1)k]− Jn−1[−(N − 2l − 1)k]

])2

+

(
N∑
l=0

al,2

[
Jn[−(N − 2l + 1)k]− Jn−1[−(N − 2l + 1)k]

])2 ]
(3.24)

which was shown to be extendable to more initial momentum classes [17].

This result also contains the Bessel functions of the first kind, Jm but the discovered
structure of 2T Bessel summands in eqs. 2.29 & 2.30 is here encoded in the prefactors
for summands with the same effective kicking strength (note the l-dependency of the
prefactors of the Bessel functions in eq. 3.24). A similar recurrence property was found
individually in eqs. 2.13 & 3.14 which originates from the mixing with eq. 1.25 in both
cases.
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4. Simulation results for the experimental
findings

In this chapter we will have a closer look on comparing the developed theory in chapter
2 with the ideal case in chapter 3 in quantum resonance as well as with a numerical
study using a so called quantum map which is explained in section 4.1.
The second part will focus on the experimental results of the experiment explained in
section 1.3 which was carried out at Oklahoma State University. All experimental data
in the chapters 4.2.2 & 5.1.2 are with courtesy of Gil Summy and Siamak Dadrasmarani
and are unpublished until this writing [37].
They are the main motivation for the developed theory as it addresses one of the core
walk limitations, namely the dephasing due to near-resonant quasimomenta. Another
measurable effect is the thermal cloud around the BEC which will be considered (among
some further explanaition regarding the simulation) in the next section.

4.1. Numerical Implementation
Quantum map
As inter-particle interactions in the BEC become neglegible with the low temperature,
the walk can be treated as a single-particle-theory. For its simulations, the available
momentum classes have to be of finite size N . It is best advised to choose a set size with
a power of 2 as fast Fourier transformations become most efficient1. In position space
this finite size yields a discretisation and creates a grid of

θi =
2π

N
i (4.1)

and momentum classes of

n = −N/2,−N/2 + 1, . . . ,N/2 − 1 (4.2)

Because of the two internal levels we accredit each of them their own wavefunction (but
normalized to 0.5 to give a normalized total wavefunction) where there is a complex data
entry for each momentum class allocated. An initalisation in momentum space follows

1Modern numerical implementations of the FFT also work with odd array lengths and even but worst
with prime array lengths.
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eq. 1.27 and is of the form

ψ↑(n = 0) =
1

2

ψ↓(n = 0) =
1

2

ψ↑(n = 1) = −i · 1
2

ψ↓(n = 1) = −i · 1
2

(4.3)

As desribed already, the two parts of the Floquet operator are well applicable in position
or momentum space respectively. This demands the use of the (inverse) fast Fourier
transformation in order to switch from one space to the other.
A single kick step is the inverse transformation into position space and the application
of the kick

e±ik cos θi (4.4)

on each grid point. Due to the complex data type, this can be multiplied straight-
forward. The only caveat here is that one wavefunction is throughoutly kicked with
strength k whereas the other with −k.
After the fast Fourier transformation back into momentum space the reordering by the
FFT-routine has to be inversed by applying an IFFT-shift. The free evolution

e−
i
2
τpi

2 (4.5)

is applied which includes the quasi-momentum p = n + β as well. The last step is the
mixing of the two internal levels with eq. 1.23.
The joint probability is then drawn from the sum of the two absolute squares of the
complex values corresponding to the same momentum class. Since the initialisation was
chosen to create a totally normalized wavefunction, no further normalisation is needed.
An example for the numerical implementation is given in appendix C.

When dealing with a finite width in quasi-momentum a Monte-Carlo fashioned average
is used

P̄ =
1

N

N∑
i=1

Pi (4.6)

This average assumes that each particle in the BEC contributes a single quasimomentum
in contrast to the coherent superpostion in eq. 1.9. A justification was already given
in section 1.1.1. Typical samples sizes are between 5000 and 10000 particles each with
an individual β-value. As mentioned in section 1.3, the number of BEC atoms is in the
same order of magnitude.
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Thermal cloud effects
In the experimental set-up the creation of the BEC does include a thermal cloud which
is affected by the microwave pulses to some extent. For the given experimental imple-
mentation the momentum distribution of the thermal cloud can be well assumed to be
Gaussian around momentum class 02 with a width of half a Brillouin zone. At this level
the distribution for the quasi-momentum follows the same shape [23]. Since these values
are far from resonance in general the behaviour of the cloud is mostly static around
the initial Gaussian profile and thus does not change much during the kicking sequence.
This results in a higher momentum probability around the initial momentum classes as
the simulations would show without this effect. The experimental data however, show
such a behaviour, confirming a thermal cloud effect with a ratio of 10− 15% compared
to the BEC as seen below in the comparison.

Taking into account the experimental imaging process
The momentum distribution for each kick step is experimentally detected using the time-
of-flight screening method. In the common representation, the distribution has a profile
perpendicular to the walk axis due to the effects of gravity. This profile is then stacked
in the time window between two consecutive kicks just before the actual screening point.
This may give an impression of a long measurement process but it is only done for better
representation. We also remark a larger Gaussian FWHM in the experimental momen-
tum distributions than actually present for the experiment. This might be due to the
time-of-flight method as well as the thermal cloud part being distributed uniformly over
the whole momentum class.
In the simulations we consider the imaging process by giving each momentum class two
Gaussian profiles.Their respective parameters are taken from fits of the actual exper-
imental image data. It allows for a more visible comparability between the two data
sets.

4.2. Comparison of simulation, developed theory and
experiment

4.2.1. Comparison of the developed theory with the simulation
Figs. 4.1 and 4.2 show the comparison between the theory developed in chapter 2 and
the simulation using the quantum map. Since for the ideal case the theory is an exact
analytical expression, no deviation from the simulation is seen. The agreement is still
fair for a low number of kicks at the current experimental width in quasimomentum
of about 2.5%, see fig. 4.2c, or for a lower width like 0.5% depicted in fig. 4.2a &
b. Since the effective quasimomentum in eq. 2.24 grows with βT linearly in time the
approximation done in eq. 2.21 can no longer be justified, hence a higher deviation from

2The thermal cloud is not altered by the initial Bragg pulse explained in eq. 1.26
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the simulation in fig. 4.2d. The approximation is the worst for the Bessel index |n| ≤ 2
which is why there is a higher probability being in the centre compared to the simulation.

We also note the fact that due to the approximation made the resulting momen-
tum distribution becomes symmetric in numerical simulations when run for a single
β-trajectory. This is not the case in general. Instead the mean of two trajectories, one
with β0 and the other with β1 = −β0, can be considered. The average is now symmetric
again for all β0 yielding a better agreement with the developed theory.
A minor problem is the exponential growth of summands in the momentum distribution.
A test of the running time in the resonance limit is shown in fig. 4.3. In this figure the
algorithms implementing the introduced theory of chapter 2 is compared with the the-
ory of the resonant case presented in chapter 3 and the simulation using the quantum
map described in section 4.1. The two latter only grow somewhat polynomially with the
walk length but for the developed theory an exponential running time is found. This is
however due to the fact that no optimisation for the eqs. 2.29 & 2.30 was applied. As
mentioned in section 2.6 the maximal kicking strength in the Bessel summands grows
only linearly with the walk steps. A further treatment of the 2T components should
reduce them to only 2T remaining ones having pairwisely different kicking strengths.
This is implicitly implemented in the ideal case hence the speed-up here.
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Figure 4.1.: Comparison of simulation and theory for the ideal case β → 0. Since the theory in
the resonance case is no longer an approximation, no deviations between the two
approaches are expected and seen above. Grid drawn to underline the symmetry of
the walk.

Figure 4.2.: Comparison of the simulation with the approximative theory for βFWHM =
0.5, 2.5% for short and intermediate kick numbers. a) and c) with T = 5, b) and
d) for T = 10 with less good agreement. Same holds for increasing the width from
0.5% in a) and b) to 2.5% for c) and d). Grids drawn to underline the symmetry of
the walk.
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Figure 4.3.: Running time for the algorithm calculating the ideal walk distribution over the
intervall [−T, T ] for different walk steps T . The grid length N for the simulation is
always minimized such that N ≥ 2T is always fulfilled. The simulation (black) and
the theory represented in chapter 3 (blue) require way less computational time than
summing up the summands in eqs. 2.29 & 2.30 which is depicted by the highest
(green) line. The error bars correspond to one standard deviation of 100 runs of the
same algorithm.

4.2.2. Comparison with the experiment
In order to compare the experiment with the simulations for all time steps and momen-
tum classes, false-color plots illustrate the quality of the matching (figs. 4.4 - 4.6). The
x-axis is the time axis corresponding to the walk steps taken. The y-axis shows the
different momentum classes and the population distribution is encoded in a heat map.
A dark blue color corresponds to a probability of 0 scaling up to red for a probability of
0.5.
The walk starts in the initialized momentum classes of eq. 1.27 und spreads ballisticly
outwards over time as more momentum classes are getting coupled with each other.
Quite distinctive for all images is the Gaussian peak, especially for higher kick counts.
It corresponds to the thermal cloud reviewed in section 4.1 as well as the dephasing due
to the near-resonant quasi-momenta discussed in chapter 2.

For the simulations accompanying the experimental data, the parameters to adjust
are the kicking strength k, the width of the near-resonant quasimomentum distribution
βFWHM and the degree of influence from the thermal cloud (as a fraction of the BEC).
As mentioned before the spontaneous emission was not included in the simulations as its
effect on the walk was barely noticable. Adjustment is required as the experiment gives
values for k and βFWHM but with some uncertainty thus the simulation parameters have
to be found within the error windows of the experimental ones. In fig. 4.4 for example,
the experiment was run for k = 1.4 but the simulation suggests an effective kick strength
of 1.45 to 1.5 with a width of approx. 2.5%.
Consecutively, the thermal cloud fraction was steadily increased until the centered peak
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(a) Simulation (b) Experiment

Figure 4.4.: Comparison of the experiment with the best fit in the simulation for k ≈ 1.5.
Experimental data from [37].

for low kick steps (which would otherwise not be seen in the simulations) matches the
experimental data. This is the case for a fraction of around 15%. The overall agreement
is fairly good as the outgoing peaks as well the remaining one in the centre match quite
well.

Biased walks
So far, all investigated walks were symmetric around the initial momentum classes n =
0, 1 by the choice of the coins (eqs. 1.22 and 1.23 were both balanced) and the detuning
chosen to be halfway between the hyperfine levels (see fig. 1.4) which gave the same
absolute kicking strength for both levels. Either of these conditions altered would steer
the walk in one preferred direction resulting in a biased walk like given in fig. 4.5.

In the upper two plots both coins were given a bias ρ e.g. as for the walk coin

Ĉbias =

( √
ρ i ·

√
1− ρ

i ·
√
1− ρ

√
ρ

)
(4.7)

(and in the same fashion for the Hadamard gate) meaning that one level was constantly
assigned a higher population than the other. This inequality due to the different kick
directions of the levels results in a directed walk.
The same can be achieved by altering the detuning instead of biasing the coins. In this
case the detuning will be closer to one of the internal levels which means a weaker kick
for the corresponding walk direction and a stronger one in the other. This also results
in a directed motion as seen in fig. 4.5c & d where k↑ = 1.7 and k↓ = 1.0.
The walk is therefore easily steerable in the experiment which might make it interesting
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(a) Biased coin, simulation (b) Biased coin, experiment

(c) Biased kicking strengths, simulation (d) Biased kicking strengths, experiment

Figure 4.5.: Comparison of the biased walks in the experiment with the simulations. ρ = 0.7
chosen for the biased coins and k = 1.5 as in fig. 4.4. Experimental data from [37].

for quantum computational (search) algorithms.

Transition to classical behaviour by randomizing the mixing phase
The transition from quantum to classical behaviour is an interesting topic on its own
already. The implemented walk also has such a transition which is however not due to
decoherence as the effects of SE was negligible in the experiment. The transition is still
achieved by randomizing the offset for the phase χ in eq. 1.25 uniformly over an intervall
[−α · 2π, α · 2π]. This is equivalent to introduce noise to the system, in this case for the
phase of the microwave. The behaviour of the walk now depends on the offset phase α
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which can be interpreted as a measure of the quantumness. The result is seen in fig. 4.6.
Already at α = 4% the walk centres more compared to fig. 4.4b which has the same
parameters but a fixed phase. With a totally random phase (corresponding to α = 1/2)
classical behaviour is expected which the walk shows by approaching a Gaussian shape
even for the first few walk steps.

(a) Coin randomness 4%, simulation (b) Coin randomness 4%, experiment

(c) Coin randomness 100%, simulation (d) Coin randomness 100%, experiment

Figure 4.6.: Comparison of the walks, where the offset of the mixing phase is uniformly dis-
tributed within ±α ·2π, in the experiment with the simulations. Experimental data
from [37].
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4.3. Summary
The approximation - as discussed already around eq. 2.21 - is justified for small de-
viations of the quasi-momentum from the resonant case βres = 0. Since the effective
quasi-momentum grows linearly over time (see the βT terms in eqs. 2.29 & 2.30), the
approximation is only valid for a small number of walk steps taken. The same holds for a
small FWHM in the corresponding β-distribution considered for the classical average in
eq. 4.6. However, the theory developed in chapter 2 gives a more intuitive explanation
for the resonant case than the theory reviewed in chapter 3.

The simulations for the comparison with the experimental findings in [37] further-
more take into account the impact of the thermal cloud surrounding the Bose-Einstein
condensate, according to section 4.1. An overall good agreement is found. Moreover,
the simulation parameters were within the uncertainty windows of the experimentally
measured ones. This justifies the theoretical approach of the atom optics kicked rotor
combined with quantum ratchets.
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5. Walk reversal
In the last chapter in section 4.2.2, the controllability of the walk was demonstrated by
steering it into one of two possible directions. Another controll feature is the reversal
of single or multiple walk steps. Since the walk evolves coherently and unitarily, it is
possible to reverse all taken steps in a walk. If the kicking matrix

Ukick =
1√
2

(
1 i
i 1

)(
e−ik cos(θ̂) 0

0 eik cos(θ̂)

)
≡ M̂

(π
2
,−π

2

)
· K̂ (5.1)

is applied T times, application of its Hermitian conjugate for T times should revert the
momentum probability to its origin:

U−1
kick =

1√
2

(
eik cos θ̂ 0

0 e−ik cos θ̂

)(
1 −i
−i 1

)
≡ K̂−1 · M̂

(π
2
,
π

2

)
(5.2)

The kick operator K̂ can be inversed by applying two Pauli-like (rotation) matrices.
This leads to

U−1
kick = M̂

(
π,±π

2

)
· K̂ · M̂

(
π,∓π

2

)
· M̂

(π
2
,
π

2

)
(5.3)

for the inverse kicking matrix. Here, M̂ denotes the mixing coin from eq. 1.25.
Experimentally, the application of three microwave pulses per step is quite challenging.
An easier way to implement a reversal is to switch to ratchet currents, i.e. not applying
the mixing M̂ at all, and to reverse the populations after T kicks. Another T ratchet
steps let the ballistic peaks move inwards again. The absence of the mixing between to
consecutive kicks means working indifferently from the internal levels.

A protocoll of such a procedure would be for T ∈ 2N:

1. Initialisation with the Hadamard coin ĈHad (eq. 1.22)

2. T/2-time application of K̂ (eq. 1.28)

3. Application of a π-pulse, i.e. M̂(π, 0), for a population swap

4. Another T/2-time application of K̂

5. Reset of step one but with an arbitrary phase χ, i.e. applying M̂(π/2, χ)
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In the ideal case of no width in quasi-momentum this gives

Ûtotal =Ĉ
†
Had(χ)K̂

T/2M̂(π, 0)K̂
T/2ĈHad (5.4)

=Ĉ†
Had(χ)

(
0 1
−1 0

)
1̂nĈHad (5.5)

=
1

2

(
−e−iχ − 1 −e−iχ + 1
eiχ − 1 −eiχ − 1

)
1̂n (5.6)

where 1̂n is the identity operator acting in momentum space.
Applied on the initial state |φ0⟩ ⊗ |↓⟩ this gives a final state of

|φ0⟩ ⊗
(
ie−iχ

2 · sin
(χ
2

)
|↑⟩ − ei

χ
2 · cos

(χ
2

)
|↓⟩
)

(5.7)

and thus the population of one internal level goes with sin2(χ2 ) for |↑⟩ and with cos2(χ2 )
for |↓⟩.

5.1. Results of the implementations
The reversal of the quantum walk in the same fashion as implemented in chapter 4 is
shown to be impossible at the given width in quasimomentum in the next section. This
is the reason for switching to ratchet currents as explained above. For this kind of re-
versal the simulation compares well with the experimental results in section 5.1.2.
The third section concludes with a theoretical step towards probable matter-wave inter-
ferometry.

5.1.1. Reversal of the quantum walk
The numerical simulation confirms such a reversal in fig. 5.1, however the success of
the procedure heavily depends on the width in quasi-momentum as the dephasing is
not compensated in the experiment, see fig. 5.1. The dephasing is an effect of the
near-resonant quasi-momenta β ̸= βres = 0. Their respective free evolution between two
successive kicks produces a relative phase and also alters the effective kicking strength as
derived in chapter 2. Due to the dephasing of single β-trajectories (as discussed around
eq. 1.9) fig. 5.1 implies that at the current experimental level a walk reversal could not
be implementable! As seen from eqs. 2.29 & 2.30, the momentum distribution is the
sum of more and more terms all depending on the quasimomentum. Since its resulting
dephasing is not compensated, this only allows a walk reversal for very small widths
in quasimomentum. Switching to ratchet currents in section 5.1.2 as explained above
evades this problem as the momentum distribution only has two summands of the form
of eq. 1.16, one for each internal level.
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(a) Ideal reversal (b) Experimentally accessible

(c) Higher widths destroy any signs of
reversal, here at 4% FWHM

(d) At this level even the normal walk
is not observable anymore

Figure 5.1.: Simulated walk reversal of the quantum walk for different widths in quasi-
momentum from the ideal case (a) to the off-resonance case (d).

5.1.2. Reversal of the ratchet current
This reversal is experimentally observable at the current setting and was tested for the
two cases where the currents were reversed after T = 3 and T = 5 respectively. A
high similarity between experiment and simulation is seen in fig. 5.2, both cases for
βFWHM ≈ 2.5% and k = 1.5.
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(a) Experiment for Trev = 3 (b) Simulation for Trev = 3

(c) Experiment for Trev = 5 (d) Simulation for Trev = 5

Figure 5.2.: Comparison of the reversal using a ratchet current. Good agreement is met for
different reverse times Trev [42].

5.2. Towards interferometry
In this step a focus is placed at the population ratio of the two internal levels in depedence
on the recombiner phase χ. In quantum resonance, populations following sin2(χ2 ) and
cos2(χ2 ) are expected. This is still the case for a finite width in quasi-momentum but
with an amplitude A = A (βFWHM , T ) mixing the two levels more with each other. This
effect also increases with the number of kicks Trev up to the population swap because the
dephasing increments over time as well. In fig. 5.3 the population ratio of the two levels
are plotted with respect to the recombiner phase. The effect of the quasi-momentum
and - comparing both figures - the effect of a higher step counts T as well can be studied.

The influence of the quasimomentum is strongest where the population transfer to
ideally only one level occurs, i.e. χ = nπ with n = −1, 0, 1. The purity of the population
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(a) Reversing after T = 3 (b) Reversing after T = 5

Figure 5.3.: Population of each internal level in dependency of the recombiner phase χ for k =
1.5.

transfer at χ = 0 is plotted over the width in quasimomentum in fig. 5.4.

Figure 5.4.: The population of a single internal level as a measure of the purity of the population
transfer at χ = 0. A higher width in quasimomentum quickly decreases the level
separation. For even higher widths the purity rises back a bit.

As expected from fig. 5.3 the purity of the level separation quickly drops if dephasing
due to the quasimomentum is taken into account. For a width of about 10% this steadily
decreases until no population transer is visible any more. This however rises once more
for even higher widths in quasimomentum. At the current setting of βFWHM determining
the purity of the population transfer for χ = 0 allows a more precise measurement of
the width in the BEC.
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6. Conclusion

Summary
Motivated by an ongoing experimental time-discrete quantum walk scheme [16, 37], we
are interested in the study of the experimental limitations for the walk. These namely
are the quasi-momentum β, influencing the free evolution between two consecutive kicks,
and the thermal cloud around the prepared BEC in the experiment. We furthermore
compared the simulations including the mentioned influences with the experimental re-
sults for different walk applications such as steered walks or the transition to classical
behaviour due to noise.
In the last chapter we examined a probable walk reversal but switched to reversing the
ratchet currents as a walk reversal is not implementable with the given experimental
setting at the moment.

A theory was developed to include the near-resonant quasi-momenta into the analyt-
ical expressions for the momentum distributions of the quantum walk. The approach
was different to the one applied for the atom optics kicked rotor in [23] in order to in-
clude the mixing of the internal levels. With the help of an approximation valid for the
near-resonant case β ≈ 0 an expression was found that could be interpreted in analogy
with the quantum walk along a Galton board structure [31].
An analytical expression for the resonant case, i.e. β = 0, was already given in [17] but
was rather abstract and unintuitive. The two analytical expression were shown to be
identical in quantum resonance.

As the walk becomes experimentally stable for a larger number of kicks up to 20
steps in this thesis we were also able to check the quantum walk theory by running
simulations parallely to the experimental results. A good agreement was found in the
parameter match together with similar momentum distributions. Including effects like
the thermal cloud could furthermore improve the agreement. It is also possible to steer
the walk using either biased coins or kicking strengths and thus breaking the symmtery
of the walk. Another topic investigated is the transition from pure quantum behaviour
to classical one. In this case the phase of the microwave mixing the internal levels is
randomized around its ideal value. Increasing the window for the offset phase leads to a
transition to classical behaviour and for a totally random phase the classical Gaussian
distribution can be obtained.

In the last section an experimentally accessible scheme for a probable walk reversal was
suggested. Due to the unitarity, the quantum walk is in principle completely reversible.
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The biggest obstacle is the free evolution influenced by the near-resonant quasimomenta.
The reversal can be simplified by the usage of ratchet currents which - at the current
experimental level - make reversals experimentally feasable. We note that this is no
quantum walk reversal anymore because the crucial mixing part is omitted here. The
quasimomentum leads to a less pure population separation which depends on the width
of its corresponding distribution.

Outlook
Even though we focussed on the two essential effects impacting on the walk, further
aspects might be interesting to investigate in future studies.

The developed analytic expressions for the momentum distributions do not include
the far-off-resonant quasi-momenta which would be needed to analytically investigate
the effect of the thermal cloud. It can be seen as an ensemble of particles mostly with
off-resonant quasi-momenta. On the other hand, even small deviations from the quan-
tum resonance can lead to high dephasing over a few dozen walk steps. This is why the
approximation in this thesis fails for higher walk steps and it is therefore needed to find
an analytical expression for a bigger range of quasi-momenta.
It is also interesting to include biased coins or kicking strengths into the theory. The
latter is especially relevant in the experiment as the laser intensity and therefore the
kicking strengths seem to drift away from the desired strength. This could furthermore
connect the quantum walk to previous works on steered walks [43].

From an experimental viewpoint, the implemented walk has the advantage of being
steerable in direction as well in its transition to classical behaviour. The experimental
data showed the same behaviour as we had predicted via simulations. That is why this
implemented quantum walk is especially useful in future quantum algorithms [2].
The proposed walk could even be extended to higher walk dimensions but with some
caveats. The used optical lattice is indeed easily extendable into a two-dimensional
one. However, this raises the problem that the BEC atoms at each lattice site expand
two-dimensionally and each particle might feel varying kick strengths as they are not
spatially confined enough. It is also not clear on how to connect the perpendicular grid
with each other. This connection is crucial for correlated walks and the main interesting
feature of probable multi-dimensional walks [44, 45, 46].
A different approach is to superimpose two momentum grids with different spacing, e.g.
the second grid could only consist of even momentum classes. The connection could be
made by the spacing ratio of the two grids. A walk step on one grid would have effects
on the other one and the impact of this intertwining is an open question so far.

Investigating the ratchet reversal might furthermore open the possibility of measuring
the width in quasi-momentum in a possible matter-wave interferometer set-up. It is
of interest how this set-up extends to the quantum walk reversal and responds to its
variations, such as reversed biased walks. This gives more insight into the relation
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between the quantum walks and its governing parameters like kick strengths or coin
choices.
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A. Useful relations for Bessel functions of
the first kind

Mathematically, Bessel functions of the first kind are solutions to the differential equation

z2
d2f

dz2 + z
df
dz +

(
z2 − n2

)
f = 0 (A.1)

but are also of physical interest when working with the atom optics kicked rotor of sec-
tion 1.1. The following formulas are intended to give an overview of probably useful
relations for further studies. Eqs. A.7, A.9 & A.10 are used in chapter 2.

From chapter 2·1.21, recurrence relations:

Jn−1(z) + Jn+1(z) =
2n

z
Jn(z) [1] (A.2)

Jn−1(z)− Jn+1(z) = 2
d

dz
Jn(z) [2] (A.3)

d

dz
(znJn(z)) = znJn−1(z) [5] (A.4)

From chapter 2·2.2:

1 =
∑
n∈N0

ϵ2n J2n(z) with ϵn = 2− δn,0 [7] (A.5)

z =
∑
n∈N0

ϵ2n+1 (2n+ 1)J2n+1(z) [8] (A.6)

From chapter 2·4, addition rules:

Jn(y + z) =
∑
r∈Z

Jr(z)Jn−r(y) [1] (A.7)

From chapter 2·7.2:

z2 =
1

2

∑
n∈N

ϵn 4n2J2
n(z) [3] (A.8)

1All formulas are taken from [41] with indicated chapter and the respective enumeration given in
brackets [ ]
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From chapter 3·6.2:

Jn

(
z · elπi

)
= elnπiJn(z) l ∈ Z [1] (A.9)

J−n

(
z · elπi

)
= e−lnπiJ−n(z) [2] (A.10)

From chapter 5·3, further addition rules:

Jn(y − z) =
∑
r∈Z

Jr(z)Jn+r(y) [4] (A.11)

J−n(y + z) =
∑
r∈Z

(−1)rJr(z)J−n+r(y) [4] (A.12)

From chapter 11·2, Parseval’s integral2 and Neumann’s addition theorem:

J0(z) =
1

2π

∫ π

−π
eiz cos(θ)dθ = 1

2π

∫ π

−π
eiz cos(θ−a)dθ ∀z ∈ C,∀a ∈ R (A.13)

J0

(√
Z2 + z2 − 2Zz cos(ϕ)

)
=
∑
n∈Z

ϵnJn(Z)Jn(z) cos(nϕ) [1] (A.14)

The last following approximation for large n is taken from [40] missing above:

Jn(z) ∼
1√
2πn

( ez
2n

)n
[9.3.1] (A.15)

2Not numerated
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B. Step-wise calculations of the respective
matrix elements

T=1 and 2

Ûkick =M̂ · F̂ · K̂ =
1√
2

(
1 i
i 1

)
e−iτβn̂

(
e−ik cos(θ̂) 0

0 eik cos(θ̂)

)
(B.1)

=
1√
2
e−iτβn̂

(
e−ik cos(θ̂) ieik cos(θ̂)

ie−ik cos(θ̂) eik cos(θ̂)

)
(B.2)

=
1√
2
e−iτβn̂

∑
m

imJm(k)eimθ̂

(
(−1)m i
i(−1)m 1

)
(B.3)

=
1√
2

∑
m

imJm(k)e−iτβn̂
∑
j

|j +m⟩⟨j|
(
(−1)m i
i(−1)m 1

)
(B.4)

=
1√
2

∑
m

imJm(k)
∑
j

e−iτβ(j+m) |j +m⟩⟨j|
(
(−1)m i
i(−1)m 1

)
(B.5)

Û2
kick =

[
1√
2

(
1 i
i 1

)
e−iτβn̂

(
e−ik cos(θ̂) 0

0 eik cos(θ̂)

)]2
(B.6)

=
e−iτβn̂

√
2
2

∑
m2,m1

im1+m2Jm1(k)Jm2(k)
∑
j′,j

e−iτβ(j+m1)

×
∣∣j′ +m2

⟩ ⟨
j′
∣∣j +m1

⟩︸ ︷︷ ︸
=δj′,j+m1

⟨j|
(
(−1)m2 i
i(−1)m2 1

)(
(−1)m1 i
i(−1)m1 1

)
(B.7)

=
1

√
2
2

∑
m2,m1

im1+m2Jm1(k)Jm2(k)
∑
j

e−iτβ(2j+2m1+m2) |j +m1 +m2⟩⟨j|

×
(
(−1)m1 [(−1)m2 − 1] i [(−1)m2 + 1]
i(−1)m1 [(−1)m2 + 1] − [(−1)m2 − 1]

)
(B.8)
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Proof of the recurrence
The start of the proof by induction is already given in B.5. Doing the induction step
T 7→ T + 1

ÛT+1
kick =

[
1√
2

∑
mT+1

imT+1JmT+1(k)
∑
j′

e−iτβn̂
∣∣j′ +mT+1

⟩⟨
j′
∣∣( · · ·

)]
· ÛT

kick

=
1

√
2
T+1

∑
m1,...,mT+1

i
∑T

i=1 mi

(
T∏
i=1

Jmi(k)

)
imT+1JmT+1(k)

×
∑
j′,j

e−iτβn̂e−iτβ(Tj+
∑T

i=1(T+1−i)mi)
∣∣j′ +mT+1

⟩⟨
j′

∣∣∣∣∣j +
T∑
i=1

mi

⟩
︸ ︷︷ ︸

=δ
j′,j+

∑T
i=1

mi

⟨j|RMT+1

=
1

√
2
T+1

∑
m1,...,mT+1

i
∑T+1

i=1 mi

(
T+1∏
i=1

Jmi(k)

)∑
j

e−iτβ(j+
∑T+1

i=1 mi)

× e−iτβ(Tj+
∑T

i=1(T+1−i)mi)

∣∣∣∣∣j +
T+1∑
i=1

mi

⟩⟨
j

∣∣∣∣∣RMT+1

=
1

√
2
T+1

∑
m1,...,mT+1

i
∑T+1

i=1 mi

(
T+1∏
i=1

Jmi(k)

)

×
∑
j

e−iτβ((T+1)j+
∑T+1

i=1 (T+2−i)mi)

∣∣∣∣∣j +
T+1∑
i=1

mi

⟩⟨
j

∣∣∣∣∣RMT+1

(B.9)
□

The recurrence of the matrix RMT is shown via

RMT+1 =

(
(−1)mT+1 i
i(−1)mT+1 1

)
·RMT

=
(

(−1)m1
[
(−1)

mT+1AT − (−1)
mT+1 − ÃT − 1

]
i
[
(−1)

mT+1BT + (−1)
mT+1 − B̃T + 1

]
i(−1)m1

[
(−1)

mT+1AT − (−1)
mT+1 + ÃT + 1

]
−

[
(−1)

mT+1BT + (−1)
mT+1 + B̃T − 1

]) (B.10)

giving

AT+1 = (−1)mT+1AT − (−1)mT+1 − ÃT BT+1 = (−1)mT+1BT + (−1)mT+1 − B̃T

ÃT+1 = (−1)mT+1AT − (−1)mT+1 + ÃT B̃T+1 = (−1)mT+1BT + (−1)mT+1 + B̃T
(B.11)
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Calculation of the momentum distribution
T=1
The calculation here is rather straight-forward:⟨

n ↑
∣∣∣Ûkick

∣∣∣φ0

⟩
= ⟨n|

(
1 0

) 1√
2

∑
m

imJm(k)
∑
j

e−iτβ(j+m) |j +m⟩⟨j|

×RM1 ·
1

N

∑
l

(−i)l |l⟩
(
1

1

) (B.12)

=
1√
2N

∑
m

imJm(k) [(−1)m + i]
∑
j

e−iτβ(j+m)

×
∑
l

(−i)l ⟨n|j +m⟩ ⟨j|l⟩︸︷︷︸
=δj,l

(B.13)

=
1√
2N

∑
m

imJm(k) [(−1)m + i]
∑
l

e−iτβ(l+m)(−i)l ⟨n|l +m⟩︸ ︷︷ ︸
=δm,n−l
=δn,l+m

(B.14)

=
1√
2N

∑
l

in−l(−i)le−iτβnJn−l(k)
[
(−1)n−l + i

]
(B.15)

=
ine−iτβn

√
2N

∑
l

(−1)l
[
(−1)n−lJn−l(k) + iJn−l(k)

]
(B.16)

=
ine−iτβn

√
2N

∑
l

(−1)l [Jn−l(−k) + iJn−l(k)] (B.17)

⟨
n ↓
∣∣∣Ûkick

∣∣∣φ0

⟩
=

1√
2N

∑
l

in−l(−i)le−iτβnJn−l(k)
[
i(−1)n−l + 1

]
(B.18)

=
ine−iτβn

√
2N

∑
l

(−1)l [iJn−l(−k) + Jn−l(k)] (B.19)

yielding

∣∣∣⟨n ↓
∣∣∣Ûkick

∣∣∣φ0

⟩∣∣∣2 = 1

2N2

∣∣∣∣∣∑
l

(−1)l [iJn−l(−k) + Jn−l(k)]

∣∣∣∣∣
2

(B.20)

∣∣∣⟨n ↑
∣∣∣Ûkick

∣∣∣φ0

⟩∣∣∣2 = 1

2N2

∣∣∣∣∣∑
l

(−1)l [Jn−l(−k) + iJn−l(k)]

∣∣∣∣∣
2

(B.21)

A similar result as before is desired to obtain for a higher kick count and - with the
described approximation - is achieved in the following.
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T=2
⟨
n ↑
∣∣∣Û2

kick

∣∣∣φ0

⟩
= ⟨n|

(
1 0

)1
2

∑
m1,m2

im1+m2Jm1(k)Jm2(k)e
−iτβ(2j+2m1+m2)

×
∑
j

|j +m1 +m2⟩⟨j|RM2 ·
1

N

∑
l

(−i)l |l⟩
(
1

1

) (B.22)

=
1

2N

∑
m1,m2

im1+m2 (∗ ↑)2 Jm1(k)Jm2(k)e
−iτβ(2j+2m1+m2)

×
∑
j

⟨n|j +m1 +m2⟩ ·
∑
l

(−i)l ⟨j|l⟩
(B.23)

where (∗ ↑)2 denotes the sum of the two upper matrix elements in eq. B.8 and is
abbreviated for short-hand notations.⟨

n ↑
∣∣∣Û2

kick

∣∣∣φ0

⟩
=

1

2N

∑
m1,m2

im1+m2 (∗ ↑)2 Jm1(k)Jm2(k)e
−iτβ(2l+2m1+m2)

×
∑
l

(−i)l ⟨n|l +m1 +m2⟩︸ ︷︷ ︸
=δn−l,m1+m2
=δm2,n−l−m1

(B.24)

=
1

2N

∑
l

in−l(−i)l
∑
m1

(∗ ↑)2

∣∣∣∣
m2=n−l−m1

× Jm1(k)Jn−l−m1(k)e
−iτβ(2l+m1+n−l)

(B.25)

=
ine−iτβn

2N

∑
l

(−1)le−iτβl
∑
m1

(∗ ↑)2

∣∣∣∣
m2=n−l−m1

× Jm1(k)Jn−l−m1(k)e
−iτβm1

(B.26)

The approximation results in⟨
n ↑
∣∣∣Û2

kick

∣∣∣φ0

⟩
≈ i

ne−iτβn

2N

∑
l

(−1)le−iτβl
∑
m1

(∗ ↑)2

∣∣∣∣
m2=n−l−m1

× Jm1(k · e−iτβ)Jn−l−m1(k)

(B.27)

=
ine−iτβn

2N

∑
l

(−1)le−iτβl
∑
m

Jm(k · e−iτβ)Jn−l−m(k)

×
([

(−1)n−l − (−1)m
]
+ i
[
(−1)n−l−m + 1

]) (B.28)
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=
ine−iτβn

2N

∑
l

(−1)le−iτβl

×

[
(−1)n−l

∑
m

Jm(k · e−iτβ)Jn−l−m(k)−
∑
m

Jm(−k · e−iτβ)Jn−l−m(k)

+ i
∑
m

Jm(k · e−iτβ)Jn−l−m(−k) + i
∑
m

Jm(k · e−iτβ)Jn−l−m(k)

] (B.29)

=
ine−iτβn

2N

∑
l

(−1)le−iτβl
[
(−1)n−lJn−l

[
k
(
1 + e−iτβ

)]
− Jn−l

[
k
(
1− e−iτβ

)]
+iJn−l

[
k
(
e−iτβ − 1

)]
+ iJn−l

[
k
(
1 + e−iτβ

)]] (B.30)

=
ine−iτβn

2N

∑
l

(−1)le−iτβl
[
Jn−l

[
−k
(
1 + e−iτβ

)]
− Jn−l

[
k
(
1− e−iτβ

)]
+iJn−l

[
k
(
e−iτβ − 1

)]
+ iJn−l

[
k
(
1 + e−iτβ

)]] (B.31)

yielding (analogously for the other internal level)

∣∣∣⟨n ↑
∣∣∣Û2

kick

∣∣∣φ0

⟩∣∣∣2 ≈ 1

4N2

∣∣∣∣∣∑
l

(−1)le−iτβl
(
Jn−l

[
−k
(
1 + e−iτβ

)]
− Jn−l

[
k
(
1− e−iτβ

)]
+ iJn−l

[
k
(
e−iτβ − 1

)]
+iJn−l

[
k
(
1 + e−iτβ

)]) ∣∣∣∣∣
2

(B.32)

∣∣∣⟨n ↓
∣∣∣Û2

kick

∣∣∣φ0

⟩∣∣∣2 ≈ 1

4N2

∣∣∣∣∣∑
l

(−1)le−iτβl
(
iJn−l

[
−k
(
1 + e−iτβ

)]
+ iJn−l

[
k
(
1− e−iτβ

)]
− Jn−l

[
k
(
e−iτβ − 1

)]
+Jn−l

[
k
(
1 + e−iτβ

)]) ∣∣∣∣∣
2

(B.33)
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The general case for T>2
The calculation can be started using eq. 2.11

⟨
n ↑
∣∣∣ÛT

kick

∣∣∣φ0

⟩
=

1
√
2
T
N

∑
m1,...,mT

i
∑T

i=1 mi

(
T∏
i=1

Jmi(k)

)
×
∑
j,l

(−i)le−iτβ(Tj+
∑T

i=1(T+1−i)mi)

×

⟨
n

∣∣∣∣∣j +
T∑
i=1

mi

⟩
⟨j|l⟩︸ ︷︷ ︸

=δn−l,
∑

mi

(
1 0

)
RMT

(
1
0

) (B.34)

=
1

√
2
T
N

∑
l

∑
m1,...,mT∑

mi=n−l

in−l(−i)l
(

T∏
i=1

Jmi(k)

)

× e−iτβ(T l+
∑T

i=1(T+1−i)mi) (∗ ↑)T

∣∣∣∣∑
mi=n−l

(B.35)

=
in

√
2
T
N

∑
l

(−1)le−iτβT l
∑

m1,...,mT−1

e−iτβ
∑T−1

i=1 (T−i)mi

×

(
T−2∏
i=1

Jmi(k)

)∑
mT

δ∑mi,n−lJmT−1(k) JmT (k)︸ ︷︷ ︸
mT=n−l−mT−1−

∑T−2
i=1

× e−iτβ
∑

mi︸ ︷︷ ︸
=e−iτβ(n−l)

(∗ ↑)T

∣∣∣∣∑
mi=n−l

(B.36)

=
ine−iτβn

√
2
T
N

∑
l

(−1)le−iτβ(T−1)l
∑

m1,...,mT−2

e−iτβ
∑T−2

i=1 (T−i)mi

×

(
T−2∏
i=1

Jmi(k)

) ∑
mT−1

JmT−1(k)Jn−l−
∑T−2

i=1 −mT−1
(k)

× e−iτβmT−1 (∗ ↑)T

∣∣∣∣∑
mi=n−l

(B.37)
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⟨
n ↑
∣∣∣ÛT

kick

∣∣∣φ0

⟩
≈ i

ne−iτβn

√
2
T
N

∑
l
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(B.38)

In the last step, the same approximation was applied as before to allow the application
of the addition rule.
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C. Source code example
The implementation using the quantum map was explained in section 4.1. python 3
allows the allocation of complex valued data types used for the wave functions of the
internal levels. In list. C.1 the defined functions for the quantum map are listed. They
simulate a walk step by applying the free evolution part of the Floquet operator in eq.
1.12 first. It is followed by the δ-kicking with respective kicking strengths k1 and k2
(different in sign) which also allows for a steered walk like in chapter 4. Each step is
concluded by the instantaneous mixing using eq. 1.23.
For the simulation of the ratchet currents like in section 5.1.2, the same functions can
be used, only the mixing is omitted now.
The wave function is initialised following eq. 4.3 but other ratchet states are easily
implementable as well. For the simulation of the thermal cloud we consider a Gaussian
around momentum class n = 0 with σ = 0.5. As stated in chapter 4.1 the distribution
of the quasimomentum follows the same distribution and thus the initial Gaussian
wave function is split into an integer momentum class and the quasi-momentum which
consists of the fractional part ∈ [0, 1). The same kicking scheme is imposed on the
thermal cloud. The two momentum distributions are blended in together afterwards,
since the thermal cloud cannot interact with the BEC. From the experimental data we
estimated a fraction of 10− 15% for the thermal cloud compared to 90− 85% for the
BEC.
As mentioned in section 1.3.3, the spontaneous emission is omitted in the simulations
as its impact on the momentum distribution is negligible for up to 20 steps.

import numpy as np
import matplotlib.pyplot as plt
from scipy.fftpack import fft, ifft, fftshift, ifftshift

# define the relevant constants
PI = 3.14159265358979323846264338327950288419716939937510582097494459230781641
# source: http://www.pibel.de/
I = complex(0.0,1.0)
E = complex(1.0,0.0)
FWHM_factor = 2.354820045030949382023138652919399275494771378771641077045
Tau = 4*PI

############################

def get_norm(psi_vector):
return np.sum(np.abs(psi_vector)**2)
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def do_kick_evolution(psi, bet, kick,centre):
if get_norm(psi)==0:

return psi

# FFT from momentum into position space
psi = ifft(psi)
psi = ifftshift(psi)
psi *= np.sqrt(2*centre)

# application of the kick with kick strength
for i in range(0,2*centre):

# application of exp(-i*kick*cos(theta))
theta = 2*PI*i/(2*centre)
psi[i] *= np.exp(-I*kick*np.cos(theta))

# Inverse FFT back to momentum space
psi = ifftshift(psi)
psi = fft(psi)
psi /= np.sqrt(2*centre)

for i in range(0,2*centre):
# application of exp(-i*tau*(n-n_0)^2/2)
X = -0.5*Tau*(i-centre+bet)**2
psi[i] *= np.exp(I*X)

return psi

def do_mixing(up,down):
storage = up
up = (up+I*down)/np.sqrt(2)
down = (I*storage+down)/np.sqrt(2)
return up, down

def step_forward(vec_up, vec_down, bet, kick1, kick2,cent):
# kicking
vec_up = do_kick_evolution(vec_up, bet, kick1,cent)
vec_down = do_kick_evolution(vec_down, bet, -kick2,cent)
# mixing
for i in range(0,2*cent):

vec_up[i], vec_down[i] = do_mixing(vec_up[i],vec_down[i])
return vec_up, vec_down

def calc_prob(up,down,centr):
P = np.zeros(2*centr)
for i in range(0,2*centr):

P_down = np.abs(down[i])**2
P_up = np.abs(up[i])**2
P[i] = P_down + P_up

return P

def preparation(centr):
up = np.zeros(2*centr,dtype=complex)
down = np.zeros(2*centr,dtype=complex)
up[centr] = 0.5
down[centr] = 0.5
up[centr+1] = -0.5*I
down[centr+1] = -0.5*I
return up, down

Listing C.1: Defined functions for a basic walk simulation
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