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Quantum chaos and entanglement in the Bose-Hubbard model:
This thesis presents a study of novel measures of quantum correlations for the
standard Bose-Hubbard model. We investigate this model in the regime of finite
fillings and system sizes, for which regular and quantum chaotic behaviour is
known.

In the first place we review previously applied measures borrowed from quan-
tum chaos theory, and we extend and discuss the usefulness of the fidelity mea-
sure (the scalar product of two identical states propagated by slightly different
Hamiltonians) for the detection of avoided crossings and hence for distinguishing
the different dynamical regimes.

The main part is devoted to the search for appropriate definitions of many-
particle entanglement in the model. We propose several measures whose pa-
rameter and time dependence in the regular and the chaotic range is thoroughly
studied, and which - as we hope - will help to clarify the lively discussion in the
literature of characterizing quantum correlations for indistinguishable bosons by
entanglement measures.

Quantenchaos und Verschränkung im Bose-Hubbard Modell:
Gegenstand der Arbeit ist die Untersuchung neuer Quantenkorrelationsmaße für
das Bose-Hubbard Modell. Wir betrachten dieses Modell im Bereich endlicher
Besetzung und Systemgröße, für welchen reguläres und quantenchaotisches Ver-
halten bekannt ist.

Zunächst einmal besprechen wir bereits verwendete Maße aus der Quanten-
chaostheorie, und wir erweitern und diskutieren die Nützlichkeit des Fidelity-
Maßes (das Skalarprodukt zweier identischer Zustände, die mit zwei wenig un-
terschiedlichen Hamiltonians propagiert werden) für die Detektion von Avoided-
Crossings und damit für die Unterscheidung der verschiedenen dynamischen
Regime.

Der Hauptteil ist der Suche nach geeigneten Definitionen von Viel-Teilchen-
Verschränkung in dem Modell gewidmet. Wir stellen mehrere Maße vor, deren
Parameter- und Zeitabhängigkeit im regulären und im chaotischen Bereich aus-
giebig untersucht wird, und welche - wie wir hoffen - zur Klärung der in der
Literatur stattfindendenden Debatte bezüglich der Charakterisierung von Quan-
tenkorrelationen bei ununterscheidbare Bosonen mittels Verschränkungsmaßen
beitragen.
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Chapter 1

Introduction

Since the first realization of a Bose-Einstein condensate in 1995 [1] ultracold
atoms have turned into a common field of research. Owing to groundbreaking
discoveries in cooling atoms down to the lowest accessible temperatures exper-
imental groups are able to generate BECs within minutes, and by means of
different kinds of traps they have almost perfect control over this quantum sys-
tem [2, 3]. On the one hand it is the extremely low temperatures of the order
of some nanokelvin that lead to the emergence of the fundamental quantum
world and its nonclassical phenomena. On the other hand it is the high degree
of control which allows a precise experimental probe of theoretical predictions.
Among the numerous experiments carried out with BECs we chronologically
want to mention the storing of the quantum state of a light pulse in a conden-
sate [4], the realization of a BEC on an atom chip [5], the investigation of a
quantum phase transition between a Mott insulating and a superfluid phase [6],
the formation of Cooper pairs by fermionic atoms in the BCS-BEC crossover
regime [7], the demonstration of the indistinguishability of ultracold atoms [8]
and the observation of entanglement in a BEC [9].

The Bose-Hubbard model describes ultracold bosons in an optical lattice.
It particularly well models ultracold bosons in sufficiently deep lattices since
it neglects the intra-well dynamics in the lattice. The Bose-Hubbard model is
a second quantized quantum many-body model in Fock formalism in contrast
to the probably more prominent Gross-Pitaevskii equation, which is a wave
equation for a many-particle wave function and a mean field approach. While
the Bose-Hubbard model in a sense allows for an exact description of ultracold
bosons in deep lattices because it is correct for all coupling strengths, the Gross-
Pitaevskii equation is valid only in a limited regime of small coupling strength
and semiclassically large fillings. The Bose-Hubbard model has a quantum phase
transition between a superfluid and a Mott insulating phase [10]. A quantum
phase transition is a phase transition that takes place at absolute zero which is
why it is not driven by thermal but by quantum fluctuations. It was first pointed
out by Jaksch et al. that all theoretical parameters of the Bose-Hubbard model
can be tuned experimentally in a wide range [11]. Thus the model can be
simulated by a real-life physical system, circumventing the numerical problems
related to the exponentially growing state space with particle number. This
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was termed quantum simulation by Feynman in 1982 [12] and so the Bose-
Hubbard model is a paradigm for quantum simulation. Moreover the Bose-
Hubbard model is a frequently discussed scheme for quantum computation [13,
14, 15, 16] due to the high degree of control achievable over ultracold bosons in
optical lattices.

It was first shown by Kolovsky and Buchleitner that the Bose-Hubbard
model exhibits quantum chaos in its spectral statistics [17], and we will search
for further signatures of quantum chaos in this thesis. Quantum chaos denotes
the quantum mechanics of classically chaotic systems [18]. One might now be
misled to believe that quantum chaos can only be applied to quantum mechan-
ical systems that have a clear classical counterpart. However today it can be
used without ever thinking of the classical limit. This is due to remarkable the-
oretical and experimental discoveries in this fascinating field revealing universal
laws that hold independently of the specific system. Both for the spectrum and
for the dynamics indicators for the regular and the chaotic regime have been
derived and experimentally confirmed.

Whether a classical system is chaotic or not determines if reliable predictions
for its future evolution can be made. More formally classical chaos is defined
in phase space [19]. Starting a propagation of the system at two nearby points,
if the distance between the two resulting trajectories grows exponentially in
time the system shows chaos. This exponential growth is characterized by the
Lyapunov exponent.

The lack of a classical trajectory in quantum mechanics poses the question
of how to assign chaos in these systems. At first glance one would propagate
two slightly different wave functions |ψ〉 and |φ〉 and look at their scalar product
|〈ψ(t)|φ(t)〉|2. However, if they evolve with the same Hamiltonian this scalar
product is just constant over time,

|〈ψ(t)|φ(t)〉|2 = |〈ψ(0)|U †(t)U(t)|φ(0)〉|2 = |〈ψ(0)|φ(0)〉|2 ,

and so this approach does not work.

Surprisingly today one fundamental approach to quantum chaos is via ran-
dom matrix theory, a method not applicable to classical systems in the same
way that the classical notion of chaos is not applicable to quantum systems.
Random matrices are matrices with randomly chosen entries that obey a cer-
tain probability distribution. Initially this theory was introduced by Wigner

to compare spectra of atomic nuclei. Due to the complexity of the nucleus its
spectrum cannot easily be computed directly. However, the spectral statistics
of certain random matrices match the ones of atomic nuclei. More precisely
the distribution of level spacings, i.e. the distance between neighbouring energy
levels in the spectrum, of random matrices can be the same - in a statistical
sense - as the distribution of level spacings of atomic nuclei. Random matri-
ces also permit the distinction between regular and chaotic regimes in quantum
systems by looking at the distribution of level spacings in the spectrum [20, 21].
In short, regular spectra are characterized by many vanishing level spacings, i.e.
many crossing energy levels in the spectrum, and these are usually referred to as
level crossings [22]. In contrast, chaotic spectra are characterized by the lack of
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vanishing level spacings and the presence of many dense lying avoided crossings.
Avoided crossings are energy levels that come very close to each other but never
cross [22].

Nonintegrability is another property of classically chaotic systems and it
allows for a much simpler connection between classical and quantum chaos. A
classical system is called integrable if there exist as many constants of motion
as there exist degrees of freedom. E.g. the classical 1-dimensional harmonic
oscillator is integrable since energy is conserved and it has only one degree of
freedom. The constants of motion of the problem can be found by separating
the Hamilton-Jacobi equation, and if it is completely separable the problem is
integrable. An alternative is to search for symmetries in the Lagrangian and
then apply Noether’s theorem. These considerations can be directly adopted
to the quantum case. A quantum system is then called integrable if there
exist as many quantum numbers as there are degrees of freedom [23]. Again
separation of the Schrödinger equation or symmetries in the Lagrangian reveal
the quantum numbers. Hence all energy levels of a quantum integrable system
are independent of another.

Besides the spectrum the dynamics can also be used to differentiate between
the regular and the chaotic regime. Here one looks at the time behaviour of the
so-called fidelity which is the scalar product of two initially identical states
that propagate under different Hamiltonians. Usually the Hamiltonian has one
parameter λ and one wants to know for which values of λ the system is regular
or chaotic. Then

F (t) := |〈ψλ(t)|ψλ+ǫ(t)〉|2

for ǫ≪ 1 is the studied fidelity. The decay of this fidelity might then allow the
distinction of the two regimes [24]. The decay can be theoretically approximated
for the regular and for the chaotic regime if a semiclassical limit exists. We finally
want to emphasize that this fidelity represents a close link between classical and
quantum chaos, and one would expect its decay to be exponential in the chaotic
regime. Even though this can be the case, in general the decay of the fidelity in
the chaotic regime is different and depends on the system under consideration.
So the connection between classical and quantum chaos is much more intricate.

In this thesis we want to address the question if the regular and the chaotic
regime of the Bose-Hubbard model can be separated by their entanglement
properties. Quantum entanglement denotes genuinely non-classical quantum
correlations between physical systems [25]. It is today widely believed that
entanglement plays an important role in quantum phase transitions [26, 27, 28,
29]. Apart from that entanglement is also regarded to be an essential ingredient
in quantum computation, quantum information and quantum cryptography [30].
As already mentioned the Bose-Hubbard model offers both a quantum phase
transition and the possibility for quantum computation.

It was Schrödinger in 1935 who coined the term entanglement and gave a
very farsighted definition:
“When two systems, of which we know the states by their respective represen-

tatives, enter into temporary physical interaction due to known forces between
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them, and when after a time of mutual influence the systems separate again,

then they can no longer be described in the same way as before, viz. by endow-

ing each of them with a representative of its own. I would not call that one

but rather the characteristic trait of quantum mechanics, the one that enforces

its entire departure from classical lines of thought. By the interaction the two

representatives have become entangled ” - from [31].
This historical statement names quantum mechanical interaction to be the nec-
essary ingredient for entanglement and foreshadows the philosophical debate
that is going to follow its discovery.

In 1964 Bell presented his seminal Bell’s equations [32], a set of inequali-
ties that hold for local hidden variable theories and hence for the concept of
local realism. Bell’s inequalities finally provided a means of experimentally dis-
proving local realism because experiments simply had to show that quantum
mechanics can violate Bell’s inequalities. To this day numerous experiments
have proved that quantum mechanics violates Bell’s inequalities and so either
locality or realism or both are the wrong concept for nature. Entangled states
are necessary for this violation to happen demonstrating again the outstanding
role of entanglement. Indeed, Bell’s inequalities are maximally violated by the
maximally entangled Bell states

|Φ+〉 =
1√
2
(|00〉 + |11〉)

|Φ−〉 =
1√
2
(|00〉 − |11〉)

|Ψ+〉 =
1√
2
(|01〉 + |10〉)

|Ψ−〉 =
1√
2
(|01〉 − |10〉) .

Bell’s inequalities were the first attempt to quantify entanglement. Since
then the quantification of entanglement has developed its own branch of physics
as so-called entanglement theory. Entanglement theory is the theory of entangle-
ment measures. The latter are mostly defined as scalar quantities that in the end
shall be able to order all possible states with respect to their entanglement [33].
However, one single unique definition of entanglement does not exist. Rather
there exist many entanglement measures that differ in their interpretation as
well as in their computability and indeed these two aspects seem to counteract.
Entanglement measures that have a highly reasonable interpretation turn out
to be not computable efficiently, while other entanglement measures that are
efficiently computable often lack a sensible interpretation. The current status of
entanglement theory is that the entanglement properties of pure bipartite states
of any finite dimension can be well managed interpretationally and computa-
tionally. This is also true for bipartite mixed states of lowest dimension, i.e.
mixed states of two qubits. However, if one goes in either of the two directions
of multipartite or higher-dimensional mixed states one still finds many open
questions. We remark that always the decision of what the entangled entities
shall be determines the proper entanglement measure. Another area of entan-
glement theory with many open questions is concerned with entanglement in
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quantum many-body systems [34]. Here the particles are indistinguishable and
the common description is the Fock formalism.

In this thesis we propose to introduce the term chaotic entanglement for en-
tanglement properties of the chaotic regime. Chaotic entanglement links quan-
tum chaos and entanglement. There is, however, a big conceptual difference
between quantum chaos and entanglement. While the former strictly speaking
only follows from classical chaos in the classical analogue to the system under
consideration, the latter is a purely quantum mechanical phenomenon nonexis-
tent in the classical analogue. In fact, as discussed above quantum entanglement
is defined to be exactly the non-classical part of the total correlations. In this
context a natural question is if chaotic entanglement is as valuable as regular
entanglement, e.g. for practical use in a quantum computer.

We conclude our introduction with an outline of this diploma thesis. In
Chapter 2 we will thoroughly describe the Bose-Hubbard model. This chapter
includes a derivation of the canonical representations of the model, a discus-
sion of its symmetries and a brief introduction to its experimental realization.
In Chapter 3 we will investigate quantum chaos in the Bose-Hubbard model
by means of the fidelity. First we will study its decay, second we will use the
fidelity to define a new function for the unique quantification of avoided cross-
ings, and third we will apply that new function to obtain the distribution of
avoided crossings in the spectrum. In Chapter 4 we will then be concerned
with quantum entanglement in the Bose-Hubbard model. Since the notion of
entanglement in quantum many-body systems is still controversely discussed, it
is necessary to thoroughly introduce standard entanglement theory, which we
will do in the first part of this chapter. There we will also work out the arising
problems if the particles are indistinguishable or if the Fock formalism is used.
In the second part we will briefly discuss the relation between single-copy and
asymptotic entanglement. We will derive our own approach to entanglement in
systems of indistinguishable bosons in the third part. This will enable us to in-
vestigate the quantum phase transition in the Bose-Hubbard model. In the final
fourth part we will discuss the generation of practically useful entanglement in
the Bose-Hubbard model. We will address chaotic entanglement in Chapter
5. There we will first look at the static entanglement properties of the eigen-
states and then at the dynamic entanglement properties of propagating states.
In Chapter 6 we will discuss the obtained solutions and give an outlook to this
vast field of research in the direction of complex quantum many-body systems.
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Chapter 2

The Bose-Hubbard model

In the following we assume the second quantized Hamiltonian

Ĥ =

∫

dxΨ̂†(x)
(

− ~
2

2m

∂2

∂x2
+ V0 sin2(

2π

λ
x)
)

Ψ̂(x) +

g

∫

dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

which may model a Bose-Einstein condensate in an optical lattice. We restrict
ourselves to a potential V0 sin2(2π

λ
x) arising from standing electromagnetic waves

of wave length λ that form a lattice of lattice depth V0 and the bosons interact
with the dimensionless coupling constant g.

The Bose-Hubbard Hamiltonian is derived from the above Hamiltonian by
imposing a discrete lattice on the potential, such that the bosons only sit in the
minima of the potential. This models bosons which populate only the ground
state of each harmonic well. Additionally the bosons are only allowed to tunnel
to directly adjacent lattice points and one demands that the bosons only interact
with each other if they are located in the same well, i.e. if they sit at the same
lattice point. We will explain the Bose-Hubbard Hamiltonian in more detail
soon.

In the context of quantum chaos, the Bose-Hubbard model has lately been
extended to include an additional static force that tilts the lattice [35]. Although
this tilt leads to very exciting effects, e.g. many-body Landau-Zener tunneling
[36] and Bloch oscillations [37], we do not include it in our investigation. In order
to obviate confusion we propose that the model without the tilt shall be called
the pure Bose-Hubbard model. Whenever we talk about the Bose-Hubbard
model then actually the pure Bose-Hubbard model is meant.

In this chapter we first rewrite the above Hamiltonian under the assumptions
of the Bose-Hubbard model. Depending on the basis in which we express the
field operator Ψ̂(x) we get a specific representation of the model. We will first
choose highly localized Wannier functions as our one-particle eigenstates and
by this obtain the standard form of the Bose-Hubbard model. Then we will
write the Hamilonian with highly delocalized Bloch functions. As we will later
see, these two representations are in some sense conjugate to each other, just
as location and momentum observables are. Although the Wannier and Bloch
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J

U

x x x x x
Figure 2.1: Schematic view of the Bose-Hubbard model. The x mark the discrete
lattice points and emphasize that intra-well dynamics is neglected.

representation of the Bose-Hubbard model are frequently used in the literature
we could not find a complete derivation, which is the reason why we present
it here. We will then take a close look at the existing symmetries. To our
knowledge the symmetries of the Bose-Hubbard model are nowhere discussed
explicitly. We will do this discussion here because the symmetries are essential
for us, from a theoretical and from a numerical point of view. Finally we briefly
consider the experimental realization.

2.1 Representation

2.1.1 Wannier representation

We expand our field operator in a Wannier basis

Ψ̂(x) =
∑

l

âlψl(x)

where ψl(x) := w(x− xl) is a Wannier function localized in the l-th well, i.e. at
lattice point l. Under the assumptions that a boson can only tunnel from one
well to a directly neighbouring well and that bosons interact only if they are in
the same well the Bose-Hubbard Hamiltonian follows:

Ĥ = −J
∑

l

(â†l+1âl + â†l âl+1) +
U

2

∑

l

n̂l(n̂l − 1) . (2.1)

Here we have defined the kinetic term

J :=

∫

dxψ∗
l (x)

(

− ~
2

2m

∂2

∂x2
+ V0 sin2(

2π

λ
x)
)

ψl+1(x)

and the on-site interaction

U := g

∫

dx|ψl(x)|4 .

The assumptions that lead to our Bose-Hubbard Hamiltonian are justified ex-
perimentally if the bosons are ultracold and the lattice is sufficiently deep [11].
The above Bose-Hubbard Hamiltonian is a one band model which means here
that in each well there is just one state that can be populated by bosons. So
the bosons have to be ultracold such that they move only in the lowest band.
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Additionally the lattice has to be sufficiently deep for the lowest band being
sufficiently seperated from the higher bands. In the deep lattice limit where the
lattice depth V0 is big both integrals for J and U can be evaluated explicitly
and we will give the result in the end of this chapter. There we will show how J
and U depend on V0, which is particularly interesting because the lattice depth
is directly adjustable in the experiment and this is how the model is simulatable
by the experiment.

Let us now explain the system of units used in this thesis. Since we will
investigate spectral and dynamic properties, we have to define our unit of energy
and our unit of time. As shown in [38] the proper energy scale in our problem is

given by the recoil energy ER = ~
2k2

2m . Here k is the wave vector of the laser field
and m is the mass of a boson. Then the proper time scale of our system is given
by ~

ER
[39]. So the parameters J and U are expressed as multiples of ER and this

is also true for the energy given by our Hamiltonian, and the time t is expressed
as a multiple of ~

ER
. However, we will be using different parametrizations of

the Bose-Hubbard Hamiltonian in this thesis which summarize J and U in one
dimensionless parameter, and we have to explain what this means for our system
of units.

The Bose-Hubbard Hamiltonian effectively has only one parameter, in the
following sense. If we factor out U ,

ĤJ =
(

− J

U

∑

l

(â†l+1âl + â†l âl+1) +
1

2

∑

l

n̂l(n̂l − 1)
)

U , (2.2)

the energy is given in units of U . We can equally factor out J ,

ĤU =
(

−
∑

l

(â†l+1âl + â†l âl+1) +
U

2J

∑

l

n̂l(n̂l − 1)
)

J , (2.3)

and energy is measured in units of J . In practice this means that if we compute
the spectrum of

Ĥ ′ = − J

U

∑

l

(â†l+1âl + â†l âl+1) +
1

2

∑

l

n̂l(n̂l − 1)

as a function of J
U

then this plot contains all the information necessary to de-
termine the energy to arbitrary values of J and U . Given J and U (which are
in units of ER), one has to calculate the ratio J

U
(which is dimensionless), read

out the energy in the plot (which is dimensionless), and finally multiply it by
U (which is in units of ER). Doing so we obtain the desired energy in units of
ER. Also any propagation can be described by Ĥ ′. Assume we want to prop-
agate a state to arbitrary values of J and U . Then we have to determine the
ratio J

U
(which is dimensionless), do the propagation with Ĥ ′ and finally have

to multiply the time (which is dimensionless) by ~

U
to obtain the desired time

in units of ~

ER
.

In this thesis we will apply three different kinds of parametrizations. If we
parametrize by J , then actually Hamiltonian ĤJ (2.2) is meant and the true
parametrization is given by the dimensionless parameter J

U
. In this case, for
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arbitrary values of J and U the dimensionless energy has to be multiplied by U
and the dimensionless time has to be multiplied by ~

U
. If we parametrize by U ,

then actually Hamiltonian ĤU (2.3) is meant and the true parametrization is
given by the dimensionless parameter U

J
. In this case, for arbitrary values of J

and U the dimensionless energy has to be multiplied by J and the dimensionless
time has to be multiplied by ~

J
. Our third parametrization is taken from [17].

There a parameter u is introduced such that J = 1− u, U = u and u runs from
0 to 1 (in units of ER). This parametrization is particularly appropriate for the
presentation of quantum chaos in the Bose-Hubbard model, as we will see in
Chapter 3. The corresponding Hamiltonian reads

Ĥu =
(

−
∑

l

(â†l+1âl + â†l âl+1) +
u

2(1 − u)

∑

l

n̂l(n̂l − 1)
)

(1 − u) .(2.4)

So if we parametrize by u, then actually Hamiltonian Ĥu (2.4) is meant and the
true parametrization is given by the dimensionless parameter u

1−u . In this case,
for arbitrary values of J and U we first have to determine u by calculating

U

J
=

u

1 − u
⇐⇒ u =

U
J

1 + U
J

,

and then the dimensionless energy has to be multiplied by 1−u and the dimen-
sionless time has to be multiplied by ~

1−u .

Ĥ acts on Fock states which are symmetrized products of one-particle Wan-
nier functions. In fact, in the derivation we have to use Fock states to all particle
numbers to ensure that the Hamiltonian is represented in a complete set of or-
thonormal functions. But from now on we will fix the particle number. This is
of course possible because the Hamiltonian Ĥ and the particle number operator
N̂ commute,

[Ĥ, N̂ ] = 0 ,

and we can therefore restrict our investigation to a subspace of any fixed particle
number.

For fixed particle numberN and fixed number of lattice sites L the dimension
of the Hilbert space reads

dim(L,N) =

(

L+N − 1

N

)

. (2.5)

This formula follows immediately from combinatorics because the problem can
be mapped to the standard combinatorial question of how many possibilities
there are to draw N balls out of a bowl filled with L different balls if one puts
the ball back into the bowl after each draw and if one does not care for the order.
Clearly the L different balls stand for the L possible lattice sites. For studies of
quantum chaos, and also of the quantum phase transition, it is common to have
unit filling, i.e. on average one particle per lattice site. Unit filling is interesting
because the kinetic part and the interaction part of the Bose-Hubbard Hamil-
tonian are of comparable strength. In the case N

L
→ 0 the hopping term J is
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dominant, while in the case N
L
→ ∞ the on-site interaction term U is dominant.

The dimension of the Hilbert space to the Bose-Hubbard model with unit filling
grows as dim(3, 3) = 10, dim(4, 4) = 35, dim(5, 5) = 126, dim(6, 6) = 462,
dim(7, 7) = 1716, dim(8, 8) = 6534 and obviously any computation of big sys-
tems is numerically demanding. However taking symmetries of the Hamiltonian
into account will ease the problem a little bit.

2.1.2 Boundary conditions

In the above Wannier representation of the Bose-Hubbard model (2.1) we did
not specify how exactly the sums over l are supposed to be taken. We did this
on purpose. The Bose-Hubbard model comes along with two different kinds of
boundary conditions which are mathematically realized in these sums.

Hard wall boundary conditions are imposed if one lets the first sum over l
run from 1 to L− 1 and the second from 1 to L:

Ĥ = −J
L−1
∑

l=1

(â†l+1âl + â†l âl+1) +
U

2

L
∑

l=1

n̂l(n̂l − 1) . (2.6)

This Hamiltonian models a linear array of wells that has hard walls at both
ends. We note that in solid-state physics hard wall boundary conditions are
also referred to as open boundary conditions.

Periodic boundary conditions are imposed if one lets both sums over l run
from 1 to L and identifies L+ 1 := 1:

Ĥ = −J
L
∑

l=1

(â†l+1âl + â†l âl+1) +
U

2

L
∑

l=1

n̂l(n̂l − 1) . (2.7)

This Hamiltonian models a ring of wells. If one wants to suppress boundary
effects as much as possible, periodic boundary conditions and large system sizes
should be adopted. In the experiment the lattice is usually much bigger than
the sample of bosons which is why the bosons do not see a boundary. Hence we
would choose periodic boundary conditions to model this experimental situation.
Additionally the lack of boundaries can be interpreted as an infinitely extended
lattice, where however the behaviour of the bosons repeats itself after each
finite lattice length L. We will use periodic boundary conditions throughout
this diploma thesis.

The choice of boundary conditions determines the symmetries of the model.
We will soon see that the hard wall Bose-Hubbard Hamiltonian only shows in-
variance under parity while the periodic Bose-Hubbard Hamiltonian additionally
turns out to be translationally invariant.

2.1.3 Bloch representation

One symmetry, translational invariance, is taken advantage of by using Bloch
functions as the one-particle eigenstates. We want to do this basis change from
Wannier to Bloch functions explicitly here. The above Bose-Hubbard Hamilto-
nian in Wannier representation is translationally invariant only if one demands
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periodic boundary conditions. The symmetry manifests itself in the fact that
the periodic Bose-Hubbard Hamiltonian (2.7) does not change under the trans-
formation l → l + 1.

Expressed in terms of Wannier functions ψl(x) the Bloch functions φκ(x)
read

φκ(x) =
1√
L

∑

l

eiκlψl(x) .

Here κ := 2πk
L

is the single-particle quasimomentum and k runs from 1 to L.
Because of the one-to-one correspondence between κ and k we will also refer to
k as the single-particle quasimomentum. In the Fock formalism a basis change
of the one-particle eigenstates directly translates to a change of annihilation and
creation operators. We have to substitute the âl by

âl :=
1√
L

∑

l

e−iκlb̂κ .

In the following derivation of the new Hamiltonian one relation will be partic-
ularly useful:

L
∑

m=1

ei
2πk
L
m = 0 ,

which is why

1

L

∑

κ

eiκ(l−l
′) = δl,l′ .

We remark that, if not said explicitly, the sum over l always runs from 1 to L
and the sum over κ always runs from 2π

L
to 2π, i.e. k runs from 1 to L.

We rewrite our Wannier Bose-Hubbard Hamiltonian (2.1) as Ĥ = T̂ + V̂
where T̂ is the kinetic part and V̂ is the interaction part. Let us begin with the
kinetic part:

T̂ = −J
∑

l

(â†l+1âl + â†l âl+1)

= −J
∑

l

( 1

L
(
∑

κ

eiκ(l+1)b̂†κ
∑

κ′

e−iκ
′lb̂κ′ +

∑

κ

eiκlb̂†κ
∑

κ′

e−iκ
′(l+1)b̂κ′)

)

= −J
(

∑

κ,κ′

1

L

∑

l

ei(κ−κ
′)leiκb̂†κb̂κ′ +

∑

κ,κ′

1

L

∑

l

ei(κ−κ
′)le−iκ

′

b̂†κb̂κ′
)

= −J
(

∑

κ,κ′

δκ,κ′e
iκb̂†κb̂κ′ +

∑

κ,κ′

δκ,κ′e
−iκ′ b̂†κb̂κ′

)

= −2J
∑

κ

eiκ + e−iκ

2
b̂†κb̂κ

= −2J
∑

κ

cos(κ)n̂κ .
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For the interaction part we obtain

V̂ =
U

2

∑

l

n̂l(n̂l − 1)

=
U

2

∑

l

( 1

L

∑

κ1,κ2

ei(κ1−κ2)lb̂†κ1
b̂κ2

)

·
( 1

L

∑

κ1,κ2

ei(κ1−κ2)lb̂†κ1
b̂κ2 − 1

)

=
U

2L

∑

κ1,κ2,κ3,κ4

1

L

∑

l

ei(κ1−κ2+κ3−κ4)lb̂†κ1
b̂κ2 b̂

†
κ3
b̂κ4 −

U

2

∑

κ1,κ2

1

L

∑

l

ei(κ1−κ2)lb̂†κ1
b̂κ2

=
U

2L

∑

κ1,κ2,κ3,κ4

δ(κ1 − κ2 + κ3 − κ4)b̂
†
κ1
b̂κ2 b̂

†
κ3
b̂κ4 −

U

2

∑

κ1,κ2

δκ1,κ2 b̂
†
κ1
b̂κ2

=
U

2L

∑

κ1,κ2,κ3,κ4

b̂†κ1
b̂κ2 b̂

†
κ3
b̂κ4δ(κ1 − κ2 + κ3 − κ4) −

UN

2
.

It is important to note here that the delta function δ(κ1−κ2 +κ3−κ4) is meant
to be modulo 2π or equivalently δ(k1 − k2 + k3 − k4) should be understood
modulo L, due to the way we sum over κ1, κ2, κ3 and κ4. Using

[b̂i, b̂
†
j ] = δi,j ,

we can further simplify

V̂ =
U

2L

∑

κ1,κ2,κ3,κ4

b̂†κ1
b̂†κ3

b̂κ2 b̂κ4δ(κ1 − κ2 + κ3 − κ4) +

U

2L

∑

κ1,κ2,κ3,κ4

b̂†κ1
b̂κ4δκ2,κ3δ(κ1 − κ2 + κ3 − κ4) −

UN

2

=
U

2L

∑

κ1,κ2,κ3,κ4

b̂†κ1
b̂†κ3

b̂κ2 b̂κ4δ(κ1 − κ2 + κ3 − κ4) +
U

2L

∑

κ1,κ2

b̂†κ1
b̂κ1 −

UN

2

=
U

2L

∑

κ1,κ2,κ3,κ4

b̂†κ1
b̂†κ3

b̂κ2 b̂κ4δ(κ1 − κ2 + κ3 − κ4) +
U

2L
· L
∑

κ1

b̂†κ1
b̂κ1 −

UN

2

=
U

2L

∑

κ1,κ2,κ3,κ4

b̂†κ1
b̂†κ3

b̂κ2 b̂κ4δ(κ1 − κ2 + κ3 − κ4) .

Renaming indices and evaluating the delta function yields

V̂ =
U

2L

∑

κ1,κ2,κ3

b̂†κ1+κ2−κ3
b̂†κ3

b̂κ2 b̂κ1 .

Finally our Bose-Hubbard Hamiltonian in Bloch representation reads

Ĥ = −2J
L
∑

k=1

cos(
2πk

L
)n̂k +

U

2L

L
∑

k1,k2,k3=1

b̂†k1+k2−k3 b̂
†
k3
b̂k2 b̂k1 , (2.8)
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where the index k1 + k2 − k3 is calculated modulo L and secures conservation
of quasimomentum.

This is actually the reason why the periodic Bose-Hubbard Hamiltonian can
be decomposed into a direct sum,

Ĥ = ⊕Ĥκ ,

or equivalently that it can be block diagonalized where the different blocks
of submatrices correspond to the different values of κ. Since κ = 2πk

L
and k =

1, 2, . . . , L our energy spectrum consists of L parts which are totally independent
of each other.

2.2 Symmetries

In this section we want to take a close look at the symmetries of the Bose-
Hubbard model. In Chapter 2 we will be doing spectral analysis and for that
have to be aware of all existing symmetries. By taking symmetries into account
level crossings are removed from the spectrum and only avoided crossings re-
main. Thus the lack of level crossings is a good sign that all symmetries were
considered.

A symmetry produces redundancy apparent in the fact that the correspond-
ing Hamiltonian can be written as a direct sum. Let the Hermitian operator
that is associated to the symmetry be called Ô, then

[Ĥ, Ô] = 0

holds and Ĥ becomes block diagonal in the eigenbasis of Ô. Let us remark
that in terms of matrix representations a decomposition into a direct sum is
equivalent to block diagonalization.

The shift operator Ŝ [35] is responsible for the decomposition of the periodic
Bose-Hubbard Hamiltonian (2.7) into the different κ-subspaces. It is defined by
its action on a Wannier-Fock state:

Ŝ|n1, n2, . . . , nL〉 = |nL, n1, . . . , nL−1〉 .

Obviously a Wannier-Fock state of the form |n1, n2, . . . , nL〉 denotes a system
of L wells and N = n1 + n2 + . . . + nL bosons, where n1 bosons are in well 1,
n2 bosons are in well 2, . . . and nL bosons are in well L. The shift operator
commutes with the periodic Bose-Hubbard Hamiltonian (2.7),

[Ĥ, Ŝ] = 0 .

The eigenvalues of Ŝ are related to the different κ and the associated symmetry is
a discrete translational invariance of the Hamiltonian due to periodic boundary
conditions. This symmetry can be seen in the Wannier representation of the
Bose-Hubbard model. Although in general the quest for symmetries might be
very involved, the only other symmetry of our problem can be easily discovered
too. It is parity, which we define by

P̂|n1, n2, . . . , nL〉 = |nL, nL−1, . . . , n1〉 ,
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and it commutes both with the hard wall Bose-Hubbard Hamiltonian (2.6) and
with the periodic Bose-Hubbard Hamiltonian (2.7),

[Ĥ, P̂] = 0 .

Unfortunately

[Ŝ, P̂] 6= 0 ,

which is why Ĥ, Ŝ and P̂ do not form a set of commuting observables and so
in general there is no further decomposition of our Hamiltonian. We can either
decompose it into L block matrices by representing it in the eigenbasis of the
shift operator Ŝ or into 2 block matrices by representing it in the eigenbasis of
the parity operator P̂. However it follows from group theory that in the former
case the subspace κ = 2π for an odd number of wells and the subspaces κ = 2π
and κ = π for an even number of wells can be decomposed further due to parity.

The hard wall Bose-Hubbard Hamiltonian (2.6) has the same symmetries as
the symmetry group Z2. Group theory teaches us that parity alone generates all
elements of Z2 [40]. Hence parity is the only symmetry of the hard wall Bose-
Hubbard Hamiltonian (2.6). The symmetries of the periodic Bose-Hubbard
Hamiltonian (2.7) are the same as the ones of the so-called Dihedral Group Dn

which is the symmetry group of rotations of a regular polygon with n sides.
Interpreting n as the number of edges of the polygon we can identify each edge
of the polygon with a well. E.g. D3, being the symmetry group of an equilateral
triangle, should describe a system of 3 wells. But it follows from group theory
that we can generate all elements of Dn with only two symmetry operators
which are the ones we call shift and parity. So we have found all the symmetries
inherent to the periodic Bose-Hubbard Hamiltonian (2.7).

In order to take advantage of both existing symmetries we have to find a
representation of Dn that is also one of Z2. One such representation is the trivial
one and that’s why the subspace to k = L always decomposes further. The only
other representation is the one to k = L

2 for even L. With this discussion we
also proved the non-integrability of the Bose-Hubbard model because referring
to group theory we showed that it is not possible to find a complete set of
commuting observables.

We believe that an example should show how the above formalism is applied
in practice, i.e. how a new basis is chosen that makes use of both discrete
translational and parity invariance. Let us consider a system made up of N = 3
atoms in L = 3 wells and let us use the periodic Bose-Hubbard Hamiltonian in
Wannier representation (2.7). Clearly the Wannier-Fock states have the form
|n1, n2, n3〉 where n1 + n2 + n3 = 3. The complete set of Fock states for this
subspace of fixed particle number reads:

|3, 0, 0〉, |0, 3, 0〉, |0, 0, 3〉,
|2, 1, 0〉, |0, 2, 1〉, |1, 0, 2〉,
|2, 0, 1〉, |1, 2, 0〉, |0, 1, 2〉,

|1, 1, 1〉 .
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Now the action of the shift operator Ŝ is:

Ŝ|n1, n2, n3〉 = |n3, n1, n2〉 .

We construct 10 orthonormal eigenstates to Ŝ from the above Fock states:

|1〉 :=
1√
3
(eiκ1·1|3, 0, 0〉 + eiκ1·2|0, 3, 0〉 + eiκ1·3|0, 0, 3〉) ,

|2〉 :=
1√
3
(eiκ1·1|2, 1, 0〉 + eiκ1·2|0, 2, 1〉 + eiκ1·3|1, 0, 2〉) ,

|3〉 :=
1√
3
(eiκ1·1|2, 0, 1〉 + eiκ1·2|1, 2, 0〉 + eiκ1·3|0, 1, 2〉) ,

|4〉 :=
1√
3
(eiκ2·1|3, 0, 0〉 + eiκ2·2|0, 3, 0〉 + eiκ2·3|0, 0, 3〉) ,

|5〉 :=
1√
3
(eiκ2·1|2, 1, 0〉 + eiκ2·2|0, 2, 1〉 + eiκ2·3|1, 0, 2〉) ,

|6〉 :=
1√
3
(eiκ2·1|2, 0, 1〉 + eiκ2·2|1, 2, 0〉 + eiκ2·3|0, 1, 2〉) ,

|7〉 :=
1√
3
(eiκ3·1|3, 0, 0〉 + eiκ3·2|0, 3, 0〉 + eiκ3·3|0, 0, 3〉) ,

|8〉 :=
1√
3
(eiκ3·1|2, 1, 0〉 + eiκ3·2|0, 2, 1〉 + eiκ3·3|1, 0, 2〉) ,

|9〉 :=
1√
3
(eiκ3·1|2, 0, 1〉 + eiκ3·2|1, 2, 0〉 + eiκ3·3|0, 1, 2〉) ,

|10〉 := |1, 1, 1〉 ,

where

κ1 :=
2π

3
, κ2 :=

4π

3
, κ3 :=

6π

3
= 2π .

Obviously |1〉, |2〉 and |3〉 are eigenstates to Ŝ with eigenvalue eiκ1 , |4〉, |5〉
and |6〉 are eigenstates to Ŝ with eigenvalue eiκ2 and |7〉, |8〉, |9〉 and |10〉 are
eigenstates to Ŝ with eigenvalue eiκ3 .

Written in the states |1〉 to |10〉 our Wannier Hamiltonian (2.7) is block
diagonal with a 3-by-3-matrix associated to k = 1 in the upper left corner,
a 3-by-3-matrix associated to k = 2 in the middle part and a a 4-by-4-matrix
associated to k = 3 in the lower right corner. The spectra of these three matrices
are totally equivalent to the spectra of the corresponding three submatrices in
the Bloch Hamiltonian (2.8). One might now ask what we have gained then.
Well, starting from the Bloch Hamiltonian it is hard to see its invariance under
parity and it is difficult to construct an eigenbasis to the parity operator from
Bloch Fock states. Starting from the Wannier Hamiltonian (2.7), however, its
parity invariance is obvious and it is straightforward to construct an eigenbasis
to the parity operator from its Wannier Fock states.

Now the action of parity on a Wannier-Fock state has to be:

P̂|n1, n2, n3〉 = |n3, n2, n1〉 .
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Taking a close look at the eigenstates of Ŝ one finds out that only the ones to
κ3 = 2π can be eigenstates to P̂ if one declares

|7′〉 := |7〉 , |8′〉 :=
1√
2
(|8〉 + |9〉) ,

|9′〉 := |10〉 , |10′〉 :=
1√
2
(|8〉 − |9〉) .

Clearly |7′〉, |8′〉 and |9′〉 are eigenstates to P̂ with eigenvalue +1, and |10′〉 is an
eigenstate to P̂ with eigenvalue −1. Therefore the 4-by-4-matrix in the lower
right corner decomposes further into a 3-by-3-matrix to even parity and a single
element to odd parity.

We want to check our thoughts by numerical calculations. Let us plot the
energy spectra depending on one parameter u as explained above. Thus we set
J = 1− u, U = u and let u run from 0 to 1. First we look at a system of L = 3
wells and N = 3 bosons. The total Hilbert space has dimension 10 and so we
would expect to see 10 energy levels in the full spectrum. In Figure 2.2 we only
count 7 energy levels and Figure 2.3 reveals that this is due to the fact that the
spectra to the quasimomenta k = 1 and k = 2 are equivalent. Doing spectral
analysis it is therefore sufficient to investigate the subspaces to k = 1 and k = 3.
However the subspace to quasimomentum k = 3 can be further decomposed due
to parity. Finally we should not be able to find level crossings in the decomposed
spectrum anymore and this is indeed the case, as we conclude from Figure 2.4.

Additionally we want to look at a system of L = 4 wells and N = 4 bosons
because we expect the subspace to quasimomentum k = 2 to be further decom-
posable due to parity. Now the dimension of the total Hilbert space is 35 and
again the full spectrum has many energy levels that lie on top of each other as
can be seen in Figure 2.5. We conclude from Figure 2.6 that the subspaces to
the quasimomenta k = 1 and k = 3 have the same spectra. As shown in Figure
2.7 the subspace to quasimomentum k = 2 can indeed be further decomposed
due to parity. Here no level crossings are left after the decomposition of the
spectrum, too. We remark that on the scale of Figure 2.8 one avoided crossing
cannot be resolved.
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Figure 2.2: Full spectrum of the periodic Bose-Hubbard Hamiltonian with L = 3
wells and N = 3 bosons. We only count 7 energy levels instead of 10 because
the spectra to the quasimomenta k = 1 and k = 2 are equivalent.
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Figure 2.3: Decomposed spectrum of the periodic Bose-Hubbard Hamiltonian
with L = 3 wells and N = 3 bosons. Here we directly see that the spectra to
the quasimomenta k = 1 and k = 2 are equivalent.
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Figure 2.4: Decomposed spectrum of the periodic Bose-Hubbard Hamiltonian
with L = 3 wells, N = 3 bosons and quasimomentum k = 3. This subspace can
be further decomposed into a part to odd parity and into a part to even parity.
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Figure 2.5: Full spectrum of the periodic Bose-Hubbard Hamiltonian with L = 4
wells and N = 4 bosons. Again many energy levels lie on top of each other and
we find level crossings.
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Figure 2.6: Decomposed spectrum of the periodic Bose-Hubbard Hamiltonian
with L = 4 wells and N = 4 bosons. We conclude that the subspaces to the
quasimomenta k = 1 and k = 3 have the same spectra.
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Figure 2.7: Decomposed spectrum of the periodic Bose-Hubbard Hamiltonian
with L = 4 wells, N = 4 bosons and quasimomentum k = 2. This subspace can
be further decomposed into a part to odd parity and into a part to even parity.
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Figure 2.8: Decomposed spectrum of the periodic Bose-Hubbard Hamiltonian
with L = 4 wells, N = 4 bosons and quasimomentum k = 4. This subspace can
be further decomposed into a part to odd parity and into a part to even parity.

2.3 Experimental realization

The experimental realization is a very fascinating subject itself. Nevertheless
we do not want to go into detail here. It is the intention of this section to sketch
a simple picture of the experimental setup for a better understanding of the
Bose-Hubbard model and our later studies.

The cooling of the atoms is done in two steps. First laser cooling is used
to reach temperatures of the order of millikelvin. However, this is not cold
enough yet for the creation of a Bose-Einstein condensate. That’s why secondly,
evaporative cooling has to be applied to cool down the atoms to temperatures
of a few hundreds of nanokelvin. These ultralow temperatures are necessary for
the formation of a BEC. E.g. the critical temperature of Rubidium-87 is around
300 nanokelvin [41].

Probably the most prominent tool for laser cooling is the magneto-optical
trap. Here the atoms get trapped in a strong magnetic field due to their magnetic
moments and additionally they are slowed down by scattering from photons.
This last process is the actual laser cooling. It can be explained with the Doppler
effect, i.e. atoms moving against a source of laser light see a smaller wavelength,
a blueshift, while atoms moving away from the source of laser light see a larger
wavelength, a redshift. Thus if one shines in laserlight that is slightly red-
detuned to an electronic transition of the atoms in the trap and that is aimed
at the middle of the trap then atoms moving in the direction out of the trap to
the source of the laser light may absorb a photon and its momentum. The atom
is then slowed down in this direction. The subsequent spontaneous emission of
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a photon happens in a random direction. If one shines in this red-detuned laser
light from around the trap the atoms are laser cooled and confined in the trap.
In fact the inventors of laser cooling Chu (the current US Secretary of Energy),
Cohen-Tannoudji, and Phillips were awarded the Nobel Prize in 1997.

Evaporative cooling is best explained by using the analogue of how a hot
cup of coffee cools. One removes the fast atoms out of the trap by lowering its
walls. Experimentally the speed of lowering is crucial for retaining an ensemble
of ultracold atoms. For the creation of the first BEC Cornell, Wieman, and
Ketterle got the Nobel Prize in 2001.

Optical lattices are created by counterpropagating laser beams that form
standing electromagnetic waves. The ultracold atoms are confined to the lattice
due to a dipole force coming from a spatially varying ac-Stark shift [3]. We note
that the validity of the Bose-Hubbard model is limited to bosonic atoms sitting
in the lowest band of each well and so the wells have to be sufficiently deep.
The depth of the lattice is adjusted by the power of the laser.

Assume we have a 3-dimensional lattice

V (x, y, z) = V0

(

sin2(kx) + sin2(ky) + sin2(kz)
)

with lattice depth V0. As already explained in Section 2.1.1, a proper energy
scale for this setting is the recoil energy ER = ~

2k2

2m where k denotes the wave
vector of the laser light and m is the mass of an atom. In the deep lattice limit
V0 ≫ ER the parameters J and U of the Bose-Hubbard model can be calculated
explicitly [38]. The kinetic term reads

J

ER
=

4√
π

( V0

ER

) 3
4
e
−2

√

V0
ER (2.9)

and the onsite interaction becomes

U

ER
=

√

8

π
kas

( V0

ER

) 3
4

(2.10)

where as denotes the s-wave scattering length.
As physically sensible parameters from the experiment we choose an optical
lattice with periodicity λ = 825 nm and the s-wave scattering length of the
hyperfine splitting of Rubidium-87 as = 5.45 nm [39] and obtain the relation
shown in Figure 2.9.

The above considerations are for a 3-dimensional lattice. In this thesis we
restrict ourselves to the 1-dimensional Bose-Hubbard model. The reason for this
restriction is that the state space grows very fast already in the 1-dimensional
case, as can be seen in (2.5). Studying experimentally interesting large systems is
numerically demanding and, of course, the effort grows with the dimensionality
of the lattice. E.g. the dimension of the state space to a square 2-dimensional
lattice with side length of 3 lattice sites and unit filling is the same as the
dimension of the state space to a linear 1-dimensional lattice with length of 9
lattice sites and unit filling, and this is according to (2.5) dim(9, 9) = 24310. We
want to remark that the 1-dimensional Bose-Hubbard model can be realized in
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Figure 2.9: Dependence of J (red, solid line) and U (green, dashed line) on V0

in units of ER. We choose the realistic parameters λ = 825 nm for the optical
lattice and as = 5.45 nm as s-wave scattering length of the hyperfine splitting
of Rubidium-87.

the experiment very well by using traps that confine the movement of the atoms
to one dimension [3]. We will be using the above formulas when we present an
experimentally realizable scheme for the generation of practical entanglement
in Chapter 4. There we will have to take the restriction of our model to one
dimension into account and will therefore adapt the equations (2.9) and (2.10).
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Chapter 3

Quantum chaos in the

Bose-Hubbard model

Quantum chaos was for the first time investigated in the Bose-Hubbard model by
Kolovsky and Buchleitner in [17]. There they applied the very useful parametriza-
tion U = u and J = 1 − u where u runs from 0 to 1. As we have argued in
the above chapter on the Bose-Hubbard model, the spectrum of our pure Bose-
Hubbard model effectively can be parametrized by one parameter. While u runs
from 0 to 1 all possible ratios J

U
are covered. This parametrization is partic-

ularly useful with respect to quantum chaos because, as we will soon see, the
chaotic regime is always around J = U , which corresponds to u = 0.5 and this
is exactly the center of a plot parametrized by u. Additionally, plots over u are
bounded by 0 and 1 in contrast to plots over J or U which are unbounded in one
direction. That’s why we will mostly use their plotting scheme in this thesis.

Kolovsky and Buchleitner showed that the Bose-Hubbard model can have
quantum chaos in its spectral statistics. More precisely they chose the point
u = 0.3 of the system L = 8 and N = 8 and concluded that the level spac-
ing distribution is very well approximated by a Wigner-Dyson distribution by
explicitly looking at the integrated level spacing distribution.

At this point let us recapitulate how the chaotic regime is detected in spec-
tral statistics by means of random matrix theory. As already mentioned in the
introduction to this thesis, random matrices have randomly chosen entries that
follow a certain probability distribution. Initially Wigner introduced random
matrix theory to describe energy spectra of atomic nuclei and it turned out
that the distribution of energy level spacings s := Ej+1 − Ej , between adja-
cent energy levels in the spectrum, of a specific random matrix ensemble is the
same as the distribution of energy level spacings in atomic nuclei. Fortunately,
the distribution of level spacings also allows to distinguish the regular and the
chaotic regime. Quantum chaos arises in the quantum counterpart of a clas-
sically chaotic system. It was found that the probability density P of energy
level spacings s in the spectrum of the quantum analogue to a classically regular
system obeys a Poisson distribution

P (s) = e−s ,
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and the Berry-Tabor conjecture states that this shall be true for all classically
regular systems [20]. In practice, a Poisson distribution of a regular spectrum
is characterized by many vanishing level spacings, i.e. by level crossings. On
the other hand it was observed that the probability density P of energy level
spacings s in the spectrum of the quantum analogue to a classically chaotic
system conforms to a Wigner distribution of either the Gaussian orthogonal
ensemble

PGOE(s) =
π

2
se−

π
4
s2 ,

the Gaussian unitary ensemble

PGUE(s) =
32

π2
s2e−

4
π
s2 ,

or the Gaussian symplectic ensemble

PGSE(s) =
218

36π3
s4e−

64
9π
s2 ,

and the Bohigas-Giannoni-Schmit conjecture states that this shall hold for any
classically chaotic system [21]. In contrast to regular spectra, chaotic spectra
have no vanishing level spacings, i.e. they are characterized by level repulsion.
These repelling energy levels, that come very close to each other but never cross,
are called avoided crossings. Their presence is a clear sign for a strong coupling
regime and hence for a chaotic spectrum. To which random matrix ensemble
a given Hamiltonian belongs is completely determined by its symmetries. The
three ensembles differ in their degree of level repulsion specified in the power of
the first s in the formula, i.e. the GOE exhibits linear, the GUE quadratic and
the GSE quartic level repulsion. Experimentally linear level repulsion has been
confirmed by atomic nuclei and micro waves, quadratic level repulsion by Ryd-
berg atoms in strong inhomogeneous magnetic fields and quartic level repulsion
has not been observed yet [22]. Our Bose-Hubbard Hamiltonian belongs to the
GOE and so we expect linear level repulsion.

However, before we can compare numerically obtained level spacings with
the above distributions we have to normalize the level spacings in a proper way,
a procedure called unfolding the spectrum [22]. The main goal of unfolding a
spectrum is to get a mean level spacing of 〈s〉 = 1. Kolovsky and Buchleit-

ner unfold their spectrum by fitting a Gaussian to their numerically obtained
probability density ρ(E) of energy levels, i.e.

ρ(E) =
1√
2πσ

e−
(E−µ)2

2σ2

with expectation value µ and standard deviation σ. It can be shown [22] that
the new energy levels ej of the properly unfolded spectrum are then given in
terms of the so-called levelstaircase function

σ(E) =

∫ E

−∞
dE′ρ(E′)
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as

ej = σ(Ej)N .

While for small on-site interation U the data can be well approximated by a
Gaussian, it is difficult to fit the data for large on-site interaction U because
there the distribution of energy levels is not Gaussian anymore. So their method
of unfolding the spectrum is applicable only for small values of u.

Let us look at an example. The Bose-Hubbard Hamiltonian belongs to the
GOE and so we expect the probability density P of level spacings s to be a
Poisson distribution

PP (s) = e−s (3.1)

in the regular regime and a Wigner-Dyson distribution

PWD(s) =
π

2
se−

π
4
s2 (3.2)

in the chaotic regime. In order to obtain the level spacing distribution P (s) for
numerical data the data has to be binned. This binning, however, is artificial
because the underlying data is continuous [42]. Especially for a statistical test
binning should be avoided because it enters as an additional optimization. So
it is advisable to look at the integrated level spacing distribution

I(s) =

∫ s

0
ds′P (s′)

instead. The integrated Poisson distribution is

IP (s) = 1 − e−s

and the integrated Wigner-Dyson distribution is

IWD(s) = 1 − e−
π
4
s2 .

As one can see in the two Figures 3.1 and 3.2 the integrated level spacing
distribution I(s) allows a much better mapping of the regimes than it is possible
with binned data because in the latter case the correct assignment of the regime
depends on the bin width. We emphasize that the actual numerical integrated
level spacing distribution Iact.(s) can be directly compared with the expected
integrated level spacing distribution Iexp.(s), while the actual numerical level
spacing distribution Pact.(s) additionally has to be optimized in the bin width
before it can be compared with the expected level spacing distribution Pexp.(s).

Tomadin et al. also investigated spectral statistics in the Bose-Hubbard
model with a tilt in [36]. More precisely they determined for which values of
the tilting force F the numerical level spacing distribution matches the Wigner-
Dyson distribution by making a χ2 test for binned data.

Kolovsky and Buchleitner in [17] additionally studied the nonintegrability
of the Bose-Hubbard model via the Shannon entropy of the eigenstates in the
Wannier basis,

〈HW (u)〉 = 〈−
∑

j

|cWj (u)|2 log(|cWj (u)|2)〉 ,
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Figure 3.1: Level spacing distribution P (s) (left) and integrated level spacing
distribution I(s) (right) for the periodic Bose-Hubbard Hamiltonian with L =
7 = N , J = 5.5 and U = 1, where our numerical data (blue, thick bars) is
compared to Poisson (red, thin line) and Wigner-Dyson (green, thin dashed
line). Our numerical data very well follows the Poisson distribution and so we
conclude that the periodic Bose-Hubbard Hamiltonian of L = 7 wells and N = 7
bosons is regular for the parameters J = 5.5 and U = 1.
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Figure 3.2: Level spacing distribution P (s) (left) and integrated level spacing
distribution I(s) (right) for the periodic Bose-Hubbard Hamiltonian with L =
7 = N , J = 1 and U = 1, where our numerical data (blue, thick bars) is
compared to Poisson (red, thin line) and Wigner-Dyson (green, thin dashed
line). Our numerical data very well follows the Wigner-Dyson distribution and
so we conclude that the periodic Bose-Hubbard Hamiltonian of L = 7 wells and
N = 7 bosons is chaotic for the parameters J = 1 and U = 1.
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Figure 3.3: Wannier Shannon entropy 〈HW (u)〉 (red, thin line) and Bloch Shan-
non entropy (green, thin dashed line) of the eigenstates of the periodic Bose-
Hubbard Hamiltonian with L = 7 = N and quasimomentum k = 1 averaged
over all eigenstates. We conclude that for u = 0 the system is integrable and
the proper basis is the Bloch basis, for u = 1 the system is integrable and the
proper basis is the Wannier basis, and for all other values u ∈ (0, 1) the system
is nonintegrable.

and in the Bloch basis,

〈HB(u)〉 = 〈−
∑

j

|cBj (u)|2 log(|cBj (u)|2)〉 .

Here the cWj are the expansion coefficients of a specific eigenstate in the Wannier

basis, the cBj are the expansion coefficients of a specific eigenstate in the Bloch
basis and the brackets denote an average over all eigenstates. As already stated
in the introduction to this thesis a quantum system is integrable if there exist
as many quantum numbers as degrees of freedom [23]. The canonical quantum
numbers of the Bose-Hubbard model are the Wannier occupation numbers of
the single-particle Wannier functions and the Bloch occupation numbers of the
single-particle Bloch functions. They are canonical because our periodic Bose-
Hubbard Hamiltonian has a diagonal interaction part if it is written in Wannier
Fock states and it has a diagonal kinetic part if it is written in Bloch Fock states.
The averaged Shannon entropy is a good measure for nonintegrability because it
vanishes if and only if all eigenstates belong to the expected quantum number,
otherwise it is greater than zero.

From Figure 3.3 we conclude that for u = 0 the proper basis is the Bloch
basis and for u = 1 it is the Wannier basis, as expected. But obviously any small
interaction U , if one comes from u = 0, or respectively any small tunneling J ,
if one comes from u = 1, causes a discontinuous jump in the averaged Shannon
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entropy. This discontinuous jump is due to the immediate splitting up of degen-
erate energy levels at u > 0 compared to u = 0 and at u < 1 compared to u = 1.
We infer from our measure of nonintegrability that the periodic Bose-Hubbard
model is integrable for u = 0 and for u = 1, and it is nonintegrable for all other
values of u.

Apart from static analysis, in the form of spectral statistics and nonintegra-
bility, dynamic properties can also separate the regular and the chaotic regime.
Gorin et al. explain in [24] how the decay of the fidelity

F (t) = |〈ψλ,0(t)|ψλ,ǫ(t)〉|2

can be used to differentiate between the regular and chaotic regime. Here we
propagate the same initial state |ψ(0)〉 with two slightly different Hamiltonians.
In fact we only have one possibly time-dependent Hamiltonian

Hλ,ǫ(t) = Hλ(t) + ǫV (t)

and evolve the bra with Hλ,0(t) = Hλ(t) and the ket with Hλ,ǫ(t) = Hλ(t) +
ǫV (t). As explained in [24], very often the decay of the fidelity is calculated
analytically in the semiclassical limit of the system under consideration and
then a prediction for the quantum limit is made. The semiclassical limit of the
Bose-Hubbard model is given by N

L
→ ∞ [43], i.e. if the filling goes to infinity.

However, predictions for the Bose-Hubbard model with an arbitrary number of
L wells are difficult to obtain as can be seen in [44] where calculations for a
two-component BEC are presented.

We want to remark that the fidelity is an outstandingly powerful tool that
is employed in completely different fields of physics. Zanardi et al. developed
an elaborate theory for the inspection of quantum phase transitions based on
the fidelity [45]. The fidelity is also an important tool in quantum information
theory [30].

We believe that avoided crossings are a clear indicator of quantum chaos in
all the above aspects. In spectral statistics, avoided crossings are the funda-
mental reason for the lack of vanishing level spacings. At an avoided crossing
of two energy levels the corresponding two wave functions swap, which is why
there cannot exist a reasonable quantum number attached to each of them, and
so nonintegrability follows. The study of avoided crossings also allows to merge
two core disciplines of quantum chaos, namely spectral and dynamic investiga-
tions. Because the wave function changes at an avoided crossing the fidelity can
locate avoided crossings in the spectrum.

Additionally avoided crossings are responsible for the so-called diffusion in
energy space [46]. Here the nonintegrable Hamiltonian under consideration
depends on one parameter λ that is changed in time such that we have Ĥ(λ(t)).
If one starts with a highly excited eigenstate |ψ(0)〉 to Ĥ(λ(0)) at a specific time
t = 0, propagates it with the time-dependent Hamiltonian Ĥ(λ(t)) and looks
at the occupation probability |〈ψ(t)|n(t)〉|2 with the instantaneous eigenstates
|n(t)〉 to Ĥ(λ(t)), then this occupation probability spreads diffusively away from
the initial state. This diffusion can indeed be described with a diffusion constant.
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In the first section of this chapter we will investigate the spectral statistics
of the Bose-Hubbard model with different filling. We will explain our own
unfolding procedure that will allow the investigation of a bigger range of u
than it is possible with the unfolding procedure of Kolovsky and Buchleitner.
Additionally we will discuss and apply a statistical test for continuous data, the
Kolmogorov-Smirnov test, that is much better suited to our problem than the χ2

for binned data. In this first section we will show the limitations of the approach
via spectral statistics for the determination of the chaotic regime. We do a
dynamic analysis by means of the fidelity in the second section. There we will
begin with studies of the decay of the fidelity. Then we will redefine the fidelity
for the quantification of avoided crossings. Finally we will use this redefined
fidelity to compute the distribution of avoided crossings in the spectrum of the
Bose-Hubbard model with different filling and compare these results to spectral
statistics in the first section.

3.1 Spectral statistics

In this section we will first explain our own unfolding procedure that allows
the investigation of a bigger range of u than the unfolding procedure used by
Kolovsky and Buchleitner in [17]. Then we will present a statistical test, the
Kolmogorov-Smirnov test, that allows an unambiguous detection of the regular
and of the chaotic regime. This test is much better suited for the classification
of the regular and the chaotic regime than the χ2 test for binned data used by
Tomadin et al. in [36] because this χ2 test for binned data additionally has to
optimize over the bin width. We emphasize that their binning is completely
artificial because the investigated data is continuous [42]. It is our intention in
this section to work out the limitations of the approach via spectral statistics for
the determination of the regular and chaotic regime. These limitations can be
circumvented with a novel method for the detection of the chaotic regime that we
derive in the end of the second section. We want to compare the two approaches
by looking at systems of different filling. That’s why in this first section, finally,
we will apply the Kolmogorov-Smirnov test to systems of different filling.

3.1.1 Unfolding the spectrum

In the introduction to this chapter we explained the unfolding procedure used
by Kolovsky and Buchleitner in [17]. Because their approach of unfolding is not
applicable to the whole parameter range of u we take an alternative path.

We proceed in three steps. First we normalize all energy levels Ej by defining
new energies

ej =
Ej

Emax − Emin
.

Second we calculate all level spacings

s′j = ej+1 − ej
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of these new energies and third we derive the final level spacings sj by locally
normalizing the s′j to 1,

sj =
s′j

〈s′j〉local
.

In the third step the local average 〈s′j〉local is obtained by averaging over a specific
number ns′ of neighbouring level spacings. ns′ is the only free parameter in our
statistical test. In order to get a continuous function of the level spacings, ns′

has to be chosen small enough to be infinitesimal on the whole scale and on
the other hand, ns′ has to be chosen big enough such that local fluctuations are
smeared out [22]. Having that in mind we decide to let ns′ run from 1 energy
level, where there is no local normalization, up to 1

10 of all energy levels. In fact,
we will optimize our statistical test only over ns′ and only within this range.
Figures 3.1 and 3.2 show results obtained from our unfolding procedure for the
periodic Bose-Hubbard model with L = 7 wells and N = 7 bosons at J = 5.5
and U = 1 and at J = 1 and U = 1.

3.1.2 Kolmogorov-Smirnov test

We now need a statistical test that enables us to classify the regular and chaotic
regime with certain probabilities. The simplest test of this kind is the χ2 test for
binned data and it was used by Tomadin et al. in [36]. But our data is continuous
and not binned [42]. Applying the χ2 test for binned data would mean that
we would have to artificially bin the data. Then, additionally, our statistical
test would have to optimize over the bin width. These two problematic points
can be avoided if we use the Kolmogorov-Smirnov test, which is a statistical
test for continuous data. In short, the Kolmogorov-Smirnov test compares the
cumulative function of the actual distribution with the cumulative function of
the expected distribution [42]. The cumulative function is just the integral over
the distribution. So instead of a direct comparison with the Poisson level spacing
distribution PP (s) (3.1) or with the Wigner-Dyson level spacing distribution
PWD(s) (3.2) the integrated level spacing distribution I(s) is considered. The
integrated Poisson distribution is

IP (s) = 1 − e−s

and the integrated Wigner-Dyson distribution is

IWD(s) = 1 − e−
π
4
s2 .

As we already concluded from the two Figures 3.1 and 3.2 the integrated level
spacing distribution I(s) also allows a simpler assignment of the regular or the
chaotic regime than the level spacing distribution P (s), where the data has to
be binned and the correct classification of the regimes depends on the bin width.

Another great advantage of the Kolmogorov-Smirnov test is that the signif-
icance that the actual distribution Iact. matches the expected distribution Iexp.
can be calculated explicitly [42]. The significance tells us the probability p that
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the actual distribution Iact. originates from the expected distribution Iexp.. In
the following plots we choose a significance level of 0.05. This means we reject
that our actual distribution Iact. comes from the expected distribution Iexp. if
the probability p for that is less than 5 percent.

In Figure 3.4 we study the applicability of spectral statistics depending on
the number of energy levels. Since the expected distribution is derived from
a random matrix ensemble in the limit of infinitely many energy levels [22],
we expect that spectral statistics is useful only if at least some lower bound of
energy levels are considered. We investigate the k = 1-subspace of the periodic
Bose-Hubbard Hamiltonian with L = 7 wells and fill these with particles. We
read off from the plot that a clear distinction between the regular and the chaotic
regime is not possible until we have at least 132 energy levels in the system of
N = 6 bosons. Moreover, we conclude that in general the inner part of u is
chaotic and the outer parts are regular.

It is conspicuous that the outer parts of u, i.e. the regimes J
U

≫ 1 and
U
J
≫ 1 seem to be neither regular nor chaotic. This is due to degeneracy in the

spectrum. In these limits the degeneracy becomes noticeable such that there are
many small and few large level spacings. So the distribution of level spacings is
not determined by the absence or presence of avoided crossings but by the degree
of degeneracy, an effect we are not interested in. We believe that degeneracy is a
fundamental problem in the analysis of level spacings and that it limits the use
of this technique for the distinction between the regular and the chaotic regime.
Of course, the outer parts of u have to be regular as we infer for example from
the aspect of nonintegrability in Figure 3.3.

Figure 3.5 shall serve as a reference, throughout this thesis, for the position of
the regular and the chaotic regime in the periodic Bose-Hubbard Hamiltonian
with unit filling, i.e. N

L
= 1. The plots for L = 5 = N , L = 6 = N and

L = 8 = N qualitatively look the same and so we decided to show the system
L = 7 = N . We remark that also the different k-subspaces qualitatively give
the same results. We investigated all different k-subspaces for L = 7 = N and
then chose k = 1 for this presentation.

Finally we want to apply spectral statistics to systems of different filling.
The results obtained here shall be later compared with the results obtained
from our novel method for the detection of the chaotic regime in the end of the
second section.

In order to be able to compare the spectral statistical analysis of systems
with different filling, their spectra must have approximately the same number
of energy levels. Because we chose the k = 1-subspace of L = 7 = N as our
reference and because it comprises 245 energy levels, we will choose systems like
that. Our considered systems have 250 ± 25 energy levels. We conclude from
our spectral statistical analysis in Figure 3.6 that for small filling, L = 37 and
N = 3, the periodic Bose-Hubbard Hamiltonian is regular throughout the whole
spectrum. Already at half filling, L = 11 and N = 5, a clear chaotic regime
shows up. For big filling, L = 3 and N = 37, the chaotic regime gets smaller and
wanders to small values of u. We note that we applied the Kolmogorov-Smirnov
test to many more different systems and qualitatively obtained exactly these
results, which is why we only plotted the selected systems in Figure 3.6. We
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will further discuss these results at the end of the second section of this chapter.
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Figure 3.4: Kolmogorov-Smirnov Poisson test (red, thin line) and Wigner-Dyson
test (green, thin dashed line) applied to the periodic Bose-Hubbard Hamiltonian
with L = 7 wells, quasimomentum k = 1 and different particle numbers (the
significance level is set to 5 percent (blue, thin dash dotted line)), revealing the
validity of spectral statistics depending on the number of energy levels because
N = 4 has 30 energy levels, N = 5 has 66 energy levels, N = 6 has 132 energy
levels, N = 7 has 245 energy levels, N = 8 has 429 energy levels, N = 9 has 715
energy levels, N = 10 has 1144 energy levels, N = 11 has 1768 energy levels,
N = 12 has 2652 energy levels and N = 13 has 3876 energy levels. We conclude
that at least 132 energy levels have to be considered for a clear separation of the
regular and the chaotic regime by means of spectral statistics. Moreover we see
that in general the middle part of u is chaotic and the outer parts are regular.
However, spectral statistics does not work well in the outer parts of u due to
the beginning degeneracy.
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Figure 3.5: Kolmogorov-Smirnov Poisson test (red, thin line) and Wigner-Dyson
test (green, thin dashed line) applied to the periodic Bose-Hubbard Hamilto-
nian with L = 7 wells, N = 7 bosons, quasimomentum k = 1 and different
parametrizations (the significance level is set to 5 percent (blue, thin dash dot-
ted line)), as a reference for the location of the regular and the chaotic regime
in the periodic Bose-Hubbard Hamiltonian with unit filling. Clearly spectral
statistics does not work in the outer parts of u due to degeneracy.
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Figure 3.6: Kolmogorov-Smirnov Poisson test (red, thin line) and Wigner-Dyson
test (green, thin dashed line) applied to the periodic Bose-Hubbard Hamiltonian
with quasimomentum k = 1 and different fillings but with the same number of
250± 25 energy levels because L = 37 and N = 3 has 247 energy levels, L = 16
and N = 4 has 240 energy levels, L = 11 and N = 5 has 273 energy levels, L = 5
and N = 11 has 273 energy levels, L = 4 and N = 16 has 240 energy levels and
L = 3 and N = 37 has 247 energy levels. This Figure has to be compared with
the result at the end of the second section. As expected, systems of very small
filling are regular throughout the spectrum. With increasing filling the chaotic
regime gets smaller and wanders to the region of small values of u.
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3.2 Fidelity

After we have done spectral analysis we now want to address the determination
of the regular and of the chaotic regime from a dynamic point of view. As we
have argued in the introduction to this diploma thesis classical chaos is examined
in classical phase space [19]. If a classical system evolves from two initially very
close points in phase space such that the distance between the two resulting
trajectories grows exponentially in time, then the system is called chaotic. More
precisely the definition of classical chaos additionally includes the requirement
that the trajectories have to be spatially delimited. The exponential growth
in the distance between the two classical trajectories is characterized by the
Lyapunov exponent.

In quantum chaos a close link to this classical dynamic definition of chaos is
given in terms of the fidelity. In this context a highly excited state, i.e. a state
of high energy, is propagated with two slightly different Hamiltonians. These
actually emerge from the same single possibly time-dependent Hamiltonian

Ĥλ,ǫ(t) = Ĥλ(t) + ǫV̂ (t)

such that the state evolves once with the unperturbed Hamiltonian Ĥλ,0(t) =

Ĥλ(t) and once with the slightly perturbed Hamiltonian Ĥλ,ǫ(t) = Ĥλ(t)+ǫV̂ (t).
The distance between these two propagations is then measured with the fidelity

Fλ,ǫ(t) = |〈ψλ,0(t)|ψλ,ǫ(t)〉|2 (3.3)

where the bra denotes the time evolution of the initial state |ψ(0)〉 with the
unperturbed Hamiltonian Ĥλ,0(t) and the ket is the time evolution of the initial

state |ψ(0)〉 with the perturbed Hamiltonian Ĥλ,ǫ(t). This dynamic fidelity can
then have signatures of quantum chaos in its decay behaviour [24].

Expressed in a different form the fidelity can also be used for static investi-
gations of eigenstates,

F (λ, ǫ) = |〈ψ(λ)|ψ(λ+ ǫ)〉|2 . (3.4)

Here we consider a Hamiltonian Ĥ(λ) that depends on a parameter λ. |ψ(λ)〉
is a specific eigenstate to Ĥ(λ) and |ψ(λ+ ǫ)〉 is the same specific eigenstate to
Ĥ(λ+ ǫ). In order to be able to distinguish the two above fidelities we will refer
to (3.3) as the dynamic fidelity and to (3.4) as the static fidelity. The idea of the
static fidelity goes back to Zanardi et al. when they used this quantity to run
through a quantum phase transition in [45, 47]. Then the specific eigenstate
|ψ〉 in the static fidelity is the ground state. For our periodic Bose-Hubbard
Hamiltonian this investigation of the ground state via the static fidelity has
already been done by Buonsante and Vezzani in [28]. There they pinpointed
the quantum critical point of the superfluid to Mott insulating quantum phase
transition to ( J

U
)crit. = 0.257 ± 0.001 with the help of finite size scaling.

In this section we will first investigate the fidelity decay of the dynamic
fidelity of highly excited states. Then we will define a new measure for the
unique quantification of avoided crossings from the static fidelity. Finally we
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will use this new measure to obtain the distribution of avoided crossings in the
periodic Bose-Hubbard model with different filling. This determination of the
distribution of avoided crossings is a novel technique for the specification of the
quantum chaotic regime. We will compare our new method with the spectral
statistics approach by comparing the predictions for systems of different filling
in the end of this section.

3.2.1 Fidelity decay

Our periodic Bose-Hubbard Hamiltonian depends linearly on J and U and so the
above definition (3.3) of the dynamic fidelity can be directly used for either of
the two parameters by setting the other equal to 1. Additonally our Hamiltonian
is time-independent. We want to begin with U = 1 and J being the varying
parameter. So we set λ = J , ǫ = δJ and

ĤJ,δJ :=
1

2

L
∑

l=1

n̂l(n̂l − 1) − J
L
∑

l=1

(â†l+1âl + â†l âl+1) −

δJ
L
∑

l=1

(â†l+1âl + â†l âl+1) .

We choose a system of L = 5 wells and N = 5 bosons. The initial state shall
be the state of highest energy in the Wannier basis, which is |ψ(0)〉 = |50000〉W
where all the bosons sit in the same well. We propagate this state with HJ,0

to get the bra and propagate it with HJ,δJ to obtain the ket for the dynamic
fidelity

FJ,δJ(t) = |〈ψJ,0(t)|ψJ,δJ(t)〉|2

and set δJ = 0.001. Figure 3.7 depicts the time evolution of this dynamic
fidelity for the ratios J

U
= 1

10 , J
U

= 1
2 , J

U
= 1, J

U
= 2 and J

U
= 10. Let us note

that the precise units of time are discussed in Section 2.1.1. From Figure 3.7 we
see that the initial state remains constant on this time scale for J ≪ U while for
J ≫ U the curves seem to converge to a decay independent of J . This makes
sense because for J much smaller than U the initial state |50000〉W is very close
to an eigenstate of ĤJ,δJ and an eigenstate, of course, is stationary. However,
that the decay becomes independent of J for J ≫ U is unexpected and can be
interpreted as a manifestation of the regular regime.

Let us remind ourselves of the reference Figure 3.5 for the precise position of
the regular and of the chaotic regime in the periodic Bose-Hubbard Hamiltonian
with unit filling. From this figure we read off that J = 10 and U = 1 is in the
regular regime and that J = 1 and U = 1 is in the chaotic regime. Hence it
seems plausible that the decay becomes independent of J in the regular regime.

We are now interested in the question of what happens if we propagate
slightly different highly excited initial states, i.e. initial states of slightly different
high energy. Thinking of classical chaos, we would expect the propagation of
slightly different initial states to be only slightly different in the regular regime
and to be significantly different in the chaotic regime. For that we take the
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Figure 3.7: Time evolution of the dynamic fidelity FJ,δJ with δJ = 0.001 and
the highly excited initial state |50000〉W propagated with the periodic Bose-
Hubbard Hamiltonian with U = 1 and J = 0.1 (red, thin line), J = 0.5 (green,
thin dashed line), J = 1 (blue, thin dash dotted line), J = 2 (violet, thick line)
and J = 10 (orange, thick dashed line); see Section 2.1.1 for our definition of the
units of time. We see that if J is much smaller than U , the red curve corresponds
to J

U
= 0.1, the initial state remains unchanged on this time scale. This is

expected to happen because then the initial state is very close to an eigenstate
of ĤJ,δJ . But if J is much larger than U , the orange curve corresponds to
J
U

= 10, the initial state decays comparably on the same time scale independent
of J , and this can be interpreted as a manifestation of the regular regime.

initial states |50000〉W , |41000〉W and |32000〉W . They evolve in the regular
regime for J = 10 and U = 1 and in the chaotic regime for J = 1 and U = 1 in
Figure 3.8. Figure 3.9 is a close-up of the decay.

Remarkably the propagation of the three slightly different states is only
slightly different in the regular regime and significantly different in the chaotic
regime. It is even more remarkable that the fidelity has these very high maxima,
which are referred to as revivals, in the regular regime and they do not show
up in the chaotic regime. We believe that these maxima are finite size effects,
but we certainly will investigate that in the near future. Figure 3.9 reveals that
the short time scale of the decay does not allow a separation of the regular and
the chaotic regime, and we conclude from the insets that the decay is neither
exponential nor power-law.

Until now we have always used a fix perturbation strength δJ = 0.001. Let
us analyze the dependence of the fidelity decay on δJ . It can be shown [24] that
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Figure 3.8: Time evolution of the dynamic fidelity FJ,δJ with δJ = 0.001 and the
slightly different highly excited initial states |50000〉W (red, thin line), |41000〉W
(green, thin dashed line) and |32000〉W (blue, thin dash dotted line) propagated
with the periodic Bose-Hubbard Hamiltonian with U = 1 and J = 10 in the
regular regime (left) and with U = 1 and J = 1 in the chaotic regime (right)
(c.f. Section 2.1.1 for the units of time). Remarkably the slightly different initial
states feature only a slightly different propagation in the regular regime and a
significantly different propagation in the chaotic regime, as one would expect
from the analogy to classical chaos.
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Figure 3.9: Decay of the dynamic fidelity FJ,δJ with δJ = 0.001 and the slightly
different highly excited initial states |50000〉W (red, thin line), |41000〉W (green,
thin dashed line) and |32000〉W (blue, thin dash dotted line) propagated with
the periodic Bose-Hubbard Hamiltonian with U = 1 and J = 10 in the regular
regime (left) and with U = 1 and J = 1 in the chaotic regime (right); note
the logarithmic and the double-logarithmic insets. Compared with the previous
Figure 3.8, the short time scale of the decay does not allow for a distinction of
the regular and the chaotic regime.
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for a time-independent Hamiltonian the dynamic fidelity (3.3) behaves like

Fλ,ǫ(t) = 1 − C · ǫ2t2

at the beginning of the decay, where C is a constant, and hence if we plot the
dynamic fidelity over ǫt we should always observe a quadratic decrease at the
beginning of the decay. From now on we will examine the dynamic fidelity as a
function of ǫt. Here λ and J are used interchangeably, and this is also the case
with ǫ and δJ .

So we have |50000〉W as the initial state and look at the time evolution of
the dynamic fidelity FJ,δJ(t) for δJ = 0.5, δJ = 0.1, δJ = 0.01, δJ = 0.001,
and δJ = 0.0001. We propagate this initial state in the regular regime for
J = 10 and U = 1 and in the chaotic regime for J = 1 and U = 1. Surprisingly
Figure 3.10 shows that the time evolution of the dynamic fidelity is completely
independent of the perturbation strength δJ in the regular regime and this is
not the case in the chaotic regime. In the chaotic regime the curves converge
only for δJ < 0.001 on the long time scale.

So we have another correspondence between classical and quantum chaos. If
we interpret the perturbation strength δJ to be the initial distance of the two
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Figure 3.10: Time evolution of the dynamic fidelity FJ,δJ with δJ = 0.5 (red,
thin line), δJ = 0.1 (green, thin dashed line), δJ = 0.01 (blue, thin dash dotted
line), δJ = 0.001 (violet, thick line) and δJ = 0.0001 (orange, thick dashed
line) and the highly excited initial state |50000〉W propagated with the periodic
Bose-Hubbard Hamiltonian with U = 1 and J = 10 in the regular regime (left)
and with U = 1 and J = 1 in the chaotic regime (right). Obviously there is no
dependence of the time evolution of the dynamic fidelity on the perturbation
strength δJ in the regular regime and this is not the case in the chaotic regime.
We get a correspondence to classical chaos if we interpret δJ to be the distance
of two classical starting points in classical phase space because classically we
would also expect there to be no dependence on this initial distance in the
regular regime.
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Figure 3.11: Decay of the dynamic fidelity FJ,δJ with δJ = 0.5 (red, thin line),
δJ = 0.1 (green, thin dashed line), δJ = 0.01 (blue, thin dash dotted line),
δJ = 0.001 (violet, thick line) and δJ = 0.0001 (orange, thick dashed line) and
the highly excited initial state |50000〉W propagated with the periodic Bose-
Hubbard Hamiltonian with U = 1 and J = 10 in the regular regime (left) and
with U = 1 and J = 1 in the chaotic regime (right). Compared to the previous
figure 3.10 the time scale of the decay suffices to separate the regular and the
chaotic regime.

classical starting points in the classical phase space, then in the regular regime
we do not have any dependence of the propagation on this initial distance, in
contrast to the chaotic regime. This is exactly what one would expect from
classical chaos.

Further analysis showed that as soon as U gets bigger than J another time
scale has to be used. As already mentioned the initial state |50000〉W of all
bosons in one well just doesn’t change for big ratios U

J
because it is close to an

eigenstate to ĤJ,δJ . Numerically we find that scaling the time with U4 gives
comparable curves, and the dynamic fidelity also decays on a much larger time
scale.

A much nicer way of investigating the regime U
J
> 1 is given by simply

swapping the appearance of Wannier and Bloch in the above calculations. This
means that we put J = 1, λ = U , ǫ = δU and

ĤU,δU := −
L
∑

l=1

(â†l+1âl + â†l âl+1) +
U

2

L
∑

l=1

n̂l(n̂l − 1) +

δU

2

L
∑

l=1

n̂l(n̂l − 1) .

For the propagation we need a highly excited Bloch Fock state. We choose
the Bloch Fock state of highest energy |05000〉B as |ψ(0)〉. With this change all
the above results can now be obtained for U

J
> 1, as we checked explicitly, and
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the correspondence between classical and quantum chaos exists in the same way
for the regular regime of J = 1 and U = 10 and the chaotic regime of J = 1
and U = 1 as above. In fact, the same analogies between classical and quantum
chaos can be derived. Here we only want to show Figure 3.12 and 3.13 which
confirm the independence of the time evolution of the dynamic fidelity from the
perturbation strength δU .
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Figure 3.12: Time evolution of the dynamic fidelity FU,δU with δU = 0.5 (red,
thin line), δU = 0.1 (green, thin dashed line), δU = 0.01 (blue, thin dash dotted
line), δU = 0.001 (violet, thick line) and δU = 0.0001 (orange, thick dashed line)
and the highly excited initial state |05000〉B propagated with the periodic Bose-
Hubbard Hamiltonian with J = 1 and U = 10 in the regular regime (left) and
with J = 1 and U = 1 in the chaotic regime (right). This figure is completely
analogous to Figure 3.10 and one can infer the same interpretation.



52 Quantum chaos in the Bose-Hubbard model

0 1 2

εt

0,2

0,4

0,6

0,8

1

F(
εt

)

0 1 2 3

εt

0,2

0,4

0,6

0,8

1

0 1 2
0,0001

0,001

0,01

0,1

1

F(
εt

)

0 1 2 3
0,0001

0,001

0,01

0,1

1

F(
εt

)

Figure 3.13: Decay of the dynamic fidelity FU,δU with δU = 0.5 (red, thin line),
δU = 0.1 (green, thin dashed line), δU = 0.01 (blue, thin dash dotted line),
δU = 0.001 (violet, thick line) and δU = 0.0001 (orange, thick dashed line)
and the highly excited initial state |05000〉B propagated with the periodic Bose-
Hubbard Hamiltonian with J = 1 and U = 10 in the regular regime (left) and
with J = 1 and U = 1 in the chaotic regime (right). This figure is completely
analogous to Figure 3.11 and implies the same interpretation.

3.2.2 Quantifying avoided crossings by means of the fidelity

The mere presence of a large number of dense lying avoided crossing is a clear
sign for quantum chaos. In spectral analysis it is level repulsion, manifest in
the existence of avoided crossings, that causes level spacings to obey a Wigner
distribution. And the fact that the wave function changes at an avoided crossing
implies nonintegrability. So the detection of avoided crossings is a fundamentally
useful tool for the determination of the chaotic regime.

This detection of avoided crossings can be achieved by making use of the
static fidelity 3.4. From now on we will again parametrize our periodic Bose-
Hubbard Hamiltonian with u, i.e. J = 1 − u, U = u and u runs from 0 to 1.
Thus we set λ = u and ǫ = δu. In this case the static fidelity reads

F (u, δu) = |〈ψ(u)|ψ(u+ δu)〉|2 (3.5)

for a specific eigenstate |ψ(u)〉 of our Hamiltonian Ĥ(u). This static fidelity is
constant of value 1 everywhere except for the vicinity of an avoided crossing. It
is minimal exactly at the position of an avoided crossing and can therefore be
used to locate them.

In Figure 3.14 we plot 1 − F (u, δu) with δu = 0.001 for the eigenstate 22
of the spectrum to L = 5 wells, N = 5 bosons and quasimomentum k = 1.
This function pinpoints the two avoided crossings and additionally quantifies
the right one to be narrower than the left one.

Our intention is to apply this static fidelity to the whole spectrum. This
means that we extend the applicability of the static fidelity from the ground
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state, as it was introduced by Zanardi et al. in [45, 47], to the complete spectrum.
A first attempt in the direction of this extension to the whole spectrum is given
by analyzing the average of the function 〈1 − F (u, δu)〉 over all eigenstates. In
Figure 3.15 this average is performed over all eigenstates of the spectrum to
L = 7 wells, N = 7 bosons and quasimomentum k = 1. We conclude that
the spectrum around u = 0.8 is characterized by either many or by strong
avoided crossings. We note that the quantum phase transition takes place at
( J
U

)crit. = 0.26 which corresponds to ucrit. = 0.79, but of course this quantum
phase transition affects only the ground state.

The main disadvantage of the function 1−F (u, δu) is its dependence on δu.
We would like to have a quantity that locates and measures avoided crossings
independent of δu. The form of the static fidelity 3.4,

F (λ, ǫ) = |〈ψ(λ)|ψ(λ+ ǫ)〉|2 ,

suggests that it can be well treated with standard quantum mechanical pertur-
bation theory for small values of ǫ [48, 49]. In fact, in [49] the lowest order
correction to the fidelity is presented but without derivation, which is why we
want to do this derivation here. Consider the Hamiltonian

Ĥ = Ĥ0 + ǫV̂ .

In order to solve the eigenproblem

Ĥ|n〉 = En|n〉 ,
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Figure 3.14: Static fidelity 1 − F (u, δu) with δu = 0.001 applied to eigenstate
22 of the periodic Bose-Hubbard Hamiltonian with L = 5 wells, N = 5 bosons
and quasimomentum k = 1. The static fidelity very well locates the two avoided
crossings and also quantifies the right one to be narrower than the left one.



54 Quantum chaos in the Bose-Hubbard model

0 0,2 0,4 0,6 0,8 1

u

0,03

0,06

0,09

0,12

0,15

<
1-

F(
u)

>

Figure 3.15: Averaged static fidelity F (u, δu) with δu = 0.005 of all eigenstates
to the periodic Bose-Hubbard Hamiltonian with L = 7 wells, N = 7 bosons
and quasimomentum k = 1. The most or the narrowest avoided crossings are
located around u = 0.8.

with eigenvalue En to the nth eigenstate |n〉, we make the standard ansatz of
non-degenerate quantum mechanical perturbation theory by expanding En and
|n〉 as power series in ǫ,

(Ĥ0 + ǫV̂ ) · (|n0〉 + ǫ|n1〉 + ǫ2|n2〉 + . . .) = (E0
n + ǫE1

n + ǫ2E2
n + . . .) ·

(|n0〉 + ǫ|n1〉 + ǫ2|n2〉 + . . .) .

With the standard assumptions, as they are discussed in any elementary course
on quantum mechanics, we calculate the pth order correction to the energy,

Epn = 〈n0|V̂ |np−1〉 −
p−1
∑

j=1

Ejn〈n0|np−j〉 ,

and the pth order correction to the eigenstate,

|np〉 =
∑

m6=n

〈m0|V̂ |np−1〉 −
∑p−1

j=1 E
j
n〈m0|np−j〉

E0
n − E0

m

|m0〉 −

1

2

p−1
∑

j=1

〈nj |np−j〉|n0〉 .

The above two formulas allow the recursive, or numerically better the iterative,
computation of all corrections of any order.
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If we are interested in the nth eigenstate, the static fidelity (3.4) can be
rewritten as

F (λ, ǫ) = |〈n(λ)|n(λ+ ǫ)〉|2 .

Now we artificially split our Hamiltonian Ĥ(λ+ ǫ) = Ĥ0(λ) + ǫV̂ and see that
|n(λ)〉 is the nth eigenstate to the unperturbed Hamiltonian Ĥ(λ) = Ĥ0(λ)
while |n(λ+ ǫ)〉 is the nth eigenstate to the perturbed Hamiltonian Ĥ(λ+ ǫ) =
Ĥ0(λ)+ǫV̂ . This shows how we can simply apply our result from non-degenerate
quantum mechanical perturbation theory by identifying |n(λ)〉 = |n0〉.

Doing this, our static fidelity with all corrections up to pth order reads

F (λ, ǫ) = |1 − 1

2

p
∑

j=2

ǫj
j−1
∑

k=1

〈nk|nj−k〉|2 .

Writing out the first terms explicitly yields

F (λ, ǫ) = 1 − ǫ2〈n1|n1〉 − ǫ3(〈n1|n2〉 + 〈n2|n1〉) −

ǫ4(〈n1|n3〉 + 〈n2|n2〉 + 〈n3|n1〉 −
〈n1|n1〉2

4
) − . . .

We are now in a position to define a function that we want to call “level
correlation fidelity”:

f(n, λ) = lim
ǫ→0

1 − |〈n(λ)|n(λ+ ǫ)〉|2
ǫ2

. (3.6)

If non-degenerate quantum mechanical perturbation theory can be applied, then
this quantity is strictly equal to

f(n, λ) = 〈n1|n1〉(λ)

=
∑

m6=n

|〈m0|V̂ |n0〉|2
(E0

n − E0
m)2

(λ) .

But of course our definition of the level correlation fidelity (3.6) can also be used
for degenerate energy levels, in contrast to the function 〈n1|n1〉(λ).

We denote the level correlation fidelity by a small letter f such that we can
distinguish it from the static fidelity (3.4). In the following we will always use
a sufficiently small ǫ, i.e. δu, such that the numerical level correlation fidelity
converges. Numerically it mostly suffices to put δu = 0.001.

Figure 3.16 shows the level correlation fidelity applied to eigenstate 22 of
the spectrum to L = 5 wells, N = 5 bosons and quasimomentum k = 1. This
figure has to be compared with Figure 3.14 because we have finally obtained
the desired unique quantification of avoided crossings.

3.2.3 Distribution of avoided crossings

Of course the level correlation fidelity (3.6) can also be used, apart from the
quantification of avoided crossings, to simply locate avoided crossings in the
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Figure 3.16: Level correlation fidelity f(n, u) applied to eigenstate n = 22 of
the periodic Bose-Hubbard Hamiltonian with L = 5 wells, N = 5 bosons and
quasimomentum k = 1. This figure should be compared with Figure 3.14, since
here we have a unique quantification of the two avoided crossings.

spectrum. In this last part we want to present a novel method for the detection
of the chaotic regime by determining the distribution of avoided crossings in the
spectrum.

In practice we follow each energy level with the level correlation fidelity.
An avoided crossing is detected and counted if the level correlation fidelity is
maximal and greater than a lower bound. The lower bound shall assure that only
avoided crossings having at least a certain minimal strength are considered. We
note that the avoided crossings have to be counted into a bin, i.e. their location
is then given with an uncertainty of the bin width. In the following plots this
bin width is set to δu = 0.02.

In Figure 3.17 we apply this method to the spectrum of L = 5 wells, N = 5
bosons and quasimomentum k = 1. The number and location of maxima of
the level correlation fidelity in the lower part of the figure reliably reflect the
distribution of avoided crossings, as we convinced ourselves by directly counting
avoided crossings in the spectrum in the upper part of the figure.

Instead of plotting the absolute number of avoided crossings, it makes more
sense to look at the number of avoided crossings per energy level, i.e. we divide
the number of avoided crossings that we detect in a bin by the total number of
energy levels. So what we are exactly studying here is the number of avoided
crossings per energy level per bin. Figure 3.18 shows the distribution of avoided
crossings in the spectrum of the periodic Bose-Hubbard model of L = 7 wells,
N = 7 bosons and quasimomentum k = 1. If we compare this plot with our
reference Figure 3.5 we conclude that the regular regime arises when the number
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Figure 3.17: Spectrum and number of avoided crossings obtained from the level
correlation fidelity, as the number of its maxima, for the periodic Bose-Hubbard
Hamiltonian with L = 5 wells, N = 5 bosons and quasimomentum k = 1. In
the upper plot we have highlighted the avoided crossings that we could find by
explicitly looking at the spectrum. The level correlation fidelity correctly counts
them, as one can convince oneself in the lower plot.
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Figure 3.18: Number of avoided crossings per energy level for the periodic Bose-
Hubbard Hamiltonian with L = 7 wells, N = 7 bosons and quasimomentum
k = 1. This plot has to be compared with Figure 3.5. The comparison reveals
that the regular regime sets in if the number of avoided crossings per energy
level is sufficiently low.

of avoided crossings per energy level is sufficiently low.

In Figure 3.19 we investigate the distribution of avoided crossings in the
spectra of systems with different filling but with the same number of 250 ± 25
energy levels. In fact, we use the same setting as in Figure 3.6 such that we
can now compare the results of spectral statistics with the results of our novel
method. As we clearly see in Figure 3.19 the system with lowest filling of L = 37
and N = 3 still has a significant number of avoided crossings per energy level
which is why the spectrum cannot be regular. Looking at Figure 3.6 we see
that spectral statistics wrongly assigns the whole spectrum to be regular. So
the determination of the distribution of avoided crossings in the spectrum is
a necessary new technique for the correct classification of the regular and the
chaotic regime.

We also tried to make out a quantity that is independent of the system
size, i.e. the number of energy levels considered, and we propose the probability
density of avoided crossings

PAC(u) =
NAC(u)

N total
AC du

(3.7)

where NAC(u) is the number of avoided crossings in [u − du
2 , u + du

2 ], i.e. in a
bin of width du around u, and N total

AC is the total number of avoided crossings in
the spectrum for all values of u, i.e. in [0, 1]. This density of avoided crossings
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Figure 3.19: Number of avoided crossings per energy level for the Bose-Hubbard
Hamiltonian with different fillings but with the same number of 250±25 energy
levels and quasimomentum k = 1. This plot has to be compared with Figure
3.6. Surprisingly spectral statistics assigns a regular spectrum to the system of
L = 37 wells and N = 3 bosons where the level correlation fidelity detects a big
number of avoided crossings per energy level. Hence the spectrum of L = 37
and N = 3 can not be regular.
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Figure 3.20: Probability density of avoided crossings PAC(u) applied to the
periodic Bose-Hubbard Hamiltonian with quasimomentum k = 1 and L = 7 =
N (left) and L = 8 = N (right). Indeed the distribution of avoided crossings
looks similar, although the systems considered have a different number of energy
levels.

indeed looks similar for the spectrum of the k = 1-subspace to L = 7 = N and
to L = 8 = N as can be seen in Figure 3.20.



Chapter 4

Quantum entanglement in the

Bose-Hubbard model

There exist many nice introductions to entanglement theory, but sadly all of
them lack a beautiful treatment of the important computable entanglement
measures. Nielsen and Chuang present entanglement only very briefly in their
book [30]. In contrast, Horodecki et al. have worked out an extremely thor-
ough, but lengthy, discussion of almost all aspects of quantum entanglement
[25], however without explaining how entanglement measures are computed in
practice. This is also true for the introduction to entanglement measures by
Plenio and Virmani [33]. A quantum information theory lecture of Wolf has a
particularly nice treatment of the entropy of entanglement, but does not explain
other measures [50]. Fortunately a lecture given by Mintert mostly concentrates
on computable entanglement measures [51]. Nevertheless we could not find any
introduction to entanglement theory that additionally highlights the problems
of standard entanglement theory in quantum many-body systems. There the
particles are indistinguishable and the common description is the Fock formal-
ism.

Recently the most important results concerning entanglement in quantum
many-body systems were reviewed by Amico et al. in [34]. This work, most
of all, demonstrates the enormous complexity of the subject. Amico et al.

make clear that many different notions of entanglement have been developed
in the context of quantum many-body systems and that the correct notion of
entanglement depends on the system under consideration, more precisely on the
decision of what the entangled entities shall be. Mainly two different concepts
of entanglement are relevant for the Bose-Hubbard model, namely the notion
of quantum correlations between indistinguishable particles and the concept of
mode entanglement.

If the investigated entangled entities are the indistinguishable particles them-
selves, Schliemann et al. proposed to speak of quantum correlations instead of
entanglement [52, 53], in order to distinguish the existing correlations from en-
tanglement of distinguishable particles. This distinction is necessary because
entanglement theory of distinguishable particles promotes entanglement as a
resource [30], in a way like energy, that may be used to do tasks that can not
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be done classically. E.g. by means of an entangled state two classical bits can
be encoded and sent with only one qubit [54], a phenomenom termed super-
dense coding. And quantum teleportation renders possible the teleportation of
a quantum state to a spatially remote location via an entangled state [55]. So
the resource of an entangled state allows to overcome classical restrictions, like
locality in the case of quantum teleportation. However it is still unclear if the
entanglement between indistinguishable particles can be used as a resource in
the same way and therefore Schliemann et al. suggested not to talk of entangle-
ment but of quantum correlations, the well-known term of solid-state physics,
in the context of indistinguishable particles.

Unfortunately Schliemann et al. mainly focus on fermions [52] and later
Eckert, Schliemann et al. consider bosons [53] but do not give an interpreta-
tional motivation for their definition of separability. Many other approaches to
this topic [56, 57, 58, 59] also lack this interpretational motivation for bosons
and additionally limit their explanations to only two indistinguishable particles.
Ghirardi et al. especially focus on the interpretational aspects of entanglement
in systems of indistinguishable particles [60, 61], but they do not tell how en-
tanglement in these systems can be quantified.

A completely different discussion of many-particle entanglement in systems
of indistinguishable particles emerged in the context of spin squeezing [62, 63].
Spin squeezed states enhance spectroscopy, compared to coherent states. That’s
why spin squeezed states can be considered entangled [64]. Experimentally spin
squeezed states of ultracold atoms were for the first time realized in [65]. Spin
squeezing is quantified by the spin squeezing parameter ξ [62, 63] and this
parameter can often be measured experimentally. Sørensen et al. derived an
inequality for ξ that holds for a separable state of N distinguishable bosons
[66] and Wang et al. calculated that inequality for a separable state of N indis-
tinguishable bosons [67]. Estève et al. experimentally showed that BECs can
violate these inequalities and hence he proved the existence of many-particle en-
tanglement in a BEC [9]. We remark that in [68, 69] all possible spin squeezing
inequalities are derived for spin-1

2 particles.
If the investigated entangled entities are the modes of the Fock states Za-

nardi and Wang suggested to refer to mode entanglement [70]. E.g. in the
Bose-Hubbard model it is self-evident to study entanglement between different
wells understanding each well as an individual quantum system. And because
the wells correspond to the modes of the Wannier Fock states one actually looks
at Wannier mode entanglement. Mode entanglement obviously depends on the
choice of modes [71, 72] and a change from one set of modes to another is accom-
plished by a unitary transformation on the creation operators. Equivalently this
corresponds to the same unitary transformation on the single-particle functions
that make up the Fock state. The canonical modes of the Bose-Hubbard model
are the Wannier modes of the Wannier Fock states and the Bloch modes of the
Bloch Fock states (c.f. Section 2.1). But Wannier mode entanglement is supe-
rior to any other mode entanglement, because entanglement between spatially
separated wells represents the common notion of entanglement as a nonlocal
resource. In particular, only Wannier mode entanglement allows for superdense
coding and quantum teleportation. So standard entanglement is realized in our
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Bose-Hubbard model as Wannier mode entanglement. This kind of directly
usable entanglement will from now on be called practical entanglement.

Let us explain practical entanglement with an example. Consider the state

|ψ〉 =
1√
2
(|1010〉W + |0101〉W )

which is a superposition of two Wannier Fock states. More precisely, we have
L = 4 wells and N = 2 bosons and we can directly read off from the Wannier
representation of |ψ〉 in which wells the two bosons sit, i.e. |1010〉W denotes one
boson in the first well and one boson in the third well and |0101〉W denotes one
boson in the second well and one boson in the fourth well. If we now declare the
left two wells to be one quantum system and the right two wells to be a second
quantum system, we have two spatially separated, and therefore distinguishable,
quantum systems. This is exactly the setting of standard entanglement theory.
In particular for the state above, if we define |0〉 := |10〉W and |1〉 := |01〉W we
obtain

|ψ〉 =
1√
2
(|00〉 + |11〉) ,

which is a maximally entangled Bell state. This Bell state can now be used for
superdense coding or quantum teleportation.
In contrast, consider the different state

|φ〉 =
1√
2
(|1010〉B + |0101〉B)

which is a superposition of two Bloch Fock states. Written in this Bloch repre-
sentation we can not directly read off in which wells the two bosons sit. We only
know that the state |1010〉B describes one boson having quasimomentum k = 1
and one boson having quasimomentum k = 3 and the state |0101〉B describes
one boson having quasimomentum k = 2 and one boson having quasimomentum
k = 4. Before we can do the spatial separation into two quantum systems, we
have to make a basis change to Wannier Fock states. In that sense the Wannier
Fock states are exceptional and Wannier mode entanglement directly leads to
practical entanglement.

Mode entanglement has two fundamentally different forms. If the total parti-
cle number is unlimited, i.e. if there exists a reservoir of infinitely many particles,
then mode entanglement is just the same as standard entanglement. E.g. then
the state

|ψ〉 = |01〉W + |10〉W

of one boson in two wells has exactly the same entanglement properties as a
maximally entangled Bell state

|β〉 = |01〉 + |10〉

of two distinguishable qubits.
However if the total particle number is fix the possible quantum operations are
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fundamentally limited and the above state |ψ〉 does not have the same entan-
glement properties as a maximally entangled Bell state of two distinguishable
particles anymore. While Wiseman and Vaccaro discovered this phenomenon
[73, 74], it was Schuch et al. who gave a more or less complete solution [75]. We
remark that the Wannier mode entanglement present in |ψ〉 nevertheless can
be swapped to a different quantum system, e.g. two atoms [76], and then it is
practical entanglement. But, of course, considerations like that are not relevant
for us because we restrict our studies to the sole Bose-Hubbard model, without
extra quantum systems.

Schuch et al. assumed a fix total particle number and that the quantum sys-
tem under consideration is split into two quantum systems A and B with corre-
sponding Hilbert spaces HA and HB. It is the entanglement between these two
quantum systems that they investigated. They proved that any local quantum
operation, ÔA or ÔB, has to commute with the local particle number operator,
N̂A or N̂B respectively. This means that

[N̂A, ÔA] = 0

[N̂B, ÔB] = 0

must hold for all local quantum operations ÔA and ÔB. They showed that
the entanglement properties of asymptotically, i.e. infinitely, many copies of the
quantum state under consideration are completely described by two quantities,
namely the entropy of entanglement

EoE(|ψ〉) = −
∑

j

λj log(λj) ,

where the λj are the so-called Schmidt coefficients that we will explain in the
first section of this chapter, and the superselection induced variance

SiV (|ψ〉) = 4(〈ψ|N̂2
A|ψ〉 − 〈ψ|N̂A|ψ〉2) ,

which is proportional to the variance in the local particle number. These two
quantities are of fundamental importance for our analysis because as already
explained in Chapter 2 we will always consider our Bose-Hubbard model with
a fix total particle number of N bosons.

Entanglement is expected to be important in quantum phase transitions
[26, 27, 28, 29]. Because quantum phase transitions occur at zero temperature
they are not driven by thermal fluctuations but by quantum fluctuations. Buon-

sante and Vezzani investigated mode entanglement at the superfluid to Mott
insulating quantum phase transition in the periodic Bose-Hubbard Hamilto-
nian [28]. There they showed that mode entanglement does not allow to locate
the quantum critical point as well as the static fidelity, which we thoroughly
described in Chapter 3. In fact, they were only able to roughly locate the quan-
tum critical point in the periodic Bose-Hubbard model via the minima of the
second derivative of Bloch mode entanglement by making use of finite size scal-
ing. They leave as an open question why the minima of the second derivative
of Bloch mode entanglement are important for this quantum phase transition.
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Practical entanglement is especially interesting for quantum computation
[30]. Experimentally ultracold bosons in optical lattices can be controlled very
well and so this setup is a promising candidate for quantum computation. In
[13, 14, 15, 16] different schemes for quantum computation in the Bose-Hubbard
model are presented.

We begin this chapter with a thorough introduction to standard entangle-
ment theory in the first section. There we will derive the later used entanglement
measures and work out the problems that come along with quantum many-body
systems. We compare single-copy and asymptotic entanglement measures in the
second section. In the third section we will present our own theory of quantum
correlations between indistinguishable bosons. This theory will be built on an
interpretational motivation and will allow the quantification of entanglement in
systems of arbitrarily many bosons. We will apply our measure to the quantum
phase transition. Finally we will present a novel experimentally realizable tech-
nique for the generation of practical entanglement in the Bose-Hubbard model
in the fourth section.

4.1 Introduction to entanglement theory

Here we want to present an introduction to standard entanglement theory of
distinguishable particles. As explained in the introduction to this chapter there
exist many nice treatments of entanglement theory [30, 25, 33, 50, 51]. Unfor-
tunately, they do not explain in simple terms what the important entanglement
measures are and how they are computed. In particular, they do not cover
the problems of standard entanglement theory in quantum many-body systems,
where the particles are indistinguishable and the Fock formalism is the common
description.

This introduction to entanglement theory serves a twofold purpose. First
it shall derive the tools we will be using later on to quantify entanglement.
Second it shall foreshadow the obstacles that come into play if one has identical
particles. In order to fulfill these two aims we decided to give a rather long, but
convincing, presentation touching all the important aspects of the field related
to the quantification of entanglement. The largest part of this introduction to
entanglement theory is based on the very first publications to the discussed
topics.

4.1.1 Basics of entanglement theory

We begin by defining what an entanglement measure actually is. Fundamental
for entanglement theory is the concept of local operations and classical com-
munication (LOCC). These form a subset of the so-called quantum operations
which cover all allowed operations on a quantum mechanical system. Entangle-
ment monotones are then defined as scalar quantities that do not increase under
LOCC and entanglement measures are entanglement monotones that fulfill ad-
ditional physically motivated requirements.

Quantum operations
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For any understanding of entanglement an understanding of the allowed opera-
tions on quantum mechanical systems is absolutely crucial.

Assume our system under consideration ρS is coupled to a second system and
both systems evolve under Hamiltonian evolution described by a Schrödinger
equation. It is common to call the second system environment ρE . Without loss
of generality we can set the initial state to ρS ⊗ |0E〉〈0E | and then the complete
system propagates according to a unitary USE . In order to get the evolution of
ρS we now have two possibilities [77]:

1. If we are not interested in the environment, we simply trace it out:

ρ′S = trE(USE(ρS ⊗ |0E〉〈0E |)U †
SE)

=
∑

j

〈jE |USE(ρS ⊗ |0E〉〈0E |)U †
SE |jE〉

=
∑

j

〈jE |USE |0E〉ρS〈0E |U †
SE |jE〉

=:
∑

j

MjρSM
†
j ;

here we have introduced the so-called Kraus operators Mj := 〈jE |USE |0E〉
and they fulfill

∑

j

M †
jMj =

∑

j

〈jE |USE |0E〉〈0E |U †
SE |jE〉

= I .

This last equality assures that the above operation is trace-preserving,

tr(ρ′S) = tr(
∑

j

MjρSM
†
j ) =

∑

j

tr(MjρSM
†
j ) =

∑

j

tr(M †
jMjρS)

= tr(
∑

j

M †
jMjρS) = tr(IρS) = tr(ρS) = 1 ,

and thus ρ′S again is a valid density matrix.

2. We can measure the environment and thereby filter the resulting system
state:
The probability for obtaining measurement result j is

pj = tr(MjρSM
†
j )

and the state after measuring result j is

ρ′S =
MjρsM

†
j

tr(MjρSM
†
j )

.

Both approaches are unified by the concept of a quantum operation E ,

ρ′S = E(ρS)

=
∑

j

MjρSM
†
j ,
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which is defined through a set of Kraus operators Mj . We remark that in the
literature E is also called quantum channel in analogy to the notion of a channel
in classical communication theory [30]. In the case

∑

j

M †
jMj = I

the quantum operation is deterministic while in the case

∑

j

M †
jMj < I

it is probabilistic with tr(E(ρS)) being the probability for the quantum opera-
tion to occur [51].

Quantum operations - Example
Assume we have a state

|ψ〉 =
1√
2
(|0〉 + |1〉)

and want to perform a quantum operation described by the Kraus operators

M1 =

(

cos(Θ) 0
0 sin(Θ)

)

M2 =

(

sin(Θ) 0
0 cos(Θ)

)

.

A quick check, M †
1M1 + M †

2M2 = I, reveals that this is a correct quantum
operation. Now we will measure result 1 with probability

p1 = 〈ψ|M †
1M1|ψ〉 = 0.5

and the state will have changed to

|ψ1〉 =
M1|ψ〉

√

〈ψ|M †
1M1|ψ〉

= cos(Θ)|0〉 + sin(Θ)|1〉 .

We will measure result 2 with probability

p2 = 〈ψ|M †
2M2|ψ〉 = 0.5

and the state will then be

|ψ2〉 =
M2|ψ〉

√

〈ψ|M †
2M2|ψ〉

= sin(Θ)|0〉 + cos(Θ)|1〉 .

Local operations and classical commmunication (LOCC)
Consider two parties, named Alice and Bob, with their laboratories far apart
from each other and let them share a quantum system. You can think of Alice
and Bob each having one of two qubits. On the one hand, clearly any quantum
mechanical correlation between the two parts of the shared system, the two
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qubits, can only be the result of a former interaction. On the other hand, what
kind of quantum operations generate only classical correlations? E.g. if the two
parts initially are uncorrelated, what quantum operations may Alice and Bob
use such that only classical correlations arise? It is widely accepted that local
operations and classical communication are exactly these quantum operations
[33, 78].

Local operations cover all quantum operations that Alice and Bob can do
locally in their laboratory on their part of the shared quantum system. Un-
der such operations no quantum correlations should emerge because the two
parts do not see each other. Classical communication then permits to choose
the consecutive local quantum operations conditional on former results of local
quantum operations. I.e. if Alice starts with a local quantum operation given
by Kraus operators Mj and she measures result j, she can call Bob and tell
him her measurement result. Bob can then perform a local quantum operation
described by Kraus operators Njk depending on Alice’s measurement result j.
Of course he now can call back Alice, tell her his measurement result k and she
makes another local quantum operation depending on Bob’s result and so on.

It can be shown that any LOCC protocol composed of rounds of measuring
and communicating can be substituted by a three step protocol [30]:

1. Alice performs a local quantum operation defined by Kraus operators Mj .

2. She calls Bob and tells him her measurement result j.

3. Depending on Alice’s measurement result j Bob applies a local unitary
Uj .

We conclude that LOCC are quantum operations of the form [79]:

ρ′S =
∑

j,k,l,...

. . . (Ojkl ⊗ I)(I ⊗Njk)(Mj ⊗ I)ρS(M †
j ⊗ I)(I ⊗N †

jk) . . .

=
∑

j

(I ⊗ Uj)(Mj ⊗ I)ρS(M†
j ⊗ I)(I ⊗ U

†
j) .

Quantum operations and LOCC for indistinguishable particles
The correct description for indistinguishable particles is the Fock formalism [80].
Because the particles are indistinguishable only statements about the occupation
of different quantum numbers can be made. So a Fock state contains all the
information that one can have about a quantum system of indistinguishable
particles. It is fundamentally impossible to tell which particles exactly populate
the different quantum numbers.

Fock states for bosons are symmetrized products of single-particle functions
and Fock states for fermions are antisymmetrized products of single-particle
functions. Of course, any operation in Fock formalism can be equally expressed
on these (anti-)symmmetrized products of single-particle functions and vice
versa. In the Fock picture a basis change is realized by a unitary U applied
to the creation operators,

~b† = U~a†
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and we have used that already in Chapter 2 when we made a basis change from
Wannier to Bloch Fock states. It can be easily shown that in the particle picture
this corresponds to applying the same unitary U to each single-particle function
in the (anti-)symmetrized product. This assures that the total wave function
stays (anti-)symmetrized.

In fact, this also keeps the particles indistinguishable. Consider two indis-
tinguishable bosons in the state

|0〉 ⊗ |0〉

written in the particle picture. Assume we could apply two different unitaries
U1 and U2 to the two bosons. In fact, this already presupposes that we can ad-
dress them individually which is impossible because they are indistinguishable.
Nevertheless, if we choose U1 = I and U2 = σX , where

σX =

(

0 1
1 0

)

is the σX -Pauli matrix or equivalently a NOT gate, we obtain

U1|0〉 ⊗ U2|0〉 = |0〉 ⊗ |1〉 .

But then the particles are distinguishable by their quantum numbers.
We conclude that any quantum operation on indistinguishable particles has

to make sure that the total wave function stays (anti-)symmetrized and this
can be simply guaranteed by working in the Fock picture. Hence quantum
operations have to be expressed in terms of annihilation and creation operators.

The concept of LOCC does not make sense for indistinguishable particles.
Because the particles can not be addressed individually, local operations reduce
to the same quantum operation applied to every indistinguishable particle. In
the second section of this chapter we will introduce our own concept of LOCC
for indistinguishable particles.

Entanglement monotones
An entanglement monotone E is a scalar function on the set of all density op-
erators, which we denote by D,

E : D → [0,∞) ,

that does not increase on average under LOCC [81]:

E(ρ) ≥
∑

j

pjE(
MjρM

†
j

tr(MjρM
†
j )

) .

Here the Kraus operators Mj realize the LOCC protocol and the above inequal-
ity has to hold for all possible LOCC protocols. The restriction to nonincreasing
behaviour on average means that there may exist LOCC protocols such that for
some measurement results the entanglement may grow but the probability for
these results to occur has to be sufficiently small.
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From this follows a simple necessary criterion for entanglement monotones,
namely that they are invariant under local unitaries:

E(ρ) ≥ E((UA ⊗ UB)ρ(U †
A ⊗ U †

B))

≥ E((U−1
A ⊗ U−1

B )(UA ⊗ UB)ρ(U †
A ⊗ U †

B)(U−1
A

† ⊗ U−1
B

†
))

= E(ρ) .

Entanglement measures
Entanglement measures are entanglement monotones that fulfill additional re-
quirements. Among them can be [50, 51]:

• E(ρsep) = 0
This can always be defined for any entanglement monotone.

• Subadditivity: E(ρ1 ⊗ ρ2) ≤ E(ρ1) + E(ρ2)

• Additivity: E(ρ1 ⊗ ρ2) = E(ρ1) + E(ρ2)
Additivity is particularly important for the interpretation of entanglement
as a resource. Thinking of the resource energy, it is clear that the energy
of two systems is given by the sum of the energies of each system. So any
measure of a resource has to be additive in the above sense.

• Convexity: E(p · ρ1 + (1 − p) · ρ2) ≤ p · E(ρ1) + (1 − p) · E(ρ2)
Convexity is motivated by the intuition that the amount of entanglement
of a mixture should never exceed the average amount of entanglement of
the individual states.

4.1.2 Pure bipartite states

We are now in a position to derive a first entanglement measure, the entropy of
entanglement, for pure bipartite states. For such states an extensive entangle-
ment theory exists mainly because all of these states can be written in a special
form, the Schmidt decomposition, and then their entanglement properties can
be compared by means of the majorization criterion. Looking at only a single
copy of a state, single-copy entanglement, this will lead to a partial order on
the set of all entangled states. However, allowing for infinitely many copies of a
state, asymptotic entanglement, will facilitate a total order.

Separability of pure bipartite states
A pure bipartite state |ψ〉 is separable iff there exist |φ1〉 and |φ2〉 such that

|ψ〉 = |φ1〉 ⊗ |φ2〉 .

Otherwise |ψ〉 is entangled.
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Separability of pure bipartite states - Examples

• Is the state |ψ〉 = 1√
2
(|00〉 + |01〉) entangled?

No, |ψ〉 is separable:

|ψ〉 = |0〉 ⊗ 1√
2
(|0〉 + |1〉) .

• Is the state |ψ〉 =
√

2
3 |00〉 + 1√

3
|11〉 entangled?

Yes, |ψ〉 is not separable.

Schmidt decomposition

Having the last example in mind, how can we be sure that |ψ〉 =
√

2
3 |00〉+ 1√

3
|11〉

is not separable? The reason is its special form, it is already Schmidt decom-
posed. Remember that entanglement monotones have to be invariant under
local unitaries, formalizing the intuitively clear requirement that entanglement
should not depend on the local basis choice. Hence we can apply a unitary U1 to
the left qubit and a unitary U2 to the right qubit without changing the amount
of entanglement in |ψ〉, i.e.

|ψ′〉 =

√

2

3
U1|0〉 ⊗ U2|0〉 +

1√
3
U1|1〉 ⊗ U2|1〉

has the same entanglement as |ψ〉.
Consider a general state of two qubits,

|ψ〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉 ,

and take a look at the coefficient matrix

A =

(

a00 a01

a10 a11

)

.

For a separable state we can find two unitaries U1 and U2 such that the new
coefficient matrix A′ has only one diagonal entry a′00 different from zero. If you

now think of the above |ψ〉 =
√

2
3 |00〉 + 1√

3
|11〉 again where the corresponding

coefficient matrix has two diagonal entries it should be clear that no unitaries
U1 and U2 reducing A to one nonvanishing entry can be found. We conclude
that the diagonal form of the coefficient matrix A allows to detect entangled
states: If it has only one nonvanishing entry, the state is separable, otherwise
the state is entangled. In fact, the diagonal form can be obtained easily by a
singular value decomposition and this is then called the Schmidt decomposition
[30].

Because of its fundamental importance for pure bipartite entanglement and
because of its relevance for indistinguishable particles, we want to derive the
singular value decomposition of an arbitrary matrix at this point [42].
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Theorem: For any general matrix A of dimension m × n, with m ≤ n, there
exist unitary matrices U and V and a real positive semidefinite diagonal matrix
D such that

A = UDV † .

Proof : A†A is hermitian, since (A†A)† = A†A, and positive semidefinite, be-
cause

~x†A†A~x = ||A~x|| ≥ 0 ∀~x .

But then there exists a unitary V that diagonalizes A†A to a real positive
semidefinite matrix S = V †A†AV . We define

S =







s21
s22

. . .






=: D2 ,

and now AV = UD = (s1 ~u1 s2 ~u2 . . .) with a unitary U gives us A = UDV †.
This ends the proof.

Note that the singular values sj are uniquely determined by A and the
unitaries U and V are not. The singular values of A are therefore the square
roots of the eigenvalues of AA† = UD2U † or of A†A = V D2V †. In fact, AA†

contains the coefficients of the reduced density matrix of system A,

ρA = trB(|ψ〉〈ψ|) = trB(
∑

i,j,k,l

aija
∗
kl|iAjB〉〈kAlB|)

=
∑

x

∑

i,j,k,l

aija
∗
kl|iA〉〈xB|jB〉〈kA|〈lB|xB〉 =

∑

x,i,k

aixa
∗
kx|iA〉〈kA|

=
∑

x,i,k

aixa
†
xk|iA〉〈kA| ,

and A†A contains the coefficients of the reduced density matrix of system B,

ρB = trA(|ψ〉〈ψ|) = trA(
∑

i,j,k,l

aija
∗
kl|iAjB〉〈kAlB|)

=
∑

x

∑

i,j,k,l

aija
∗
kl〈xA|iA〉|jB〉〈kA|xA〉〈lB| =

∑

x,j,l

axja
∗
xl|jB〉〈lB|

=
∑

x,j,l

a†lxaxj |jB〈〉lB| .

We can now continue the above discussion on a more general footing. An
arbitrary pure bipartite state |ψ〉 can be written as:

|ψ〉 =
∑

j,k

ajk|j〉|k〉 ,

where the two quantum systems may have different dimensions and so j shall
run from 1 to m, k shall run from 1 to n and m ≤ n. Now consider the singular
value decomposition of the coefficient matrix A = (ajk):

A = UTDV ,
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where U and V are unitaries and D is diagonal with nonnegative real entries,

ajk =
∑

i

uTjidiivik

=
∑

i

uijdiivik .

As we have seen, such a singular value decomposition exists for any arbitrary
rectangular matrix. Then our |ψ〉 becomes:

|ψ〉 =
∑

i,j,k

uijdiivik|j〉|k〉

=
∑

i

dii(
∑

j

uij |j〉)(
∑

k

vik|k〉)

=:
∑

i

√

λi|i〉|i〉 .

We conclude that for every pure bipartite state |ψ〉 there exists a decomposition

|ψ〉 =
∑

i

√

λi|i〉|i〉

and it is called the Schmidt decomposition.
The coefficients

√
λi are termed Schmidt coefficients. We have shown above

that the squared Schmidt coefficients are the eigenvalues of the reduced density
matrices

ρA = trB(|ψ〉〈ψ|)
ρB = trA(|ψ〉〈ψ|)

and they fulfill
∑

i

λi = 1

due to the normalization of the state under consideration. Because every entan-
glement monotone is invariant under local unitaries, we can restrict ourselves to
Schmidt decomposed states. Obviously a pure bipartite state |ψ〉 is separable
iff it has only one nonvanishing Schmidt coefficient.

Pure bipartite states, separability and Schmidt decomposition of in-
distinguishable particles
The wave function of two indistinguishable particles is either symmetrized in
the case of bosons or antisymmetrized in the case of fermions [80]. This means
that the corresponding coefficient matrix A = (ajk) of the total quantum state

|ψ〉 =
∑

j,k

ajk|j〉|k〉

is symmetric for bosons and antisymmetric for fermions. It was shown by Schlie-

mann et al. [52] that if A is a n×n-dimensional complex antisymmetric matrix
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there exists a decomposition A = UDUT of A where D is block diagonal with
m ≤ n

2 blocks of the form

dj =

(

0 zj
−zj 0

)

.

and zero entries everywhere else. In general the zj are complex. This decom-
position was then interpreted as the Schmidt decomposition for indistinguish-
able fermions and Schliemann et al. decided to call a state entangled if m > 1.
Paskauskas and You [56] thereupon derived the analogous decomposition for the
coefficient matrix of two bosons. They proved that if A is a n× n-dimensional
complex symmetric matrix there exists a decomposition A = UDUT of A where
D is diagonal with m ≤ n real nonnegative entries dj and zero entries every-
where else. These entries dj were then considered to be the Schmidt coefficients
of the quantum state of two indistinguishable bosons and Paskauskas and You

defined a state to be entangled if m > 1.
It is interesting to start from a separable state of two distinguishable par-

ticles, (anti-)symmetrize it and look at the above decompositions. We did this
calculation for arbitrary nonorthogonal initial states |φ〉 and |χ〉 and because it
was rather lengthy we just want to report the results.

In the case of bosons the symmetrized total quantum state reads

|ψ〉 =
1√
2
(|φ〉|χ〉 + |φ〉|χ〉)

and it turns out that the above Schmidt decomposition for two indistinguishable
bosons yields m ≤ 2 Schmidt coefficients

λ1,2 =
1

2
± |〈φ|χ〉|

|〈φ|χ〉|2 + 1
.

Obviously we have only m = 1 Schmidt coefficient if |φ〉 = |χ〉. The more
orthogonal |φ〉 and |χ〉 are to each other the bigger is the second Schmidt coef-
ficient. If |φ〉 and |χ〉 are completely orthogonal, i.e. 〈φ|χ〉 = 0, we have m = 2
equal Schmidt coefficients.

In the case of fermions the antisymmetrized total quantum state reads

|ψ〉 =
1√
2
(|φ〉|χ〉 − |φ〉|χ〉)

and the nonorthogonal part of |φ〉 and |χ〉 directly cancels out. That is the
reason why the above Schmidt decomposition for two indistinguishable fermions
always only gives m = 1 nonvanishing block matrix

d1 =

(

0 1
2

−1
2 0

)

.

We conclude that if we define separability for indistinguishable particles by
looking at the corresponding wave function of distinguishable particles, then we
would call a fermionic state entangled if there are m > 1 nonvanishing block
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matrices in the Schmidt decomposition for indistinguishable fermions and this
is exactly the result of Schliemann et al.. And we would call a bosonic state
entangled if there are m > 2 nonvanishing Schmidt coefficients in the Schmidt
decomposition for indistinguishable bosons and this is different from the result
of Paskauskas and You which assign entanglement already for m > 1 nonvan-
ishing Schmidt coefficients. However, in the second section of this chapter we
will define separability of indistinguishable bosons in a slightly different way.

Maximally entangled states
A m×n-dimensional state |ψ〉, where m ≤ n, is maximally entangled iff it has m

equivalent Schmidt coefficients
√

1
m

. Maximally entangled states allow directly

for:

• Superdense coding [54]

• Quantum teleportation [55]

Maximally entangled states - Example
The 2 × 2-dimensional maximally entangled states

|Φ+〉 =
1√
2
(|00〉 + |11〉)

|Φ−〉 =
1√
2
(|00〉 − |11〉)

|Ψ+〉 =
1√
2
(|01〉 + |10〉)

|Ψ−〉 =
1√
2
(|01〉 − |10〉)

are called Bell states. As we already saw in the introduction to this thesis, the
Bell states maximally violate Bell’s inequalities. This should be a first hint why
they are called maximally entangled, but we will come back to the notion of
maximally entangled states in more detail later.

State transformations
State transformations are LOCC protocols. One differentiates

• Single-copy entanglement [82, 83]:
Where do I get from a single entangled state?

• Asymptotic entanglement [84]:
Where do I get from a huge number of copies of an entangled state?

and respectively

• Deterministic state transformations [85]:
Where do I get with certainty?

• Probabilistic state transformations [86, 87]:
Where do I get probabilistically?
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Single-copy entanglement - Example
We want to introduce single-copy entanglement with an example. Assume Alice
and Bob share a Bell state

|ψ〉 =
1√
2
(|00〉 + |11〉) .

They use the following LOCC protocol:

1. Alice measures with

M1 =

(

cos(Θ) 0
0 sin(Θ)

)

M2 =

(

sin(Θ) 0
0 cos(Θ)

)

on her qubit.

2. If she obtains result 1 the state has become

|ψ1〉 = cos(Θ)|00〉 + sin(Θ)|11〉 .

3. If she measures result 2 the state is

|ψ2〉 = sin(Θ)|00〉 + cos(Θ)|11〉

and A applies a NOT gate resulting in

|ψ2〉 = sin(Θ)|10〉 + cos(Θ)|01〉 .

4. A now calls B and tells him her measurement result.

5. If the measurement result was 1 then B does nothing.

6. If it was 2 however B applies a NOT gate to get

|ψ2〉 = sin(Θ)|11〉 + cos(Θ)|00〉 .

Finally A and B have transformed the Bell state

|ψ〉 =
1√
2
(|00〉 + |11〉)

into

|ψ〉 = cos(Θ)|00〉 + sin(Θ)|11〉

by LOCC deterministically.
Although we have only shown it for 2× 2-dimensional systems it holds gen-

erally that from a maximally entangled state one can reach every other state by
LOCC deterministically [85]. Keep in mind that we are searching for an order
on the set of all states making it possible to say that one state is more or less
entangled than another state for all states. This order is achieved by defining a
state |ψ〉 to be more entangled than a state |φ〉 iff there exists a deterministic
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LOCC protocol that transforms |ψ〉 to |φ〉 [87, 88]. This should justify the no-
tion of a maximally entangled state.

Majorization criterion
Let |ψ〉 and |φ〉 be arbitrary pure bipartite states and let ~λψ and ~λφ denote
vectors of the respective eigenvalues of the reduced density matrices. Then |ψ〉
can be transformed to |φ〉 by LOCC deterministically iff

~λψ ≺ ~λφ .

Here ~x ≺ ~y, one says ~x is majorized by ~y, iff

k
∑

j=1

x↓j ≤
k
∑

j=1

y↓j ∀k

and the ↓ means that the elements of the vector are ordered decreasingly. The
majorization criterion was derived by Nielsen [85].

Majorization criterion - Examples

• In accordance with the above example we have:

(

0.5
0.5

)

≺
(

cos2(Θ)
sin2(Θ)

)

.

• What about








0.5
0.5
0
0









and









0.8
0.1
0.05
0.05









?

They are incomparable.

The last example points out the main problem of ordering entangled states by
looking at single copies only, namely that there exist states which can not be
transformed into each other by LOCC deterministically and hence are incompa-
rable [33]. So the majorization criterion only leads to a partial order on the set
of entangled states. We will later see that taking infinitely many copies of the
states we wish to compare will always enable us to transform them into each
other and therefore gives a total order.

Single-copy entanglement
Eisert and Cramer proposed the following measure for single-copy entanglement
[83]:

E(|ψ〉) = log(⌊(λ↓1)−1⌋) .

Their idea is to take only the largest Schmidt coefficient into account. If it is
less than 1

m
the state can be transformed into a maximally entangled state with
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Schmidt coefficients 1
m

due to the majorization criterion. This measure was
further studied in [89].

Probabilistic state transformations - Example
We will discuss probabilistic state transformations only in an example here.
In the later subsection on pure multipartite states we will go into more detail
and find out that probabilistic state transformations permit a classification of
entangled states.

We assume a state

|ψ〉 =
√

λ1|00〉 +
√

λ2|11〉

and apply a quantum operation

M1 =

( √

λ2
λ1

0

0 1

)

M2 =

( √

1 − λ2
λ1

0

0 0

)

to the first qubit. Then with probabilitiy 2λ2 we will measure 1 and get a
maximally entangled state

|ψ1〉 =
1√
2
(|00〉 + |11〉) ,

while with probability λ1 − λ2 we will measure 2 and obtain a separable state

|ψ2〉 = |00〉 .

This is an example of entanglement gambling: We bet our state and either win
a maximally entangled state or loose all the entanglement.

Asymptotic entanglement - Example
With the majorization criterion it is not possible to compare the following two
states:

|ψ〉 =
1√
2
(|00〉 + |11〉)

|φ〉 =
√

0.8|00〉 +
√

0.1|11〉 +
√

0.05|22〉 +
√

0.05|33〉 .

Nevertheless, one can compare |φ〉 with two copies of |ψ〉,

|ψ〉⊗2 =
1

2
(|0000〉 + |0101〉 + |1010〉 + |1111〉)

=:
1

2
(|00〉 + |11〉 + |22〉 + |33〉) ,

and








0.25
0.25
0.25
0.25









≺









0.8
0.1
0.05
0.05








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tells us that we can transform two copies of |ψ〉 into one copy of |φ〉 by LOCC
deterministically.

Asymptotic entanglement
Asymptotic entanglement determines how m copies of an arbitrary state |ψ〉
can be transformed to n copies of the maximally entangled state |β〉 and the
other way around by LOCC in the limit m,n → ∞ and defines the amount of
entanglement of |ψ〉 to be the rate

r =
n

m
.

The motivation for this measure is the agreement on a standard unit of en-
tanglement [50, 30], the maximally entangled state. Then the rate r is exactly
the quantity under consideration in standard units. Think of measuring an un-
known length x with a standard meter s and assume You have to lay m bars of
length x at another to get the same length as when You lay n bars of length s
at another, i.e.

mx = ns =⇒ x =
n

m
s .

The following two measures canonically arise from the above definition of asymp-
totic entanglement [33]:

• Distillable entanglement quantifies the maximal number n of maximally
entangled states that one can distill from m copies of |ψ〉 in the asymptotic
limit m,n→ ∞.

• Entanglement cost quantifies the minimal number n of maximally entan-
gled states that one needs to obtain m copies of |ψ〉 in the asymptotic
limit m,n→ ∞.

Entropy of entanglement
m copies of an arbitrary state |ψ〉 can be transformed to r ·m copies of the maxi-
mally entangled state |β〉 revertibly by LOCC in the asymptotic limit m,n→ ∞
and

r = EoE(|ψ〉) ,

where

EoE(|ψ〉) := −
∑

j

λj log(λj)

is called the entropy of entanglement. This was discovered by Bennett et al.

[84]. For pure bipartite states distillable entanglement and entanglement cost
are equal to each other and they equal the entropy of entanglement.

The proof of the entropy of entanglement is important for the discussion of
indistinguishable particles. That is the reason why we present it in Appendix B.
As shown there the entropy of entanglement indeed is an entanglement mono-
tone. Moreover the entropy of entanglement is additive [50] and thus it is a
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good entanglement measure.

Entropy of entanglement - Examples

• What is the entropy of entanglement of the Bell-state |β〉 = 1√
2
(|00 >

+|11 >)?

EoE(|β〉) = log(2) .

• What is the entropy of entanglement of any maximally entangled state |β〉
in the dimension m× n where m ≤ n?

EoE(|β〉) = log(m) .

Entropy of entanglement for indistinguishable particles
The asymptotic interpretation of the entropy of entanglement does not make
sense for indistinguishable particles. If we have asymptotically, i.e. infinitely,
many copies of a quantum state of indistinguishable particles the total wave
function has to be (anti-)symmetrized and this makes it impossible to discuss
asymptotic entanglement for indistinguishable particles on the same lines as we
did above for distinguishable particles.

Nevertheless we can use the entropy of entanglement as an entanglement
measure for indistinguishable particles. We just have to put the Schmidt coeffi-
cients, that come from the above explained Schmidt decomposition of indistin-
guishable particles, into the formula of the entropy of entanglement. However,
we have to be aware that the asymptotic interpretation underlying the entropy
of entanglement does not hold for indistinguishable particles.

We are now interested in how the entropy of entanglement changes if one
(anti-)symmetrizes the quantum state under consideration. We want to look at
an example of two bosons which are initially distinguishable and in the quantum
state

|ψ〉 = α|00〉 + β|11〉 + γ|22〉 .

Because the two bosons are distinguishable this state actually has to be rewritten
before we can symmetrize it:

|ψ〉dist. = α|03〉 + β|14〉 + γ|25〉 .

We could assume that the bosons are distinguishable because they are spatially
separated. Then the new quantum numbers 0 to 5 additionally specify the
position of a boson. The entropy of entanglement for this quantum state of
distinguishable bosons is

EoE(|ψ〉dist.) = −|α|2 log(|α|2) − |β|2 log(|β|2) − |γ|2 log(|γ|2) .
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Let us now symmetrize the state:

|ψ〉indist. =
α√
2
(|03〉 + |30〉) +

β√
2
(|14〉 + |41〉) +

γ√
2
(|25〉 + |52〉) .

Now the entropy of entanglement for this quantum state of indistinguishable
bosons reads

EoE(|ψ〉indist.) = −|α|2
2

log(
|α|2
2

) − |α|2
2

log(
|α|2
2

) − |β|2
2

log(
|β|2
2

) −
|β|2
2

log(
|β|2
2

) − |γ|2
2

log(
|γ|2
2

) − |γ|2
2

log(
|γ|2
2

)

= −|α|2 log(
|α|2
2

) − |β|2 log(
|β|2
2

) − |γ|2 log(
|γ|2
2

)

= −|α|2 log(|α|2) − |β|2 log(|β|2) − |γ|2 log(|γ|2) +

(|α|2 + |β|2 + |γ|2) log(2)

= −|α|2 log(|α|2) − |β|2 log(|β|2) − |γ|2 log(|γ|2) + log(2)

= EoE(|ψdist.〉) + log(2) .

In the derivation we have used that the quantum state is normalized, |α|2 +
|β|2 + |γ|2 = 1. It is remarkable that the symmetrization enters into the entropy
of entanglement only as an additional constant log(2). It is very easy to show
that this holds in general for all quantum states of indistinguishable bosons and
that the same is true for fermions where the antisymmetrization also enters into
the entropy of entanglement as an additional constant log(2).

4.1.3 Mixed bipartite states of lowest dimension

In the previous chapter we have seen that for pure bipartite states in any dimen-
sion there exists an entanglement measure, the entropy of entanglement, that
has a convincing interpretation and can be computed in a simple manner at the
same time. In this chapter we will learn that for mixed states the situation is
very different.

The generalization of the entropy of entanglement to mixed states is called
entanglement of formation and can be calculated algebraically only for systems
of dimension 2×2. In this case the entanglement of formation can be expressed
in terms of the so-called concurrence and because it depends monotonously on
the concurrence the latter is often used as an entanglement measure on its own.

The theory of positive maps leads to a separability criterion, the positive
partial transpose, that is necessary and sufficient for systems of dimension up
to 2× 3. For higher dimensions this criterion turns out to be only necessary for
separability. This criterion can be evaluated straighforwardly via an entangle-
ment measure called negativity.

Mixed states
Mixed states appear naturally in experiments, e.g. due to imperfect state prepa-
ration or coupling to an environment [30]. They are described by a density
operator ρ with the following properties:
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• ρ is positive.

• tr(ρ) = 1 .

In practice, mixed states show up if one traces out part of the quantum system
under consideration. E.g. in the above treatment of pure bipartite states we
traced out the second quantum system B to obtain the reduced density matrix
ρA of the first quantum system A. This reduced density matrix is a product
state ρA = |ψA〉〈ψA| if the two particles were in a separable quantum state
before, and it is a mixed state ρA 6= |ψA〉〈ψA| if the two particles were in an
entangled quantum state before. The fundamentally important characteristic
of the reduced density matrix ρA is that it completely describes the properties
of system A if nothing is known about system B [30]. The tracing out over
quantum system B corresponds to averaging over all possible quantum states
that B could be in.

The mapping from the set of density operators to the set of pure state
ensembles is not bijective. Two pure state ensembles {pj , |ψj〉} and {qj , |φj〉}
generate the same density operator iff there exists a unitary matrix U such that

√
pj |ψj〉 =

∑

k

ujk
√
qk|φk〉 .

Mixed states - Examples

• Consider

|φ1〉 =

√

3

4
|ψ1〉 +

√

1

4
|ψ2〉

|φ2〉 =

√

3

4
|ψ1〉 −

√

1

4
|ψ2〉 ,

then

ρ =
3

4
|ψ1〉〈ψ1| +

1

4
|ψ2〉〈ψ2|

=
1

2
|φ1〉〈φ1| +

1

2
|φ2〉〈φ2| .

• The density operator

ρ =
1

12









9 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









fulfills

ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2|
= q1|φ1〉〈φ1| + q2|φ2〉〈φ2| .
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Here p1 = 1
3 , p2 = 2

3 ,

|ψ1〉 =
1

2
√

3
(3|00〉 + |01〉 + |10〉 + |11〉)

|ψ2〉 =
1

2
√

3
(3|00〉 − |01〉 − |10〉 − |11〉)

and q1 = 2
3 , q2 = 1

3 ,

|φ1〉 = |00〉
|φ2〉 =

1

2
(|00〉 + |01〉 + |10〉 + |11〉) .

Separability of mixed bipartite states
A mixed bipartite state ρ is called a product state iff there exist ρ1 and ρ2 such
that

ρ = ρ1 ⊗ ρ2 .

It is called separable iff there exists a decomposition

ρ =
∑

j

pjρ
j
1 ⊗ ρj2 .

Otherwise it is entangled.

Mixed states and separability of indistinguishable particles
In quantum many-body systems one is often interested in configurations with
big particle numbers, e.g. in the asymptotic limit or in order to be close to
the experiment. As we will soon see in the following subsections there ex-
ists no unique measure of entanglement even for pure multipartite states of
distinguishable particles. In fact, the treatment of pure four-partite states of
distinguishable particles [90] is already so involved that we believe it is hopeless
to follow these lines for asymptotically many particles. So what one does in
quantum many-body systems of distinguishable particles is that one traces out
all but two quantum systems, i.e. particles, A and B. This results in a mixed
bipartite state ρAB for which the concurrence or the negativity can be used as
entanglement measures, as we will see in this subsection.

In quantum many-body systems of indistinguishable particles it is not clear
how to perform the partial trace over all but two particles. E.g. the Fock state
of three indistinguishable bosons

|ψ〉F = |210〉

is in the particle picture given by

|ψ〉p =
1√
3
(|0〉1|0〉2|1〉3 + |0〉1|1〉2|0〉3 + |1〉1|0〉2|0〉3) .
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Of course |ψ〉p is a symmetrized state because the bosons are indistinguishable
and we included mathematically necessary indices 1, 2 and 3. In order to obtain
the reduced density matrix ρAB of two bosons we could now just trace over the
third boson. But in reality the three bosons are indistinguishable and so we can
not address one particular boson and trace it out. What we can do, nevertheless,
is trace over index 3 to obtain

ρAB =
1

3
(|0〉1|0〉2〈0|1〈0|2) +

2

3
|Ψ+〉〈Ψ+|

where

|Ψ+〉 =
1√
2
(|0〉1|1〉2 + |1〉1|0〉2)

formally is a maximally entangled Bell state. But we have to keep in mind that
this partial trace still needs a motivation.

In the third section of this chapter we will see that a completely different
approach for obtaining the two-particle reduced density matrix ρAB of indistin-
guishable bosons will lead to exactly that trace over all but two indices in the
particle picture.

Convex roof
Convex roof constructions afford to infer entanglement properties for mixed
states from pure state entanglement monotones.

Let E be a pure state entanglement monotone. Then

E = inf{
∑

j

pjE(|ψj〉) : ρ =
∑

j

pj |ψj〉〈ψj |}

is its convex roof. It can be shown that then E is an entanglement monotone
too. The convex roof construction to the entropy of entanglement is called
entanglement of formation [33] and abbreviated EoF :

EoF (ρ) = inf{
∑

j

pjEoE(|ψj〉) : ρ =
∑

j

pj |ψj〉〈ψj |}

We want to remark that for a long time the entanglement of formation was
believed to be additive and only recently it has been shown that this is not the
case [91].

Entanglement of formation
For states of dimension 2 × 2 the entanglement of formation can be expressed
algebraically:

EoF (ρ) = −x(ρ) log(x(ρ)) − (1 − x(ρ)) log(1 − x(ρ)) ,

where

x(ρ) :=
1 +

√

1 − C2(ρ)

2
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and C(ρ) is called the concurrence. This relation was found by Wootters [92].

Concurrence
It can be shown that the entanglement of formation depends monotonously on
the concurrence. Therefore the concurrence is used as an entanglement measure
on its own, being zero for a separable state and one for a maximally entangled
state. However, we have not specified yet what the concurrence actually is.

For a pure bipartite state |ψ〉 of dimension 2 × 2 we define

|ψ̃〉 := σy ⊗ σy|ψ∗〉 ,

where |ψ∗〉 denotes the complex conjugate of |ψ〉, and the concurrence

C(|ψ〉) := |〈ψ|ψ̃〉| .

For a mixed bipartite state ρ of dimension 2 × 2 we define

ρ̃ := σy ⊗ σyρ
∗σy ⊗ σy ,

where ρ∗ is the complex conjugate of ρ, and the concurrence

C(ρ) := max{0, λ1 − λ2 − λ3 − λ4}

where the λj are the square roots of the eigenvalues of ρρ̃ in decreasing order.

Concurrence - Examples

• What is the concurrence of |ψ〉 = |01〉?

C(|ψ〉) = 0 .

• What is the concurrence of |ψ〉 = 1√
2
(|00〉 + |11〉)?

C(|ψ〉) = 1 .

• What is the concurrence of

|ψ〉 =
√

λ1|00〉 +
√

λ2|11〉 ?

C(|ψ〉) = 2
√

λ1λ2 .

• What is the concurrence of

ρ =
1

12









9 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









?

C(ρ) = 0 .
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After this brief discussion of the concurrence we want to address the negativ-
ity now. The negativity as an entanglement measure follows from a completely
different approach than above.

All quantum operations that happen in nature are completely positive maps
ΛCP [51]. That means that they turn a positive operator ρ into a positive oper-
ator ρ and the same is true for the trivially extended map ΛCP ⊗I where I is the
one-operator in any dimension. The motivation for this extension is that the
system under consideration should always be embeddable into any environment
and still the quantum operation should map ρ onto a valid positive ρ′. Of course
there exist maps that are positive but not completely positive. One of them is
the partial transpose, which we will explain in more detail now.

Positive maps
A linear map

Λ : D → D
acting on the space of density operators is called positive iff:

∀ρ ≥ 0 : Λ(ρ) ≥ 0 .

It is called completely positive iff:

∀ρ ≥ 0 : (Λ ⊗ I)(ρ) ≥ 0 .

For separable states we make the following observations:

• For a separable state ρsep every positive map is completely positive:

(Λ ⊗ I)(ρsep) =
∑

j

pjΛ(ρj1) ⊗ ρj2

≥ 0 .

• One can also show that if every positive map is completely positive, then
ρ is separable [50].

Positive partial transpose (PPT) criterion
A density operator ρ of dimension 2 × 2 and 2 × 3 is separable iff the partial
transposition

ρPT := (T ⊗ I)(ρ)

is positive. The PPT criterion was discovered by Peres [93] and Horodecki et

al. [94] and is also known as the Peres-Horodecki criterion.
Let us sketch a short proof of the PPT criterion:

• If ρ is separable, then

ρPT =
∑

j

pjT (ρj1) ⊗ ρj2

≥ 0

and hence the partial transposition is positive.
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• We now assume that the partial transposition is positive. Any positive
map on systems of dimension 2 × 2 and 2 × 3 can be written as

Λ = Λ1
CP + Λ2

CP ◦ T

such that

(Λ ⊗ I)(ρ) = (Λ1
CP ⊗ I)(ρ) + (Λ2

CP ⊗ I) ◦ (T ⊗ I)(ρ)

and thus every positive map is completely positive.

We remark that the proof relies heavily on the knowledge of how positive maps
in dimension 2 × 2 and 2 × 3 look like [94]. Moreover we infer from the proof
that for density matrices of dimension bigger than 2 × 2 and 2 × 3 the PPT
criterion is still necessary for separability. This is because a separable state of
any dimension must have a positive partial transpose. But equivalently this
gives us a sufficient criterion for entanglement because if the PPT criterion is
violated, i.e. ρPT has negative eigenvalues, the state can not be separable.

Negativity
The negativity is defined as

N (ρ) =
||ρPT || − 1

2

=
∑

j

|λ−j | ,

where the λ−j denote the negative eigenvalues of ρPT . The logarithmic negativity
is given by

NL(ρ) = log(||ρPT ||) .

Here

||ρ|| :=
√

tr(ρ2)

is called trace norm of ρ and it is equal to the sum of absolute values of the
eigenvalues of ρ:

||ρPT || = tr(ρPT ) + 2
∑

j

|λ−j |

= 1 + 2
∑

j

|λ−j | .

Negativity and logarithmic negativity were introduced by Vidal in [95] where
he proved that the negativity is an entanglement monotone and that the loga-
rithmic negativity is additive.

We note that the negativity only detects entanglement, by being nonzero
for entangled states, but its exact value does not at all allow for an interpre-
tation of the amount of entanglement present. In particular, a quantum state



88 Quantum entanglement in the Bose-Hubbard model

having higher negativity than another quantum state can not be called more
entangled. This is completely different from the concurrence, where by plugging
the concurrence into the formula of the entanglement of formation one gets a
reasonable interpretation in terms of the entropy of entanglement. Therefore a
quantum state having higher concurrence than another quantum state can be
called more entangled, because it allows to extract more maximally entangled
states |β〉 in the asymptotic limit.

Negativity - Examples

• What is the negativity of |ψ〉 = |01〉?

N (|ψ〉) = 0 .

• What is the negativity of |ψ〉 = 1√
2
(|00〉 + |11〉)?

N (|ψ〉) =
1

2
.

• What is the negativity of

|ψ〉 =
√

λ1|00〉 +
√

λ2|11〉 ?

N (|ψ〉) =
√

λ1λ2 .

• What is the negativity of

ρ =
1

12









9 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









?

N (ρ) = 0 .

As can be seen from the examples for pure states the concurrence and the
negativity differ only by a factor of 2.

4.1.4 Pure multipartite states

Pure multipartite states can be ordered by means of probabilistic state transfor-
mations. The latter are also called stochastic state transformations or SLOCC.
As an example we will discuss pure states of three qubits where the so-called 3-
tangle, an entanglement monotone measuring genuine tripartite entanglement,
will turn out to be of importance.
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Separability of pure multipartite states
A pure multipartite state |ψ〉 of N parties is separable iff there exist |φ1〉, |φ2〉,
. . . , |φN 〉 such that

|ψ〉 = |φ1〉 ⊗ |φ2〉 ⊗ . . .⊗ |φN 〉.

Otherwise |ψ〉 is entangled.
A pure multipartite state |ψ〉 of N parties is called k-separable, k ≤ N , iff

there exist |φ1〉, |φ2〉, . . . , |φk〉 such that

|ψ〉 = |φ1〉 ⊗ |φ2〉 ⊗ . . .⊗ |φk〉.

Reducibilities and equivalences
We want to adopt the terminology of [87].

• Reducibility formalizes general state transformations within LOCC.

• Equivalences are reversible state transformations within LOCC.

• From now on deterministic state transformations are called exact.

• Probabilistic state transformations are called stochastic.

• Probabilistic LOCC protocols are abbreviated SLOCC.

It can be shown that arbitrary states |ψ〉 and |φ〉 are exactly equivalent iff they
can be transformed into each other by local unitaries. But then an ordering of
entangled states under exact equivalence implies an infinity of parameters. E.g.
two pure bipartite states are exactly equivalent iff they have the same Schmidt
coefficients. We believe that this criterion is too strict.

It turns out that arbitrary states |ψ〉 and |φ〉 are stochastically equivalent iff
they can be transformed into each other by invertible local operators (ILO) [88].
Under this perspective two pure bipartite states are stochastically equivalent iff
the have the same Schmidt rank, i.e. the same number of Schmidt coefficients.

Classification of entangled states
In order to get a reasonable classification of entangled states we agree on the
following two axioms of Dür et al. [88]:

• Arbitrary states |ψ〉 and |φ〉 are termed equivalent iff they are stochasti-
cally equivalent.

• |ψ〉 is called more entangled than |φ〉 iff |φ〉 can be created from |ψ〉 by
using noninvertible local operations.

The second axiom allows for a hierarchy on all entangled states.
As an example consider pure bipartite states of dimension m × n, m ≤ n.

For each Schmidt rank we have a class of equivalent entangled states, giving m
classes and because noninvertible local operations can lower the Schmidt rank
a class is more entangled if it belongs to a bigger Schmidt rank. In particular,
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the most entangled states have Schmidt rank m and the least entangled states
have Schmidt rank 1. Of course the latter are actually separable.

Let us now apply this formalism to the first nontrivial case, i.e. pure states
of three qubits.

Tripartite states
For tripartite states of qubits there exist six classes [88]:

• Class A-B-C: Separable states

rank(ρA) = rank(ρB) = rank(ρC) = 1 ,

representative:

|ψA−B−C〉 = |0〉|0〉|0〉 .

• Class A-BC: Bipartite entanglement

rank(ρA) = 1

rank(ρB) = 2

rank(ρC) = 2 ,

representative:

|ψA−BC〉 =
1√
2
|0〉(|0〉|0〉 + |1〉|1〉) .

• Class B-AC: Bipartite entanglement

• Class C-AB: Bipartite entanglement

• Class ABC: Tripartite |GHZ〉-entanglement

rank(ρA) = rank(ρB) = rank(ρC) = 2 ,

representative:

|GHZ〉 =
1√
2
(|0〉|0〉|0〉 + |1〉|1〉|1〉) .

• Class ABC: Tripartite |W 〉-entanglement

rank(ρA) = rank(ρB) = rank(ρC) = 2 ,

representative:

|W 〉 =
1√
3
(|0〉|0〉|1〉 + |0〉|1〉|0〉 + |1〉|0〉|0〉) .
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Here ρX denotes the reduced density of quantum system X which is obtained
by tracing out all quantum systems other than quantum system X.

It is remarkable that by no means a state belonging to the |GHZ〉-class can
be transformed to a state belonging to the |W 〉-class and vice versa. However,
from any of the two classes of tripartite entanglement we can get to the first
four classes of bipartite entanglement and separable states by noninvertible lo-
cal operations, thereby obtaining a complete hierarchy. We note further that
for many reasons the |GHZ〉 state is seen in the literature as the maximally
entangled tripartite state, while it can be shown that the |W 〉 state is the state
that retains the maximal amount of entanglement in several aspects under loss
of one particle [88].

In the following the 3-tangle will enable us to decide if a given state belongs
to the |GHZ〉-class or to the |W 〉-class.

3-tangle
Coffman et al. showed that for a pure tripartite state

C2
AB + C2

AC ≤ C2
A(BC)

and defined

τABC := C2
A(BC) − C2

AB − C2
AC .

The latter quantity is called 3-tangle. It was shown to be an entanglement
monotone [88].

3-tangle - Examples

• What is the 3-tangle of the |W 〉 state?

τ(|W 〉) = 0 .

• What is the 3-tangle of the |GHZ〉 state?

τ(|GHZ〉) = 1 .

In fact, it can be shown [88] that any state belonging to the |W 〉-class has a
vanishing 3-tangle while any state belonging to the |GHZ〉-class has a nonvan-
ishing 3-tangle. So we can distinguish the states with rank(ρA) = rank(ρB) =
rank(ρC) = 2 with the help of the 3-tangle: If it vanishes the state belongs to
the |W 〉-class, otherwise it belongs to the |GHZ〉-class.

|W 〉 and |GHZ〉 for indistinguishable bosons
Here we just want to present the indistinguishable counterparts to the above
|W 〉 and |GHZ〉 states in the bosonic case.

Obviously |W 〉 is given by the Fock state

|W 〉F = |21〉
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because in the particle picture this state reads

|W 〉p =
1√
3
(|0〉|0〉|1〉 + |0〉|1〉|0〉 + |1〉|0〉|0〉) .

However this state of three indistinguishable bosons is argued to be unentangled
because it can be written as a single Fock state [57]. Nevertheless our own
interpretation of quantum correlations between indistinguishable particles in
the third section of this chapter will call this state entangled, just as it is in the
case of distinguishable particles.

The indistinguishable analogon of the |GHZ〉 is given by the Fock state

|GHZ〉F =
1√
2
(|30〉 + |03〉)

because in the particle picture this state reads

|GHZ〉p =
1√
2
(|0〉|0〉|0〉 + |1〉|1〉|1〉) .

In terms of mode entanglement this state is a maximally entangled state, and
this will also be the case with our own measure of quantum correlations between
indistinguishable bosons.

Four-partite states
Verstraete et al. proved that there are 9 different entanglement families un-
der SLOCC for pure four-qubit states [90]. However, already for these pure
four-qubit states the calculations are very involved and we expect that the clas-
sification of the entanglement of higher-partite states can not be done on the
same lines.

4.1.5 Mixed multipartite states

Finally we want to analyze the most general case, i.e. what can be said about
the entanglement of mixed multipartite states. However, there exists a plethora
of measures being more or less practically computable and having a more or less
sensible interpretation [96, 97, 98, 34]. We decided to mainly follow a line lead-
ing to a generalization of the concurrence to arbitrary many subsystems and
dimensions. We will only briefly touch the Θ-concurrence, the I-concurrence
and finally come to an approach introduced by Mintert et al., that has an in-
terpretation for entanglement and can be well approximated numerically.

Separability of mixed multipartite states
A mixed multipartite state ρ of N parties is called a product state iff there exist
ρ1, ρ2, . . . , ρN such that

ρ = ρ1 ⊗ ρ2 ⊗ . . .⊗ ρN .

It is called separable iff there exists a decomposition

ρ =
∑

j

pjρ
j
1 ⊗ ρj2 ⊗ . . .⊗ ρjN .
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Otherwise it is entangled.

Θ-concurrence
An anti-linear operator Θ, i.e.

Θ(α|ψ1〉 + β|ψ2〉) = α∗Θ(|ψ1〉) + β∗Θ(|ψ2〉) ,

that is unitary and an involution, i.e.

Θ−1 = Θ ,

is called a conjugation. The Θ-concurrence [99] is defined in terms of a conju-
gation Θ:

CΘ(|ψ〉) = |〈ψ|Θ|ψ〉| .

Even though the Θ-concurrence reduces to the well-known concurrence for sys-
tems of dimension 2 × 2 and then has a clear meaning for measuring entan-
glement, in arbitrary dimensions this interpretation for entanglement does not
exist.

I-concurrence
The I-concurrence [100] is given by:

CI(|ψ〉) =
√

〈ψ|(I1 ⊗ I2|ψ〉〈ψ|)|ψ〉 ,

where the operators I1 and I2 are determined uniquely by additional require-
ments. The I-concurrence in arbitrary dimensions lacks an interpretation for
entanglement too.

Mintert’s approach
In contrast to the above two examples of generalizations of the concurrence to
higher-dimensional systems Mintert et al. derived a generalization of the con-
currence to higher-dimensional and multipartite systems [101] that additionally
has an interpretation for entanglement. We just want to show here one example
of how Mintert’s concurrence can be applied.

Mintert looks at two copies of the state |ψ〉 and defines

C(|ψ〉) =
√

〈ψ| ⊗ 〈ψ|A|ψ〉 ⊗ |ψ〉

where A is a projector onto the antisymmetric subspace of the first and the
second Hilbert space:

A := 4P−
1 ⊗ P−

2 .

Then two copies of a separable state |ψ〉 = |φ1〉 ⊗ |φ2〉 have the expectation
value

〈ψ|〈ψ|A|ψ〉|ψ〉 = 4〈φ1|〈φ2|〈φ1|〈φ2|P−
1 ⊗ P−

2 |φ1〉|φ2〉|φ1〉|φ2〉
= 4〈φ1|〈φ1|P−

1 |φ1〉|φ1〉 · 〈φ2|〈φ2|P−
2 |φ2〉|φ2〉

= 0 .
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The two copies of an entangled state on the other hand will have a positive
expectation value.

It turns out that Mintert’s approach has an obvious extension to mixed and
multipartite states. Additionally his concurrence can be computed efficiently by
making use of reasonable approximations.

4.1.6 Summary of entanglement theory

• Pure state entanglement is quantified by the entropy of entanglement.

• Concurrence and negativity are the appropriate entanglement measures
for mixed states of dimension 2 × 2 and 2 × 3.

• Pure multipartite states are classifiable for systems comprising up to four
qubits.

• The entanglement of multipartite mixed states of higher dimensions can
only be approximated so far and new theoretical concepts are needed.

4.2 Single-copy vs. asymptotic entanglement

In this very short section we want to report a numerical result that we obtained
concerning the difference between single-copy and asymptotic entanglement.
More precisely, we found numerical evidence that the largest Schmidt coefficient
alone possesses all entanglement information. However, we already want to
emphasize that further studies are needed.

As explained in the above introduction to entanglement theory Eisert and
Cramer used the largest Schmidt coefficient to define a measure for single-copy
entanglement,

E(|ψ〉) = log(⌊(λ↓1)−1⌋) .

If one neglects the floor function one gets a new quantity

SCE(|ψ〉) = log((λ↓1)
−1)

= − log(λ↓1)

that depends continuously on the largest Schmidt coefficient.

We numerically compare this single-copy entanglement measure SCE with
the commonly used asymptotic entanglement measure EoE by analyzing Wan-
nier mode entanglement of two neighbouring modes with the remaining modes in
the ground state of the periodic Bose-Hubbard Hamiltonian in Figure 4.1 and
in a propagated state, which initially is |ψ(t = 0)〉 = |50000〉W , that evolves
with the periodic Bose-Hubbard Hamiltonian to L = 5 = N and J = 1 = U in
Figure 4.2. We chose these two scenarios for our comparison of SCE and EoE
because they represent standard scenarios in entanglement studies. We want to
find out if in these two scenarios SCE and EoE imply the same conclusions.
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Figure 4.1: EoE(u) (left) and SCE(u) (right) for the entanglement between
two neighbouring Wannier modes with the remaining Wannier modes of the
ground state of the periodic Bose-Hubbard Hamiltonian with L = 3 = N (red,
thin line), L = 4 = N (green, thin dashed line), L = 5 = N (blue, thin dash
dotted line), L = 6 = N (violet, thick line) and L = 7 = N (orange, thick
dashed line). Obviously the single-copy entanglement measure SCE and the
asymptotic entanglement measure EoE qualitatively look the same.

We conclude from Figure 4.1 that the entropy of entanglement of the ground
state is high in-between u = 0 and u = 0.8 and quickly drops to zero in-
between u = 0.8 and u = 1. The same is true for the single-copy entanglement.
Even though quantitatively SCE and EoE differ, which they have to since they
are different quantities, qualitatively they imply the same conclusion for the
entanglement properties of the ground state. Their behaviour can be understood
if one keeps in mind that we are looking at Wannier mode entanglement and
for u ∈ [0, 0.8] the ground state is a superposition of many Wannier Fock states,
which is why the entanglement is expected to be high in this region. However
at u = 1 the ground state is a single Wannier Fock state, which is separable,
and therefore the entanglement has to vanish for u ∈ [0.8, 1].

Figure 4.2 shows how the initially separable state |ψ(t = 0)〉 = |50000〉W gets
entangled while it propagates with the periodic Bose-Hubbard Hamiltonian in
the chaotic regime of J = 1 = U . Again SCE and EoE quantitatively differ, as
they have to, but qualitatively allow for the same conclusion. The entanglement
grows quickly at the beginning and then shows irregular behaviour, as we expect
it for the chaotic regime, around a constant value of SCE ≈ 1.0 and EoE ≈ 2.7.

The figures suggest that SCE, the measure for single-copy entanglement,
and EoE, the measure for asymptotic entanglement, qualitatively behave in the
same way. If this was true in general, we could always quantify the entangle-
ment in terms of SCE instead of EoE. This would have two major advantages.
First SCE originates from a single-copy interpretation which is favoured by
experimentalists because the realization of many copies of an entangled state,



96 Quantum entanglement in the Bose-Hubbard model

0 10 20 30 40 50

t

1

2

3

Figure 4.2: EoE(t) (red, thin line) and SCE(t) (green, thin dashed line) for
the entanglement between two neighbouring Wannier modes with the remaining
Wannier modes of the propagated state |ψ(t = 0)〉 = |50000〉W that evolves with
the periodic Bose-Hubbard Hamiltonian to L = 5 = N and J = 1 = U ; see
Section 2.1.1 for the units of time. Here the single-copy entanglement measure
SCE and the asymptotic entanglement measure EoE have their local minima
and maxima approximately at the same position.

necessary in the asymptotic interpretation of EoE, exceeds the state-of-the-
art experimental possibilities. And second the computation of only the largest
Schmidt coefficient, i.e. only the largest singular value, can often be done ana-
lytically or numerically efficient and this allows to study larger systems.

4.3 Quantum correlations between indistinguishable

bosons

We have seen in the above introduction to entanglement theory that there ex-
ists no convincing theory that allows us to directly quantify entanglement in
quantum many-body systems of indistinguishable bosons. Paskauskas and You

introduced the Schmidt decomposition for two indistinguishable bosons [56], but
they did not explain the use of the resulting Schmidt coefficients for entangle-
ment. Moreover they did not show how their results can be applied to systems
of more than two bosons. Later Eckert, Schliemann et al. derived formulas for
the detection of entanglement in quantum systems of more than two indisin-
guishable bosons [53]. But their formulas are hard to compute and again lack a
clear interpretation for entanglement.

In the context of spin squeezing, inequalities for the squeezing parameter
were derived for separable states of N distinguishable bosons [66] as well as for
separable states of N indistinguishable bosons [67]. Estève et al. then proved
experimentally that BECs can violate these inequalities [9] and so they proved
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the existence of entanglement, as they define it, in a quantum many-body system
of indistinguishable bosons. However, their notion of separability coincides with
all bosons populating the same state and they do not give a motivation for this
definition of separability. Also they can only show that an inequality for the
squeezing parameter is violated and by this detect entanglement, but they can
not quantify it. Additionally the corresponding inequalities for the squeezing
parameter exist only for systems of two wells [68, 69], because there the direct
analogy to spin-1

2 particles holds and this makes the derivation of the inequalities
for the squeezing parameter straightforward.

In the following we want to develop our own entanglement theory for systems
of indistinguishable bosons. In analogy to Schliemann et al. [52, 53] we refer to
quantum correlations instead of entanglement because it is still unclear if the
entanglement between indistinguishable particles can be used as a resource on
the same lines as the entanglement between distinguishable particles. Our mea-
sure will have a clear interpretation for entanglement and it will be applicable
to any number N of indistinguishable bosons. Additionally it will turn out to
be efficiently computable.

We will start by defining separability for indistinguishable bosons and then
present our measure of quantum correlations. We will introduce our own concept
of LOCC for indistinguishable bosons as noninteracting Hamiltonian evolution
and prove the invariance of our measure under this concept. Thereupon we
will extend our measure to mixed states of two bosons. In this context we will
also show how the reduced density matrix of two bosons is obtained, i.e. how
the partial trace over all but two indistinguishable bosons is performed. With
these tools at hand we are able to investigate quantum systems comprising
an arbitrary number of indistinguishable bosons. As we have argued above in
the introduction to entanglement theory, it was an open question of how to
perform the partial trace over indistinguishable particles. Finally we simplify
our measure and apply it to the ground and to the thermal state of the Bose-
Hubbard model.

4.3.1 Separability for indistinguishable bosons

It is important to distinguish between the Fock and the particle picture as we
already did in the above introduction to entanglement theory. Every state of in-
distinguishable particles can be either written as a superposition of Fock states
or as a superposition of symmetrized products of one-particle wave functions.
While our approach uses the particle picture most of the time, we will jus-
tify every operation in the Fock picture, since this is the commonly accepted
description for systems of indistinguishable particles.

Paskauskas and You have first shown that there exists a Schmidt decom-
position for two indistinguishable particles [56], in total analogy to systems of
two distinguishable particles. Any state of two indistinguishable bosons can be
written as

|ψ〉 =
∑

j,k

ajk|j〉|k〉
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where A = (ajk) is a symmetric matrix due to requirement that |ψ〉 has to be
symmetrized. There exists a decomposition of the symmetric coefficient matrix
A = UTDU , where D is diagonal with real nonnegative entries, that allows to
rewrite |ψ〉 in terms of a new basis. Using

ajk =
∑

i

uTjidiiuik

=
∑

i

uijdiiuik

we get

|ψ〉 =
∑

j,k

ajk|j〉|k〉 =
∑

i,j,k

uijdiiuik|j〉|k〉

=
∑

i

dii(
∑

j

uij |j〉)(
∑

k

uik|k〉) =:
∑

i

√

λi|i〉|i〉

and the
√
λi are then the Schmidt coefficients for indistinguishable bosons.

Here we want to motivate that these Schmidt coefficients indeed characterize
the entanglement between two indistinguishable bosons [102]. Consider a pair
of indistinguishable bosons and now detect one, without specifying which one.
In fact, because they are indistinguishable it is impossible to further specify the
measured particle. This detection of one particle is described by the quantum
operation

ρ1 =
1

N

L
∑

j=1

âj |ψ〉〈ψ|â†j , (4.1)

where L is the dimension of the single-particle Hilbert space, in the Fock picture
and turns out to be equivalent to performing the partial trace over one index
in the particle picture. Now the degree of mixedness of the one-particle density
matrix ρ1 tells how much the measurement of one particle influences the state
of the other particle. With this interpretation at hand entanglement measures
for distinguishable particles can be directly used for indistinguishable particles.

So we define a pure state |ψ〉 for two indistinguishable bosons to be separable
iff there exists a single-particle quantum state |φ〉 such that

|ψ〉 = |φ〉 ⊗ |φ〉 .

Such a separable state |ψ〉 has the Schmidt decomposition

|ψ〉 = |00〉 .

In the case of distinguishable particles a separable state is of the form |ψ〉 =
|φ1〉 ⊗ |φ2〉 with two possibly different single-particle quantum states |φ1〉 and
|φ2〉, and this state has the same Schmidt decomposition |ψ〉 = |00〉.

We define a mixed state ρ for two indistinguishable bosons to be separable
iff there exists a decomposition

ρ =
∑

j

pjρ
j ⊗ ρj . (4.2)
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In the case of distinguishable particles a separable state is of the form

ρ =
∑

j

pjρ
j
1 ⊗ ρj2 .

At the moment we believe it is reasonable that any entanglement measure
for distinguishable particles can equally be applied to indistinguishable particles
in the particle picture. We choose the entropy of entanglement although we lack
an asymptotic interpretation for indistinguishable bosons, as we have explained
in the above introduction to entanglement theory (c.f. Section 4.1.2). Another
appropriate measure would be the single-copy entanglement which does not
rely on many copies of the state under consideration. However, the standard
entanglement measure for pure bipartite states of distinguishable particles is the
entropy of entanglement and that is the reason why we choose the entropy of
entanglement. Thus our measure of quantum correlations for pure states |ψ〉 of
two indistinguishable bosons reads

EoE(|ψ〉) = −
∑

j

λj log(λj)

where the λj are the Schmidt coefficients resulting from the Schmidt decompo-
sition for indistinguishable bosons.

4.3.2 LOCC for indistinguishable bosons

Because we can not address the particles individually, due to their indistin-
guishability, it does not make sense to talk about usual LOCC. This we have
also argued in the above introduction to entanglement theory (c.f. Section
4.1.1). In our opinion the correct analogue is noninteracting Hamiltonian evo-
lution. E.g. for two indistinguishable bosons in a two-dimensional Hilbert space
the complete set of noninteracting Hamiltonians is given by

Ĥ1 = C1â
†
1â1 + C2â

†
1â2 + C∗

2 â
†
2â1 + C3â

†
2â2

where C1 and C3 must be real and C2 can be complex because Ĥ1 has to be
Hermitian. Then noninteracting Hamiltonian evolution is given by

|ψ(t)〉 = e−
i
~
Ĥ1t|ψ(0)〉 .

We demand that our entanglement measure of quantum correlations should
never grow under evolution with Ĥ1, i.e.

EoE(|ψ(t)〉) ≤ EoE(|ψ(0)〉) ∀t .

In contrast, e.g. a Hamiltonian with two-particle interaction can look like

Ĥ2 = D1n̂1(n̂1 − 1) ,

where D1 must be real because Ĥ2 has to be Hermitian. In fact, here we have
just chosen the interaction part of the Bose-Hubbard model. We would expect
that the Schmidt coefficients change under evolution with Ĥ1 + Ĥ2.
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Let us first check numerically how the Schmidt coefficients behave under
arbitrary noninteracting Hamiltonian evolution. For this numerical check we
choose two bosons in a five-dimensional Hilbert space. We pick as an arbitrary
noninteracting Hamiltonian

Ĥ1 =













1.0 1.3 + 1.8I 0 0 0
1.3 − 1.8I 1.5 1.2 + 2.1I 2.1 + 1.5I 3.1 + 1.5I

0 1.2 − 2.1I 0.9 1.2 + 3.2I 0
0 2.1 − 1.5I 1.2 − 3.2I 1.9 3.2 + 3.2I
0 3.1 − 1.5I 0 3.2 − 3.2I 2.9













,

where H ij
1 is the coefficient to â†i âj . The eigenstates of Ĥ1 all have either one

Schmidt coefficient with value 1 or two with both being 1√
2
. We now choose as

an arbitrary starting state

|ψ(0)〉 = 0.25|20000〉 + 0.25I|10010〉 +
1√
8
|10001〉 + 0.25|02000〉 +

(0.25 + 0.25I)|01010〉 + 0.5|01001〉 +
1√
8
|00101〉 + 0.25|00020〉 +

0.25|00011〉 + 0.25|00002〉

and propagate it with Ĥ1. The result can be seen in the left part of Figure 4.3
and we conclude that the Schmidt coefficients S1 to S5 remain constant over all
times t.

The situation changes if we include two-particle interaction. In order to have
a realistic Hamiltonian with two-particle interaction we make use of the periodic
Bose-Hubbard Hamiltonian with L = 5 wells and N = 2 bosons:

Ĥ = −J
5
∑

l=1

(â†l+1âl + â†l âl+1) +
U

2

5
∑

l=1

n̂l(n̂l − 1)

where the two-particle interaction obviously resides in the second part of the
Hamiltonian. This is thoroughly explained in Chapter 2. Now we choose as an
inital state a separable state

|ψ(0)〉 = |00〉

which initially only has one nonvanishing Schmidt coefficient. By choosing this
initial state it is particularly easy to see if the Schmidt coefficients change in
time. The propagation of |ψ(0)〉 with the above periodic Bose-Hubbard Hamil-
tonian where we put J = 1 and U = 1 is shown in the right part of Figure
4.3. We conclude that the two-particle interaction indeed causes the Schmidt
coefficients to change. More precisely, they change very irregularly with time
and this is due to the fact that the propagation is done in the chaotic regime of
J = 1 = U . We also looked at the propagation in the regular regime of J = 1
and U = 10 and in the regular regime of J = 10 and U = 1, and there the
change of the Schmidt coefficients was characterized by regular oscillations.

We will now prove analytically that our entanglement measure is invariant
under noninteracting Hamiltonian evolution.
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Figure 4.3: Schmidt coefficients S1 (red, thin line), S2 (green, thin dashed
line), S3 (blue, thin dash dotted line), S4 (violet, thick line) and S5 (orange,
thick dashed line) of an arbitrary initial state of 2 bosons in a 5-dimensional
single-particle Hilbert space under arbitrary noninteracting Hamiltonian evolu-
tion (left) and of an intially separable state of 2 bosons propagating with the
periodic Bose-Hubbard Hamiltonian with L = 5 wells and J = 1 and U = 1
(right); see Section 2.1.1 for the units of time. We conclude that the Schmidt
coefficients are invariant under noninteracting Hamiltonian evolution and they
change in time if two-particle interaction is included.

Theorem:
If two indistinguishable bosons are initially in the state |ψ(0)〉 with Schmidt
coefficients λ1, λ2, . . . , λd and this state is propagated with a noninteracting
Hamiltonian Ĥ1, then

|ψ(t)〉 = e−
i
~
Ĥ1t|ψ(0)〉

will have exactly the same Schmidt coefficients λ1, λ2, . . . , λd for all times t.

Proof:
The general noninteracting Hamiltonian Ĥ1 has the form

Ĥ1 =
∑

j,k

Cjkâ
†
j âk

and Cjk = C∗
kj because Ĥ1 is Hermitian.

We will now look at |ψ(∆t)〉, where ∆t is an infinitesimally small time step.
On the one hand, this will allow us to expand the exponential function and



102 Quantum entanglement in the Bose-Hubbard model

neglect all higher orders of ∆t, i.e. we will only consider terms up to first order
in ∆t. Practically this means that (∆t)2, (∆t)3, . . . are put to zero wherever
they show up in the calculation. On the other hand, if we prove that |ψ(∆t)〉
has the same Schmidt coefficients as |ψ(0)〉 we are done, because if the Schmidt
coefficients do not change within any small amount of time then they will never
change. For the correctness of this argument it is important to keep in mind
that our time-evolution is unitary and that we can propagate a state to the time
t by applying many successive unitaries that each propagate it over a time step
∆t. If there is a contribution of higher orders (∆t)2, (∆t)3, . . . to a Schmidt-
coefficient then we just have to decrease ∆t such that this contribution becomes
negligible.

In the following derivation we choose the basis in which |ψ(0)〉 is Schmidt
decomposed,

|ψ(0)〉 =
∑

l

λl|l〉|l〉

=
∑

l

λl
â†l â

†
l√

2
|Ω〉

where the λl are the real nonnegative Schmidt coefficients of |ψ(0)〉 and |Ω〉
denotes the vacuum. Furthermore we will often make use of the well-known
bosonic commutation relations

[âj , â
†
k] = δj,k

[âj , âk] = 0

[â†j , â
†
k] = 0

and we will frequently apply

â|n〉 =
√
n|n− 1〉

â†|n〉 =
√
n+ 1|n+ 1〉 .
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With these tools at hand we can start:

|ψ(∆t)〉 = e−
i
~
Ĥ1∆t|ψ(0)〉

≈ (1 − i

~
Ĥ1∆t)|ψ(0)〉

= |ψ(0)〉 − i∆t

~

∑

j,k

Cjkâ
†
j âk|ψ(0)〉

= |ψ(0)〉 − i∆t

~

∑

j,k

Cjkâ
†
j âk
∑

l

λl
â†l â

†
l√

2
|Ω〉

= |ψ(0)〉 − i∆t√
2~

∑

j,k,l

λlCjkâ
†
j âkâ

†
l â

†
l |Ω〉

= |ψ(0)〉 − i∆t√
2~

∑

j,k,l

λlCjkâ
†
j(δk,l + â†l âk)â

†
l |Ω〉

= |ψ(0)〉 − i∆t√
2~

∑

j,k,l

λlCjkâ
†
jδk,lâ

†
l |Ω〉 −

i∆t√
2~

∑

j,k,l

λlCjkâ
†
j â

†
l âkâ

†
l |Ω〉

= |ψ(0)〉 − i∆t√
2~

∑

j,k

λkCjkâ
†
j â

†
k|Ω〉 −

i∆t√
2~

∑

j,k,l

λlCjkâ
†
j â

†
l (δk,l + â†l âk)|Ω〉

= |ψ(0)〉 − i∆t√
2~

∑

j,k

λkCjkâ
†
j â

†
k|Ω〉 − i∆t√

2~

∑

j,k,l

λlCjkâ
†
j â

†
l δk,l|Ω〉 −

i∆t√
2~

∑

j,k,l

λlCjkâ
†
j â

†
l â

†
l âk|Ω〉

= |ψ(0)〉 − i
√

2∆t

~

∑

j,k

λkCjkâ
†
j â

†
k|Ω〉

=
∑

k

λk
â†kâ

†
k√

2
|Ω〉 − i

√
2∆t

~

∑

j,k

λkCjkâ
†
j â

†
k|Ω〉

=
∑

k

λk(
â†kâ

†
k√

2
− i

√
2∆t

~

∑

j

Cjkâ
†
j â

†
k)|Ω〉

=
∑

k

λk(|k〉|k〉 −
i2∆t

~
Ckk|k〉|k〉 −

i∆t

~

∑

j 6=k
Cjk(|j〉|k〉 + |k〉|j〉))

=
∑

k

λk(|k〉|k〉 −
i∆t

~

∑

j

Cjk(|j〉|k〉 + |k〉|j〉)) .
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We do a change of basis with the unitary

U =











1 − i∆t
~
C11 − i∆t

~
C21 − i∆t

~
C31 . . .

− i∆t
~
C12 1 − i∆t

~
C22 − i∆t

~
C32 . . .

− i∆t
~
C13 − i∆t

~
C23 1 − i∆t

~
C33 . . .

...
...

...
. . .











,

i.e.

ujj = 1 − i∆t

~
Cjj

ujk = − i∆t
~
Ckj ∀j 6= k .

Clearly U is unitary if one keeps in mind that Cjk = C∗
kj . The scalar product

of one row j with itself becomes

〈j|j〉 = 1 +
(∆t)2

~2

∑

k

|Cjk|2

= 1 +
(∆t)2

~2

≈ 1 ,

while the scalar product of one row j with a different row k is

〈j|k〉 =
i∆t

~
(C∗

kj − Cjk) +
(∆t)2

~2

∑

l

C∗
ljClk

=
i∆t

~
(Cjk − Cjk) +

(∆t)2

~2
δj,k

= 0 ,

and the same is true for the columns. In this new basis we get

|k′〉 = |k〉 − i∆t

~

∑

j

Cjk|j〉

and

|k′〉|k′〉 = (|k〉 − i∆t

~

∑

j

Cjk|j〉)(|k〉 −
i∆t

~

∑

l

Clk|l〉)

= |k〉|k〉 − i∆t

~
(
∑

j

Cjk|j〉|k〉 +
∑

l

Clk|k〉|l〉) −

(∆t)2

~2

∑

j,l

CjkClk|j〉|l〉

= |k〉|k〉 − i∆t

~

∑

j

Cjk(|j〉|k〉 + |k〉|j〉) − (∆t)2

~2

∑

j,l

CjkClk|j〉|l〉

≈ |k〉|k〉 − i∆t

~

∑

j

Cjk(|j〉|k〉 + |k〉|j〉) .
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So in this new basis the above longer calculation can be continued:

|ψ(∆t)〉 =
∑

k

λk(|k〉|k〉 −
i∆t

~

∑

j

Cjk(|j〉|k〉 + |k〉|j〉))

=
∑

k

λk|k′〉|k′〉

and we conclude that the Schmidt coefficients indeed stay the same. This ends
the proof.

4.3.3 Mixed states of two bosons

In this subsection we want to derive how our measure is applied to systems
of many indistinguishable bosons. We will show how our two-particle density
matrix is obtained. This two-particle density matrix will allow us to study the
quantum correlations between two indistinguishable bosons in a bulk of many
indistinguishable bosons by means of the concurrence and the negativity. Here
we will derive a representation of our two-particle density matrix in terms of
expectation values of the two-particle correlation function. This will simplify
the calculation of our two-particle density matrix in systems of many indistin-
guishable bosons a lot. Additionally we will prove then how the concurrence is
evaluated in the Fock picture and that the negativity has to be computed in the
particle picture.

Two-particle density matrix
The two-particle density matrix is obtained by generalizing (4.1), i.e. by detect-
ing all but two bosons:

ρ2 :=
1

N(N − 1) · . . . · 3
L
∑

j3=1

âj3

(

L
∑

j4=1

âj4

(

. . .
(

L
∑

jN=1

âjNρN â
†
jN

)

. . .
)

â†j4

)

â†j3

=
1

N(N − 1) · . . . · 3
L
∑

j3,j4,...,jN=1

âj3 âj4 . . . âjNρN â
†
jN
. . . â†j4 â

†
j3

, (4.3)

where L is the dimension of the single-particle Hilbert space, in the Fock picture
or, equivalently, by tracing out all but two indices in the particle picture. Hence
it can be seen as a mixture of all possible two-boson states that are in ρN . The
prefactor 1

N(N−1)·...·3 assures that ρ2 is a valid density matrix as we will now
prove.

Proposition 1:

tr(ρN ) = 1 =⇒ tr(ρN−k) = 1 ∀k < N

Proof of Proposition 1 by induction:
Assume we detect one boson:

ρN−1 =
1

N

L
∑

j=1

âjρN â
†
j ,
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then

tr(ρN−1) = tr(
1

N

L
∑

j=1

âjρN â
†
j) =

1

N

L
∑

j=1

tr(âjρN â
†
j)

=
1

N

L
∑

j=1

tr(â†j âjρN ) = tr(
1

N

L
∑

j=1

n̂jρN )

= tr(ρN ) = 1 .

In the induction step we assume the formula holds for ρN−k, i.e. tr(ρN−k) = 1,
and then show that it is also true for ρN−k−1:

tr(ρN−k−1) = tr(
1

N − k

L
∑

j=1

âjρN−kâ
†
j)

= 1 ,

exactly like above. So our procedure of performing the partial trace yields
correct density matrices.

Now we want to show that ρ2 can be written in a way that simplifies its
calculation.

Proposition 2:
ρ2 can be rewritten as:

ρ2 =
2

N(N − 1)

∑

j1+j2+...+jL=N−2

âj11√
j1!

âj22√
j2!

. . .
âjLL√
jL!

ρN
(â†1)

j1

√
j1!

(â†2)
j2

√
j2!

. . .
(â†L)jL√
jL!

,

where the sum runs over all L-tuple of j1, j2, . . . , jL that fulfill j1+j2+. . .+jL =
N − 2.
Proof of Proposition 2:

ρ2 =
1

N(N − 1) · . . . · 3
L
∑

i3,i4,...,iN=1

âi3 âi4 . . . âiNρN â
†
iN
. . . â†i4 â

†
i3

=
1

N(N − 1) · . . . · 3
∑

j1+j2+...+jL=N−2

(

N − 2

j1

)(

N − 2 − j1
j2

)

. . .

(

N − 2 − j1 − j2 − . . .− jL−1

jL

)

âj11 â
j2
2 . . . âjLL ρN (â†1)

j1(â†2)
j2 . . . (â†L)jL

=
1

N(N − 1) · . . . · 3
∑

j1+j2+...+jL=N−2

(N − 2)(N − 3) . . . (N − 2 − j1 + 1))

j1!

(N − 2 − j1) . . . (N − 2 − j1 − j2 + 1))

j2!
. . .

(N − 2 − j1 − . . .− jL−1) . . . (N − 2 − j1 − . . .− jL−1 − jL + 1))

jL!

âj11 a
j2
2 . . . âjLL ρN (â†1)

j1(â†2)
j2 . . . (â†L)jL

=
2

N(N − 1)

∑

j1+j2+...+jL=N−2

âj11√
j1!

âj22√
j2!

. . .
âjLL√
jL!

ρN
(â†1)

j1

√
j1!

(â†2)
j2

√
j2!

. . .
(â†L)jL√
jL!

.
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It is important to keep in mind that each of the i3, i4, . . . , iN run from 1 to L
while j1, j2, . . . , jL run over all L-tuple that fulfill j1 + j2 + . . .+ jL = N − 2.

Proposition 3:
The matrix elements of ρ2 can be expressed as expectation values of the two-
particle correlation function:

〈Ω|
â2
j√
2
ρ2

(â†k)
2

√
2

|Ω〉 =
1

N(N − 1)
tr((â†k)

2â2
jρN ) (4.4)

〈Ω|
â2
j√
2
ρ2â

†
l â

†
k|Ω〉 =

√
2

N(N − 1)
tr(â†l â

†
kâ

2
jρN )

〈Ω|âj âkρ2
(â†l )

2

√
2

|Ω〉 =

√
2

N(N − 1)
tr((â†l )

2âkâjρN )

〈Ω|âj âkρ2â
†
mâ

†
l |Ω〉 =

2

N(N − 1)
tr(â†mâ

†
l âkâjρN ) .

Proof of Proposition 3:

〈Ω|
â2
j√
2
ρ2

(â†k)
2

√
2

|Ω〉 = 〈Ω|
â2
j√
2

( 2

N(N − 1)

∑

j1+j2+...+jL=N−2

âj11√
j1!

âj22√
j2!

. . .

âjLL√
jL!

ρN
(â†1)

j1

√
j1!

(â†2)
j2

√
j2!

. . .
(â†L)jL√
jL!

)(â†k)
2

√
2

|Ω〉

= 〈Ω| 1

N(N − 1)

∑

j1+j2+...+jL=N−2

âj11√
j1!

âj22√
j2!

. . .

âjLL√
jL!

â2
jρN (â†k)

2 (â†1)
j1

√
j1!

(â†2)
j2

√
j2!

. . .
(â†L)jL√
jL!

|Ω〉

=
1

N(N − 1)

∑

j1+j2+...+jL=N−2

〈Ω| â
j1
1√
j1!

âj22√
j2!

. . .

âjLL√
jL!

â2
jρN (â†k)

2 (â†1)
j1

√
j1!

(â†2)
j2

√
j2!

. . .
(â†L)jL√
jL!

|Ω〉

=
1

N(N − 1)

∑

x

〈x|â2
jρN (â†k)

2|x〉

=
1

N(N − 1)
tr(â2

jρN (â†k)
2)

=
1

N(N − 1)
tr((â†k)

2â2
jρN ) .

The other three equalities above are derived along the same lines.
In practice, we will calculate our two-particle density matrix via the equa-

tions (4.4), because it is much easier to evaluate the expectation values of the
two-particle correlation function than it is to compute our initial form of the
two-particle correlation function (4.3) for a large number N of bosons.
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Concurrence for quantum correlations
Let us now investigate convex roof constructions

E = inf{
∑

j

pjE(|ψj〉) : ρ =
∑

j

pj |ψj〉〈ψj |}

from pure-state entanglement monotones E. It is well-known that the convex
roof to the entropy of entanglement, namely the entanglement of formation,
can be expressed algebraically for 2 × 2-dimensional systems in terms of the
concurrence. We remark that this also seems to be true for the convex roof
of single-copy entanglement because the Schmidt coefficients can be expressed
as functions of the concurrence. This is explained in more detail in the above
introduction to entanglement theory.

The concurrence results from a minimization procedure over all possible
representations of the density matrix in terms of pure state ensembles. Thus
we have to make sure that we do not leave the symmetric subspace of the total
Hilbert space during this minimization. We start from

ρ =
∑

j

pj |ψj〉〈ψj | ,

where the |ψj〉 are symmetrized wave functions. Now every other representation
of ρ can be written in terms of new probabilities and wave functions

√
qj |φj〉 =

∑

k

ujk
√
pk|ψk〉

where U = (ujk) is unitary. Fortunately, the |φj〉 are also symmetrized. We
conclude that we can directly use the concurrence in the particle picture, and
how this is done is explained in Section 4.1.3. Nevertheless we want to derive
the concurrence in the Fock picture because it will turn out to be a simpler
formula.

The concurrence is defined via the eigenvalues of ρρ̃ where

ρ̃ = σy ⊗ σyρ
∗σy ⊗ σy .

In the case of bosons the total wave function is a symmetrized product of the one-
particle wave functions, such that any state of two bosons in a two-dimensional
Hilbert space can be written in the basis

|20〉F = |00〉p
|11〉F =

1√
2
(|01〉p + |10〉p)

|02〉F = |11〉p
where the subscript F denotes a Fock state and the subscript p denotes a state
written in the particle picture. During the construction of the concurrence one
does not leave the symmetric subspace of the total Hilbert space:

σy ⊗ σy|20〉F = −|02〉F
σy ⊗ σy|11〉F = |11〉F
σy ⊗ σy|02〉F = −|20〉F .
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Hence if we write ρ in the complete orthonormal basis |1〉 := |00〉p, |2〉 :=
1√
2
(|01〉p + |10〉p), |3〉 := |11〉p, |4〉 := 1√

2
(|01〉p − |10〉p) it will have all zeros in

the last column and in the last row. The same will then be true for ρ̃ and for
ρρ̃. So we can equally consider ρ in the Fock picture.

We conclude that the concurrence is better computed in the Fock picture.
A general quantum state of two indistinguishable bosons in a two-dimensional
single-particle Hilbert space reads

ρ =





R1 C1 C2

C∗
1 R2 C3

C∗
2 C∗

3 R3



 ,

where the Rj are real and the Cj are complex. Then we get

ρ̃ =





R3 −C3 C2

−C∗
3 R2 −C1

C∗
2 −C∗

1 R1



 .

If the square roots of the eigenvalues of ρρ̃ sorted in decreasing order are called
λ1, λ2 and λ3, then the concurrence becomes

C(ρ) = max(0, λ1 − λ2 − λ3) .

The standard concurrence can only be applied to mixed bipartite states ρ
of dimension 2 × 2. Only in this case it has an interpretation for entanglement
by means of the entanglement of formation. With respect to the Bose-Hubbard
model the applicability of the standard concurrence is therefore limited to sys-
tems of L = 2 wells. If we want to study quantum correlations in the Bose-
Hubbard model with L > 2 wells, then the negativity is the standard approach.
Let us emphasize again that a nonvanishing negativity is necessary and suf-
ficient for entanglement only in systems of dimension 2 × 2 and 2 × 3. For
higher-dimensional systems, e.g. the Bose-Hubbard model with L > 2 wells, a
nonvanishing negativity is just sufficient for entanglement. All this is explained
in detail in the above introduction to entanglement theory in Section 4.1.3.

Negativity for quantum correlations
To begin with we have to formulate and prove the PPT criterion for quantum
states of two indistinguishable bosons. As we defined in (4.2) a mixed state of
two indistinguishable bosons is separable iff there exists a decomposition

ρ =
∑

j

pjρ
j ⊗ ρj .

Then the PPT criterion reads: A density operator ρ of dimension 2×2 describing
two indistinguishable bosons is separable iff the partial transposition

ρPT := (T ⊗ I)(ρ)

is positive. The proof of this PPT criterion is done in exactly the same way as
in our introduction to entanglement theory, only that a separable state is now
of the above form.
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That the PPT criterion also holds for quantum states of two indistinguish-
able bosons implies that we can directly compute the negativity in the particle
picture. Unfortunately it is not possible to calculate the negativity in the Fock
picture, because one usually leaves the symmetric subspace of the total Hilbert
space by applying the partial transposition. E.g. the quantum state ρ of two in-
distinguishable bosons in a two-dimensional single-particle Hilbert space written
in the particle picture reads

ρ = R1|00〉〈00| + C1√
2
|00〉(〈01| + 〈10|) + C2|00〉〈11| +

C∗
1√
2
(|01〉 + |10〉)〈00| + R2

2
(|01〉 + |10〉)(〈01| + 〈10|) +

C3√
2
(|01〉 + |10〉)〈11| + C∗

2 |11〉〈00| +

C∗
3√
2
|11〉(〈01| + 〈10|) +R3|11〉〈11|

= R1|00〉〈00| + C1√
2
|00〉〈01| + C1√

2
|00〉〈10| + C2|00〉〈11| +

C∗
1√
2
|01〉〈00| + R2

2
|01〉〈01| + R2

2
|01〉〈10| + C3√

2
|01〉〈11| +

C∗
1√
2
|10〉〈00| + R2

2
|10〉〈01| + R2

2
|10〉〈10| + C3√

2
|10〉〈11| +

C∗
2 |11〉〈00| + C∗

3√
2
|11〉〈01| + C∗

3√
2
|11〉〈10| +R3|11〉〈11| ,

which is why the partial transposition of ρ,

ρPT = R1|00〉〈00| + C∗
1√
2
|00〉〈01| + C1√

2
|00〉〈10| + R2

2
|00〉〈11| +

C1√
2
|01〉〈00| + R2

2
|01〉〈01| + C2|01〉〈10| + C3√

2
|01〉〈11| +

C∗
1√
2
|10〉〈00| + C∗

2 |10〉〈01| + R2

2
|10〉〈10| + C∗

3√
2
|10〉〈11| +

R2

2
|11〉〈00| + C∗

3√
2
|11〉〈01| + C3√

2
|11〉〈10| +R3|11〉〈11| ,

in general is not symmetric under exchange of the two particle labels.

So we always have to compute the negativity in the particle picture. It is
then given by the sum over the absolute values of the negative eigenvalues λ−j
of ρPT :

N (ρ) =
∑

j

|λ−j | .

In the specific case discussed above, i.e. two bosons in a two-dimensional single-
particle Hilbert space, a positive partial transposition is necessary and sufficient
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for separability and we have to find the negative eigenvalues of

ρPT =



























R1
C∗

1√
2

C1√
2

R2
2

C1√
2

R2
2 C2

C3√
2

C∗

1√
2

C∗
2

R2
2

C∗

3√
2

R2
2

C∗

3√
2

C3√
2

R3



























for the evaluation of the negativity.
Finally, we want to check numerically if our derived two-particle density

matrix, concurrence and negativity for quantum correlations behave as expected
with respect to our definiton of entanglement in systems of indistinguishable
bosons. More precisely, we would expect concurrence and negativity of the
two-particle density matrix to be invariant under noninteracting Hamiltonian
evolution and to be changing in time if two-particle interaction is included.

We choose five bosons in a two-dimensional single-particle Hilbert space.
Our noninteracting Hamiltonian shall have the random form

Ĥ1 =

(

1.0 1.3 + 1.8I
1.3 − 1.8I 1.5

)

,

where H ij
1 is the coefficient to â†i âj . We propagate an arbitrary initial state

|ψ(0)〉 = (0.25 + 0.25I)|50〉F + 0.5|41〉F + (0.5 + 0.25I)|32〉F + 0.25|23〉F
+0.5|14〉F

with Ĥ1. The left part of Figure 4.4 depicts concurrence and negativity for
the two-particle reduced density matrix and we conclude that they are indeed
constant over time.

Again we include two-particle interaction by looking at a realistic system,
namely the periodic Bose-Hubbard Hamiltonian with L = 2 wells and N = 5
bosons:

Ĥ = −J
2
∑

l=1

(â†l+1âl + â†l âl+1) +
U

2

2
∑

l=1

n̂l(n̂l − 1)

We choose an initally separable state

|ψ(0)〉 = |00000〉

such that both concurrence and negativity should be zero at the beginning.
We propagate |ψ(0)〉 with the above periodic Bose-Hubbard Hamiltonian with
J = 1 and U = 1 and look at concurrence and negativity of the two-particle
reduced density matrix in the right part of Figure 4.4. Both concurrence and
negativity are zero at the beginning, but they change with time due to the two-
particle interaction, just as it is the case with the Schmidt-coefficients in Figure
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Figure 4.4: Concurrence C(t) (red, thin line) and Negativity N(t) (green, thin
dashed line) of the two-particle density matrix obtained from an arbitrary initial
state of 5 bosons in a 2-dimensional single-particle Hilbert space under arbitrary
noninteracting Hamiltonian evolution (left) and obtained from an intially sepa-
rable state of 5 bosons propagating with the periodic Bose-Hubbard Hamiltonian
with L = 2 wells and J = 1 and U = 1 (right). We conclude that concurrence
and negativity of our two-particle density matrix are invariant under noninter-
acting Hamiltonian evolution and they change in time if two-particle interaction
is included.

4.3. We note that in Figure 4.4 the concurrence turns out to be twice as big as
the negativity. We showed in Section 4.1.3 that this is always the case for pure
states. It is completely unexpected for our two-particle reduced density matrix
and needs further investigation.

4.3.4 Quantum correlations in the Bose-Hubbard model

We are now in a position to apply our formalism to the Bose-Hubbard model.
In this subsection we are interested in the quantum correlations of the ground
state as well as of the thermal state. In Chapter 5 we will use our measure to
analyze chaotic entanglement in the Bose-Hubbard model.

Ground state
We choose periodic boundary conditions for the investigation of the ground
state. Particularly interesting are systems of integer filling because they ex-
hibit a quantum phase transition between a superfluid and a Mott insulating
phase [10]. In fact, the critical point of the quantum phase transition in the
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Figure 4.5: Negativity N(J/U) (left) and first derivative of the negativity
DN(J/U) (right) for the two-particle density matrix obtained from the ground
state of the periodic Bose-Hubbard Hamiltonian with L = 3 = N (red, thin
line), L = 4 = N (green, thin dashed line), L = 5 = N (blue, thin dash dotted
line), L = 6 = N (violet, thick line), L = 7 = N (orange, thick dashed line)
and L = 8 = N (turquoise, thick dash dotted line). The maxima of both the
negativity and the first derivative of the negativity of our two-particle density
matrix wander to the quantum critical point at (J/U)crit. = 0.26 with growing
system size.

periodic Bose-Hubbard Hamiltonian with unit filling, i.e. N
L

= 1, is located at
( J
U

)crit. = 0.257 [28].

In the left part of Figure 4.5 we plot the negativity of the two-particle reduced
density matrix as a function of J

U
. For a small system, i.e. L = 3 = N , we see the

expected behaviour because the negativity strictly monotonously declines if the
ratio J

U
grows. This is expected because quantum correlations should be large

if the two-particle interaction U is large, since quantum correlations originate
from the interaction of particles. As the system size grows the negativity gets a
maximum in the region J

U
= 0.0 to J

U
= 0.4 due to the quantum critical point.

In the right part of Figure 4.5 we show the first derivative of the negativ-
ity. The results are obtained with an Arnoldi algorithm [103]. All investigated
systems show discontinuities in the region of the quantum critical point. If one
identifies maximal change in the negativity with the quantum critical point one
can pinpoint the quantum critical point to ( J

U
)crit. = 0.26 ± 0.02 by looking

at the maximum of the curve to L = 8 = N . This is remarkable because we
can read off the quantum critical point almost without making use of finite size
scaling. However, we have to emphasize that there are small fluctuations in
the maxima that we can not explain at the moment. Further investigation is
needed, in particular by means of finite-size scaling.

We want to compare the ability of our quantum correlations to pinpoint the
quantum critical point with standard mode entanglement. For this we obtain the
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reduced two-mode density matrix of two neighbouring modes from the ground
state of the periodic Bose-Hubbard Hamiltonian and calculate its negativity.

Figure 4.6 shows the negativity and the first derivative of the negativity
for Wannier modes around the quantum critical point. At J

U
= 0 Wannier

mode entanglement vanishes because there the ground state is a single separable
Wannier Fock state. J

U
= 1 corresponds to the chaotic regime and since there the

ground state is a superposition of many Wannier Fock states it is not surprising
that also Wannier mode entanglement is high at J

U
= 1. In-between J

U
= 0

and J
U

= 1 the quantum phase transition causes a maximum of the negativity.
However, the maxima of the negativity and the minima of the first derivative of
the negativity for Wannier modes wander away from the quantum critical point
at (J/U)crit. = 0.26 with growing system size.

The situation is completely different with Bloch modes as one can see in
Figure 4.7. Bloch mode entanglement decays very fast as a function of J

U
.

Indeed, the inset reveals that it decays exponentially. This is surprising because
if one takes a look at Figure 3.18 one would expect that due to the large number
of avoided crossings in the region between J

U
= 0 and J

U
= 1 the ground state is

a superposition of many Bloch Fock states. Nevertheless Figure 4.7 reveals that
Bloch mode entanglement in the ground state vanishes very fast. Moreover,
with growing system size Bloch mode entanglement vanishes completely which
is why we conclude that it does not allow to locate the quantum critical point.
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Figure 4.6: Negativity N(J/U) (left) and first derivative of the negativity
DN(J/U) (right) for the reduced two-mode density matrix of two neighbouring
Wannier modes obtained from the ground state of the periodic Bose-Hubbard
Hamiltonian with L = 3 = N (red, thin line), L = 4 = N (green, thin dashed
line), L = 5 = N (blue, thin dash dotted line), L = 6 = N (violet, thick line),
L = 7 = N (orange, thick dashed line). The maxima of the negativity and the
minima of the first derivative of the negativity (of the two-mode density matrix
of two neighbouring Wannier modes) wander away from the quantum critical
point at (J/U)crit. = 0.26 with growing system size.
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Figure 4.7: Negativity N(J/U) (left) and first derivative of the negativity
DN(J/U) (right) for the reduced two-mode density matrix of two neighbour-
ing Bloch modes obtained from the ground state of the periodic Bose-Hubbard
Hamiltonian with L = 3 = N (red, thin line), L = 4 = N (green, thin dashed
line), L = 5 = N (blue, thin dash dotted line), L = 6 = N (violet, thick line),
L = 7 = N (orange, thick dashed line). Neither the negativity nor the first
derivative of the negativity (of the two-mode density matrix of two neighbour-
ing Bloch modes) allow to locate the quantum critcal point because both vanish
with growing system size.

Thermal state
We choose hard wall boundary conditions (in solid-state physics often called
open boundary conditions, c.f. Section 2.1.2) for the investigation of the thermal
state, because we want to look at experimentally interesting systems of many
bosons in just a few wells and we believe that periodic boundary conditions do
not make sense for a small number of wells. The thermal state that we want to
consider is the equilibrium state of the canonical ensemble

ρ(T ) =
e−βĤ

Z

where β = 1
kBT

and

Z = tr(e−βĤ)

is the partition function. We put kB = 1 and express the termal state in the
eigenbasis to the Hamilonian, such that we get

ρ(T ) =
1

Z

∑

j

e−
Ej

T |ψj〉〈ψj |

and

Z =
∑

j

e−
Ej

T



116 Quantum entanglement in the Bose-Hubbard model

0 5 10 15 20 25

T

0,01

0,02

0,03

0,04

0,05

0,06

0,07

C
(T

)

0 1 2 3 4 5

T

0,03

0,06

0,09

0,12

N
(T

)
Figure 4.8: Concurrence C(T ) (left) and negativity N(T ) (right) for the two-
particle density matrix obtained from the thermal state of the hard wall Bose-
Hubbard Hamiltonian with L = 2 wells and N = 10 bosons (left) and L = 3
wells and N = 4 bosons (right) (red, thin line), L = 2 wells and N = 20 bosons
(left) and L = 3 wells and N = 6 bosons (right) (green, thin dashed line), L = 2
wells and N = 30 bosons (left) and L = 3 wells and N = 8 bosons (right)
(blue, thin dash dotted line), L = 2 wells and N = 40 bosons (left) and L = 3
wells and N = 10 bosons (right) (violet, thick line), L = 2 wells and N = 50
bosons (left) and L = 3 wells and N = 12 bosons (right) (orange, thick dashed
line). It is remarkable that the concurrence for a system of L = 2 wells and the
negativity for a system of L = 3 wells qualitatively behave the same.

in terms of the eigenvalues Ej and corresponding eigenfunctions |ψj〉 of Ĥ. We
remark that the thermal state is a mixed state.

First we are looking at the concurrence of the two-particle density matrix
obtained from the thermal state of L = 2 wells being filled with different num-
bers of bosons. This is shown in the left part of Figure 4.8. We conclude that
the ground state quantum correlations for T = 0 are already reached at a critical

temperature T
(1)
crit. > 0 and this critical temperature gets bigger with growing

boson number. Additionally quantum correlations vanish after a second criti-

cal temperature T
(2)
crit. > 0 and this critical temperature also gets bigger with

growing boson number. Increasing the boson number hence saves the quantum
correlations from thermal reduction. Nevertheless the ground state quantum
correlations for T = 0 are highest for the smallest number of bosons which we
would expect because then the system is more quantum. The right part of Fig-
ure 4.8 shows the negativity of the two-particle density matrix obtained from
the thermal state of L = 3 wells being filled with different numbers of bosons.
We can draw the same conclusions from this setting.

If one fixes the temperature and analyzes quantum correlations in the ther-
mal state as a function of J

U
than one would expect that they monotonously

decrease. For L = 2 wells and using the concurrence we obtained exactly that
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Figure 4.9: Negativity N(J/U) (right) of the thermal state of the hard wall
Bose-Hubbard Hamiltonian with L = 3 wells and N = 2 bosons at temperature
T = 0.01 (red, thin line), T = 0.02 (green, thin dashed line), T = 0.03 (blue,
thin dash dotted line), T = 0.04 (violet, thick line) and T = 0.05 (orange, thick
dashed line). At the moment we are unable to tell if the observed maxima have
any physical meaning because the negativity strictly speaking does only allow
to detect but not to quantify entanglement.

behaviour of the quantum correlations. But for L = 3 wells and using the neg-
ativity we discovered that the negativity can have a maximum in systems of
very few bosons and at low temperatures T < 0.1. This is shown in Figure
4.9. However it is hard to tell if this maximum has a physical meaning because
the negativity does not allow to quantify entanglement in a strict sense. As
explained in Section 4.1.3 the negativity just allows to detect entanglement.

Let us finally recapitulate what we have achieved in this section. We have
derived a measure for quantum correlations between indistinguishable bosons
that can quantify entanglement between two indistinguishable bosons in systems
of arbitrarily many bosons. This quantification is done by calculating a reduced
two-particle density matrix, which has the interpretation of detecting all but two
bosons, and then applying concurrence or negativity to the resulting mixed state
of two bosons. In the last part we tested this formalism in the Bose-Hubbard
model and the results confirm the correctness of our approach. Moreover, they
suggest that our measure of quantum correlations between indistinguishable
bosons might be better suited to locate the quantum critical point than the
commonly used measure of mode entanglement.

4.4 Generation of practical entanglement

In this last section we want to present a novel scheme for the generation of prac-
tical entanglement in the Bose-Hubbard model. As we have already explained
in the introduction to this chapter, practical entanglement is the standard en-
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tanglement [25] that may exist between distinguishable particles in the form
of nonlocal correlations. Practical entanglement is the standard entanglement
that is understood as a resource which may be used to overcome the restrictions
of locality. Standard entanglement theory and hence the properties of practical
entanglement are thoroughly discussed in the above introduction to entangle-
ment theory. In particular, practical entanglement is necessary for superdense
coding and quantum teleportation. There have been many approaches to the
generation of entanglement in the Bose-Hubbard model [13, 14, 15, 16], but
most of them do not consider practical entanglement, such that it remains un-
clear how the generated entanglement can be used practically, e.g. for quantum
teleportation.

4.4.1 Practical entanglement in the Bose-Hubbard model

As argued in the introduction to this chapter practical entanglement in the
Bose-Hubbard model is realized in Wannier modes. Only the Wannier Fock
states render possible a spatial separation into two quantum systems which are
then distinguishable and may have nonlocal correlations. The smallest possible
practically entangled quantum state in the Bose-Hubbard model is

|ψ〉 =
1√
2
(|1010〉W + |0101〉W ) ,

where the subscript W denotes Wannier Fock states, because we can separate
the left double well from the right double well and obtain two distinguishable
quantum systems by raising the barrier between these two double wells. The
two double wells are two distinguishable qubits and a sufficiently big distance
between these qubits is modelled by a sufficiently high barrier. The practical
entanglement between the two double wells can directly be used for superdense
coding or quantum teleportation. In the following we will always consider Wan-
nier Fock states and therefore drop the subscript W . Moreover we will refer
to the left double well as system A, i.e. Alice, and to the right double well as
system B, i.e. Bob.

Quantum states arising in studies of the Bose-Hubbard Hamiltonian are
mostly superpositions of many different Wannier Fock states and so we have to
define what practical entanglement is in general. E.g. the state

|ψ〉 =
1√
3
(|1020〉 + |0102〉 + |2010〉)

has a varying local particle number in each double well and at the moment
it is not clear how practical entanglement is assigned to this state. It follows
from decoherence theory that if we separate the two double wells by raising the
intermediate barrier then |ψ〉 very quickly decoheres into a mixture

ρ =
2

3
|ψ1〉〈ψ1| +

1

3
|ψ2〉〈ψ2|

of two states

|ψ1〉 =
1√
2
(|1020〉 + |0102〉)
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to local particle number N = 1 with respect to system A and

|ψ2〉 = |2010〉
to local particle number N = 2 with respect to system A. Of course we could
have also done the discussion with the local particle number of system B since
system A and B are on an equal footing. The point is that the initial state with
varying local particle number and sufficiently separated double wells decoheres
quickly into a mixture of states to fix local particle number. This implies that
|ψ〉 effectively turns into the practically entangled state |ψ1〉 with probability
p1 = 2

3 and it becomes the practically separable state |ψ2〉 with probability
p2 = 1

3 .
We now want to explain this decoherence to fix local particle number in sys-

tem A and system B. It can be understood if one assumes that the environment
reacts on a specific local particle number n by being in state |nE〉 [102]. This
state results from the interaction between the system and the environment. Let
us think of the system state |nS〉 as a quantum state of four wells, just like
above, and let us think of the environment as the surrounding of this system
which ideally shall be the vacuum. Without loss of generality our system shall
be in a pure state and we order the superposition of Fock states to local particle
number n into the state |nS〉, then the total state of system and environment
reads

|ψSE〉 =
∑

n

cn|nS〉|nE〉 ,

or equivalently

ρSE = |ψSE〉〈ψSE |
=

∑

m,n

c∗mcn|nS〉|nE〉〈mS |〈mE | .

As explained in Section 4.1.1, in order to get the quantum state of our system
we have to trace out the environment:

ρS = trE(ρSE) .

If the two quantum systems, e.g. the two double wells, are sufficiently far apart
from each other, then the |nE〉 fulfill

〈mE |nE〉 ≈ δm,n

and we can use them to trace out the environment:

ρS =
∑

j

〈jE |(
∑

m,n

c∗mcn|nS〉|nE〉〈mS |〈mE |)|jE〉

=
∑

j,m,n

c∗mcn|nS〉〈mS |〈jE |nE〉〈mE |jE〉

≈
∑

j,m,n

c∗mcn|nS〉〈mS | · δj,n · δm,j

=
∑

n

|cn|2|nS〉〈nS | .
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We conclude that our system state indeed decoheres into a mixture of states
|nS〉 to local particle number n.

In the derivation it is crucial that the two quantum systems having varying
local particle numbers are sufficiently far apart from each other. Only then the
corresponding states of the environment |nE〉 to local particle number n are
sufficiently orthogonal. The closer the two quantum systems get, the more the
states of the environment coincide, i.e. 〈nE |mE〉 ≈ 1. Then, in a sense, the
environment can not resolve the varying local particle number so well anymore
by interacting with the system. This is the reason why the decoherence mainly
affects the two double wells, that we spatially separate sufficiently, and not the
two single wells of each double well which of course also have varying local
particle numbers.

There also exist other arguments that the entanglement in quantum states of
varying local particle number can not directly be accessed [73, 104, 74, 75, 105,
106, 107]. For our definition of practical entanglement we decide to measure the
local particle number. By this we get a specific amount of practical entanglement
to the state |nS〉 with a specific probability pn. We want to quantify the amount
of practical entanglement by means of the entropy of entanglement

EoE(|ψ〉) = −
∑

j

λj log2(λj)

where we choose the logarithm to the basis 2. The entropy of entanglement is
extensively studied in Section 4.1.2 and in Appendix B. E.g. for the above state

|ψ〉 =
1√
3
(|1020〉 + |0102〉 + |2010〉)

we get the practical entanglement of

|ψ1〉 =
1√
2
(|1020〉 + |0102〉) ,

i.e.

EoE(|ψ1〉) = 1 ,

with probability p1 = 2
3 and we receive the practical entanglement of

|ψ2〉 = |2010〉 ,

i.e.

EoE(|ψ2〉) = 0 ,

with probability p2 = 1
3 .

We believe that our considerations of practical entanglement in small systems
are better described by hard wall boundary conditions and so we study the hard
wall Bose-Hubbard Hamiltonian in this section. More precisely, the spatial
separation of two double wells is impossible if one thinks of the system being
a ring, as one should for periodic boundary conditions. We explain that in
Chapter 2.
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4.4.2 Generation of practical entanglement

Let us now introduce our novel approach for the generation of practical entan-
glement in the Bose-Hubbard model. We emphasize that this method can be
realized experimentally already. In fact, a group from Pisa has done this exper-
iment, however without investigating entanglement properties [108]. The idea
is to vary the lattice depth V0 periodically in time:

V0(t) = V
(

1 + δV cos(ωt)
)

.

We remark that the approach V0(t) = V cos(ωt)) would violate the applicability
of the one-band Bose-Hubbard model which necessitates a deep lattice to be a
correct description.

So for a small modulation δV we can insert V0(t) into the equations (2.9)
and (2.10) from the end of the first chapter. Before we do that we have to adapt
these equations to our one-dimensional Bose-Hubbard model. Following [39]
we introduce a strong transverse confining potential V⊥ such that the bosons
effectively have only one degree of freedom. In this case (2.9) and (2.10) read

J(t)

ER
=

4√
π

(V (1 + δV cos(ωt))

ER

) 3
4 exp

(

− 2

√

V (1 + δV cos(ωt))

ER

)

and

U(t)

ER
=

√

8

π
kas
(V (1 + δV cos(ωt))V 2

⊥
E3
R

) 1
4 .

We adopt the setup of [39]:

V = 15ER

V⊥ = 30ER

λ = 825nm

as = 5.45nm .

It turns out that the system absorbs energy only for specific values of ω. If ~ω =
U
2 two-photon absorption takes place and single-photon absorption happens if
~ω is an integer multiple of U [39].

We propagate the ground state of the hard wall Bose-Hubbard Hamiltonian
with the above parameters. This propagation with a time-dependent Hamilto-
nian is implemented with a Fatunla algorithm [109]. It is slightly more efficient
than our standard Runge-Kutta algorithm. In the left part of Figure 4.10 the
energy absorption is shown for ω being out of resonance. Clearly the system
does not absorb any significant amount of energy. In the right part of Figure
4.10 the energy absorption is shown for ω = U being in resonance. Obviously
the system absorbs energy. It is noticeable that we observe the energy absorp-
tion with rather small systems. In contrast, in [39] they use a DMRG method
to investigate the Bose-Hubbard Hamiltonian with L = 32 wells and N = 32
bosons.



122 Quantum entanglement in the Bose-Hubbard model

0 2000 4000 6000 8000 10000

t

0

0,1

0,2

0,3

0,4

E
(t

)

0 2000 4000 6000 8000 10000

t

0

0,1

0,2

0,3

0,4

Figure 4.10: Energy absorption with ω out of resonance (left) and with ω =
U in resonance (right) for the ground state of the hard wall Bose-Hubbard
Hamiltonian with L = 4 = N (red, thin line), L = 5 = N (green, thin dashed
line), L = 6 = N (blue, thin dash dotted line), L = 7 = N (violet, thick line)
and L = 8 = N (orange, thick dashed line); see Section 2.1.1 for the units of
time. We conclude that energy is absorbed only in resonance. We remark that
we can find the resonances with our rather small systems just as well as Kollath

et al. in [39] where they use DMRG methods to investigate the Bose-Hubbard
Hamiltonian with L = 32 wells and N = 32 bosons.

Remarkably it turns out that also only in these resonances of ω big amounts
of practical entanglement arise. This surely is a manifestation of the close
relationship between the resources energy and entanglement. The left part of
Figure 4.11 depicts practical entanglement and probability for the ground state
of the hard wall Bose-Hubbard Hamiltonian with L = 4 wells and N = 2 bosons.
Obviously practical entanglement and probability oscillate but do not change
significantly. This is different if we propagate the ground state in resonance
for ω = U , as can be seen in the right part of Figure 4.11. Now practical
entanglement and probability change in time. We have to emphasize that we
can not explain the period of the oscillation in Figure 4.11. We believe that
this oscillation is connected to the driving frequency, but we have to further
investigate that.

As we see in Figure 4.11 it is not possible to obtain the entanglement EoE =
1 of a Bell pair. So we are unable to generate the state

|β〉 =
1√
2
(|1010〉 + |0101〉) .

In fact, even by using other initial states we could not exceed the practical
entanglement seen in Figure 4.11. We suspect that the system of L = 4 wells
and N = 2 bosons has a natural limit in the amount of practical entanglement
that can be generated from it, but this needs further investigation.

The situation is different if we consider L = 4 wells and N = 4 bosons. Here
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Figure 4.11: Practical entanglement quantified by the EoE to the basis 2 (red,
thin line) and probability p (green, dashed line) for the propagation of the
ground state of the hard wall Bose-Hubbard Hamiltonian with L = 4 wells and
N = 2 bosons for ω out of resonance (left) and ω = U in resonance (right); see
Section 2.1.1 for the units of time. While practical entanglement and probability
do not change significantly if the system is driven out of resonance, both do
change if the system is driven in resonance.

the maximally practically entangled state is

|β〉 =
1√
3
(|2020〉 + |1111〉 + |0202〉)

with

EoE(|β〉) = log(3)

≈ 1.58

and this amount of practical entanglement can indeed be generated as we show
in Figure 4.12. Around t = 2000 and t = 7000 the generated practical entan-
glement gets arbitrarily close to the maximal amount of entanglement possible,
which is EoE ≈ 1.58 in this case.

Now the question is, of course, how we can access this practical entanglement
around t = 7000. In our opinion a self-evident approach is given by stopping
the periodic modulation of V0 at the desired time t and simultaneously lowering
the lattice depth V0. By doing this the quantum state of time t should be
saved. As we conclude from Figure 4.13 this indeed happens. The lowering
of the lattice depth V0 can be easily achieved experimentally by enhancing the
power of the laser that creates the optical lattice. Also the separation of double
wells can be easily done experimentally by imposing a second lattice [41]. Hence
this complete scheme for the generation of practical entanglement in the Bose-
Hubbard model can be realized experimentally.
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Figure 4.12: Practical entanglement quantified by the EoE to the basis 2 (red,
thin line) and probability p (green, dashed line) for the propagation of the
ground state of the hard wall Bose-Hubbard Hamiltonian with L = 4 wells and
N = 4 bosons for ω = U in resonance. Remarkably around t = 2000 and
around t = 7000 the generated practical entanglement is arbitrarily close to the
maximally possible amount of entanglement EoE ≈ 1.58.
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Figure 4.13: Practical entanglement quantified by the EoE to the basis 2 (red,
thin line) and probability p (green, dashed line) for the propagation of the
ground state of the hard wall Bose-Hubbard Hamiltonian with L = 4 wells
and N = 4 bosons for ω = U in resonance, where we simultaneously stop the
periodic modulation of V0 and lower V0 around t = 7000. We conclude that this
scheme allows to save the generated maximally practically entangled state.
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We just want to note here that we additionally implemented the setup where
the next-neighbouring wells respectively moved up and down with the same
frequency such that we had two lattices and two frequencies. Indeed, these
two frequencies could be adjusted to produce bigger areas of constant maximal
practical entanglement.

Let us briefly summarize the results obtained in this chapter. First we intro-
duced the notion of practical entanglement as the standard kind of entanglement
that can be used for quantum teleportation and superdense coding. We showed
that this practical entanglement is given in the Bose-Hubbard model by Wan-
nier mode entanglement between double wells where the local particle number
is measured and hence fix. Finally we presented a novel experimentally realiz-
able scheme that allows to generate practical entanglement in the Bose-Hubbard
model. With this scheme we generated and stored the entanglement EoE ≈ 1.58
of a maximally entangled qutrit.
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Chapter 5

Chaotic entanglement in the

Bose-Hubbard model

In this chapter we want to investigate in how far the methods of entanglement
theory can be used to distinguish the regular and the chaotic regime of the
Bose-Hubbard Hamiltonian. We propose to abbreviate entanglement arising
in the chaotic regime by chaotic entanglement. While we located the regular
and the chaotic regime of the Bose-Hubbard Hamiltonian by means of spectral
and dynamic analysis in Chapter 3, we elaborated in how far entanglement
theory can be reasonably applied to the Bose-Hubbard model in Chapter 4.
Here we want to establish the link between these two chapters by studying
the entanglement properties of the regular and the chaotic regime of the Bose-
Hubbard Hamiltonian.

More precisely, we are interested in quantum correlations and mode en-
tanglement, since these are the two major manifestations of entanglement in
the Bose-Hubbard model. For quantum correlations between indistinguishable
bosons we refer to our own approach developed in Section 4.3. For mode entan-
glement we refer to the work of Schuch et al. [75]. As already explained in the
introduction to Chapter 4, Schuch et al. proved that asymptotic mode entan-
glement in systems of constant global particle number is completely described
by two quantities, namely the entropy of entanglement and the superselection
induced variance

SiV (|ψ〉) = 4(〈ψ|N̂2
A|ψ〉 − 〈ψ|N̂A|ψ〉2) .

As discussed in Chapter 2 Wannier and Bloch Fock states form a canonical
basis of the Bose-Hubbard Hamiltonian respectively. Additionally the Wannier
occupation numbers of the different sites and the Bloch occupation numbers
of the different quasimomenta are directly accessible in an experiment. This is
why we will focus on Wannier and Bloch mode entanglement.

In analogy to Chapter 3, where we assigned the regular and the chaotic
regime by static and dynamic arguments, a complete characterization of the
entanglement properties of the regular and the chaotic regime also has to be
done via static as well as dynamic considerations. We define the static part
to be given by the entanglement properties of the eigenstates and the dynamic
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part to coincide with the entanglement properties of propagated states.
It was shown by Venzl et al. that the time evolution of generic initial states

with the Bose-Hubbard Hamiltonian in the chaotic regime can not be computed
reliably by means of time-dependent DMRG methods [110]. Time-dependent
DMRG methods apply the Schmidt decomposition to all possible bipartitions
of the evolving quantum state and then cut off the parts of the basis that
correspond to the smallest Schmidt coefficients [111, 112]. By doing so the cal-
culation is performed in an effective basis that can be substantially smaller than
the initial basis of the total Hilbert space. However, Venzl et al. found out that
during the propagation in the chaotic regime all Schmidt coefficients become
approximately equal to each other such that neglecting parts of the basis can
lead to a considerable error in the calculation. Hence time-dependent DMRG
methods can only badly simulate dynamics of the Bose-Hubbard model in the
chaotic regime. On the other hand all Schmidt coefficients being equal to each
other implies high entropy of entanglement. So dynamic chaotic entanglement
is expected to be characterized by a high degree of mode entanglement.

Remarkably Kubotani et al. discovered universality of the distribution of
Schmidt coefficients in the dynamics of quantum chaotic systems [113]. This
implies that dynamic chaotic mode entanglement has universal properties. We
expect that such universal properties exist for static and dynamic chaotic en-
tanglement in general.

In the first half of this chapter we will study the static entanglement prop-
erties of the eigenstates of the Bose-Hubbard Hamiltonian. In particular, we
will be interested in the ground state and in the average entanglement prop-
erties of all eigenstates. In the second half of this chapter we will analyze the
dynamic change of entanglement during propagation with the Bose-Hubbard
Hamiltonian. Here we will look at the propagation of the Fock state with high-
est initial energy and we will average the change of entanglement over many
propagated states. By considering quantum correlations, Wannier and Bloch
entropy of entanglement and Wannier and Bloch superselection induced vari-
ance we will obtain a comprehensive picture of the entanglement properties of
the Bose-Hubbard Hamiltonian in the regular and in the chaotic regime.

5.1 Entanglement properties of the eigenstates

In this section we want to study the static entanglement properties of the eigen-
states of the Bose-Hubbard Hamiltonian. We will first inspect single eigenstates,
namely the ground state and five selected excited states. Finally we will average
over all eigenstates.

5.1.1 Single eigenstates

Let us begin with the entanglement properties of the ground state of the periodic
Bose-Hubbard Hamiltonian with unit filling.

Figure 5.1 depicts our measure of quantum correlations QC, which is de-
fined in Section 4.3, applied to the ground state of the periodic Bose-Hubbard
Hamiltonian with unit filling and different system sizes. At u = 0, where J = 1
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Figure 5.1: Quantum correlations QC(u) applied to the ground state of the
periodic Bose-Hubbard Hamiltonian with L = 3 = N (red, thin line), L =
4 = N (green, thin dashed line), L = 5 = N (blue, thin dash dotted line),
L = 6 = N (violet, thick line) and L = 7 = N (orange, thick dash dotted line).

and U = 0, our measure of quantum correlations is zero as expected because
quantum correlations originate from the two-particle interaction given by U (c.f.
Section 4.3). This is also the reason why QC is low for U ≪ J and high for
U ≫ J . The maxima of the curves are due to the quantum critical point at
ucrit. ≈ 0.79 and they get more pronounced with growing system size, which sug-
gests a finite size scaling. We conclude that quantum correlations of the ground
state are low in the regular regime of small u, they are high in the chaotic regime
of intermediate u and they are high in the regular regime of large u.

We refer to Figure 3.5 and to Figure 3.18 from Chapter 3 for the location of
the regular and the chaotic regime in the spectrum of the periodic Bose-Hubbard
Hamiltonian with unit filling. While Figure 3.5 specifies the two regimes by
spectral statistics, Figure 3.18 assigns the regular and the chaotic regime via
the number of avoided crossings. As explained in Chapter 3 these avoided
crossings are energy levels that come very close to each other but do not cross.
In particular, an eigenstate corresponding to an energy level with an avoided
crossing can change considerably at this avoided crossing. This will be important
in the following because in the limits u = 0 and u = 1 the eigenstates are single
Fock states. More precisely, for u = 0 the eigenstates are Bloch Fock states
and for u = 1 the eigenstates are Wannier Fock states. But moving away from
these integrable points u = 0 and u = 1 to u ∈ (0, 1) avoided crossings cause
the eigenstates to become superpositions of many Fock states. This can be also
seen in Figure 3.3.

In Figure 5.2 we applied Wannier and Bloch mode entanglement, charac-
terized by the entropy of entanglement EoE and the superselection induced
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Figure 5.2: Wannier entropy of entanglement EoEW (u) and Wannier superselec-
tion induced variance SiVW (u) (upper half) and Bloch entropy of entanglement
EoEB(u) and Bloch superselection induced variance SiVB(u) (lower half) be-
tween two neighbouring modes and the remaining modes applied to the setting
of Figure 5.1 with the same colour code.

variance SiV , between two neighbouring modes and the remaining modes to
the ground state of the periodic Bose-Hubbard Hamiltonian with unit filling
and different system sizes. In the following we always summarize the two quan-
tities entropy of entanglement EoE and superselection induced variance SiV in
the notion mode entanglement. Often EoE and SiV imply the same conclusions
and then we prefer to simply speak of mode entanglement, meaning both EoE
and SiV .

In the regular regime of small u the ground state is expected to be a super-
position of many Wannier Fock states and it is expected to be a superposition
of few Bloch Fock states. This follows from Figure 3.3. We remark that Figure
3.3 shows an average over all eigenstates, but nevertheless one would expect the
ground state to have the same properties. Hence it is not surprising that in
the regular regime of small u Wannier mode entanglement is high and Bloch
mode entanglement is low and it is the other way around in the regular regime
of large u. In the chaotic regime of intermediate u both Wannier and Bloch
mode entanglement are non-vanishing. We conclude that mode entanglement of
the ground state can be low in the regular regime of small u and in the regular
regime of high u depending on the chosen modes, but it is always high in the
chaotic regime of intermediate u.

So we can identify the chaotic regime by a high degree of mode entanglement
independent of the chosen modes. And we can identify the regular regime by
the existence of a set of modes that has a low degree of mode entanglement.
Moreover, since quantum correlations are also high in the chaotic regime it seems
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Figure 5.3: Quantum correlations QC(u) applied to eigenstate 2 (red, thin line),
eigenstate 7 (green, thin dashed line), eigenstate 12 (blue, thin dash dotted
line), eigenstate 17 (violet, thick line) and eigenstate 22 (orange, thick dash
dotted line) of the periodic Bose-Hubbard Hamiltonian with L = 5 = N and
quasimomentum k = 1.

as if any kind of entanglement is high in the chaotic regime. However, at the
moment we are just talking about the entanglement properties of the ground
state and it is interesting to see if the same holds for excited states. As five
selected eigenstates we pick eigenstate 2, eigenstate 7, eigenstate 12, eigenstate
17 and eigenstate 22 of the periodic Bose-Hubbard Hamiltonian with L = 5
wells, N = 5 bosons and quasimomentum k = 1.

In Figure 5.3 we present our measure of quantum correlations applied to five
eigenstates of the periodic Bose-Hubbard Hamiltonian with L = 5 = N and
quasimomentum k = 1. We can not make out any tendency of the quantum
correlations of these five eigenstates, in contrast to quantum correlations of the
ground state where we could find a clear tendency in Figure 5.1. The rapid
changes of the curves are due to the presence of avoided crossings where the
eigenstates can change considerably. We conclude that quantum correlations
of eigenstates other than the ground state do not allow for a straightforward
distinction between the regular and the chaotic regime. However, here we only
consider the rather small system of L = 5 = N and the situation might be
different for larger systems. In fact, as can be seen in Figure 5.5, the average
quantum correlations over all eigenstates show a clear tendency with growing
system size.

Figure 5.4 is a plot of Wannier and Bloch mode entanglement between two
neighbouring modes and the remaining modes applied to five eigenstates of the
periodic Bose-Hubbard Hamiltonian with L = 5 = N and quasimomentum
k = 1. While Wannier entropy of entanglement EoEW tends to get smaller
with increasing u, Wannier superselection induced variance SiVW does not show
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Figure 5.4: Wannier entropy of entanglement EoEW (u) and Wannier superselec-
tion induced variance SiVW (u) (upper half) and Bloch entropy of entanglement
EoEB(u) and Bloch superselection induced variance SiVB(u) (lower half) be-
tween two neighbouring modes and the remaining modes applied to the setting
of Figure 5.3.

a tendency. We remark that there is a discontinuous jump from u = 1 to
u < 1 in EoEW and SiVW . As already discussed in the introduction to Chapter
2, this discontiuous jump is due to an immediate splitting up of degenerate
energy levels if one goes from u = 1 to u < 1. Interestingly Bloch mode
entanglement of these five eigenstates qualitatively has the same properties as
Bloch mode entanglement of the ground state, i.e. it is zero at u = 0 and grows
with increasing u. We believe that Bloch modes are exceptional because they
already take the periodic boundary conditions of our Hamiltonian into account
(c.f. Section 2.1.3). Let us note again that the rapid changes of the curves
are due to the presence of avoided crossings where the eigenstates can change
considerably.

We conclude that Wannier entropy of entanglement of eigenstates other than
the ground state tends to get smaller with increasing u but does not vanish con-
tinuously in the limit u = 1. However, Wannier superselection induced variance
of eigenstates other than the ground state does not show a clear tendency. We
conclude that both Bloch entropy of entanglement and superselection induced
variance of eigenstates other than the ground state tend to grow with increasing
u but do not vanish continuously in the limit u = 1.

So also for eigenstates other than the ground state one can say that in the
chaotic regime mode entanglement is high independent of the chosen modes.
In the regular regime there exist modes such that mode entanglement is low,
where low is meant compared to the chaotic regime. Quantum correlations did
not show a clear tendency. However, we investigated a rather small system



5.1 Entanglement properties of the eigenstates 133

0 0,2 0,4 0,6 0,8 1

u

0,1

0,2

0,3

<
Q

C
(u

)>

Figure 5.5: Average quantum correlations 〈QC(u)〉 of all eigenstates applied
to the periodic Bose-Hubbard Hamiltonian with quasimomentum k = 1 and
L = 3 = N (red, thin line), L = 4 = N (green, thin dashed line), L = 5 = N
(blue, thin dash dotted line) and L = 6 = N (violet, thick line).

of L = 5 = N and the question arises how the entanglement properties of the
eigenstates change if the system grows. We want to analyze this in the following
by looking at the average entanglement properties of all eigenstates.

5.1.2 Many eigenstates

Finally we address the average entanglement properties of all eigenstates of the
periodic Bose-Hubbard Hamiltonian with unit filling.

Figure 5.5 depicts the average quantum correlations of all eigenstates of the
periodic Bose-Hubbard Hamiltonian with quasimomentum k = 1, unit filling
and different system sizes. With growing system size the average quantum
correlations of all eigenstates are decreasing with increasing u. This is surprising
because the two-particle interaction given by U determines quantum correlations
and so one would expect them to be high for large u, as it is the case for the
ground state in Figure 5.1. At the moment we do not have an explanation why
the average quantum correlations of all eigenstates are high for small u.

Figure 5.6 is a plot of the average Wannier and Bloch mode entanglement
between two neighbouring modes and the remaining modes of all eigenstates
of the periodic Bose-Hubbard Hamiltonian with quasimomentum k = 1, unit
filling and different system sizes. The plots shown in Figure 5.6 allow for the
same interpretation as the plots shown in Figure 5.4 and so we are not going
to repeat us here. Surprisingly the average Wannier superselection induced
variance of all eigenstates is constant for all values of u and this is not the case
for single eigenstates as can be seen in Figure 5.4. This certainly needs further
investigation.
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Figure 5.6: Average Wannier entropy of entanglement 〈EoEW (u)〉 and average
Wannier superselection induced variance 〈SiVW (u)〉 (upper half) and average
Bloch entropy of entanglement 〈EoEB(u)〉 and average Bloch superselection
induced variance 〈SiVB(u)〉 (lower half) between two neighbouring modes and
the remaining modes of all eigenstates applied to the setting of Figure 5.5.

Summing up our results concerning the static entanglement properties of the
periodic Bose-Hubbard Hamiltonian we conclude that quantum correlations,
Wannier mode entanglement and Bloch mode entanglement of all eigenstates
are high in the chaotic regime of intermediate u and they can be low or high
in the regular regime of small or large u. In particular, with respect to mode
entanglement in the regular regime there always exists a set of modes with low
mode entanglement.

5.2 Entanglement properties of propagated states

Now we want to analyze the dynamic entanglement properties of propagated
states evolving with the Bose-Hubbard Hamiltonian. We will start by propa-
gating the highly excited Fock state to highest energy. This is the setting that
we also studied in the context of the dynamic fidelity in Section 3.2.1. In the
second part of this section we will average over all propagated Fock states, in
the same way as we averaged over all eigenstates in our above investigation of
static entanglement properties. Let us emphasize that the units of time, in the
following plots, are thoroughly explained in Section 2.1.1.

5.2.1 Propagation of a highly excited Fock state

Here we want to propagate the Fock state of highest energy with the periodic
Bose-Hubbard Hamiltonian of L = 5 wells and N = 5 bosons and investigate
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how its entanglement properties change in time. In this system the Wannier Fock
state of highest energy reads |50000〉W because the two-particle interaction U
is repulsive and hence the state of all bosons sitting in the same well must have
the highest energy. The Bloch Fock state of highest energy reads |05000〉B and
this can be calculated by means of (2.8).

We remark that we also studied the propagation of the Fock state to lowest
energy, i.e. |11111〉W and |00005〉B. However, it allowed for the same conclu-
sions as the propagation of the Fock state to highest energy and so we decided
not to show these results here. We just want to add that since these two states
differ maximally in their energy it is expected that all Fock states exhibit the
same behaviour in the different dynamic regimes.

Figure 5.7 shows the quantum correlations of the propagated Wannier Fock
state |50000〉W of highest energy evolving with the periodic Bose-Hubbard
Hamiltonian with J = 10 and U = 1 in the regular regime, with J = 1 = U in
the chaotic regime and with J = 1 and U = 10 in the regular regime. We refer to
Figure 3.5 and Figure 3.18 for the precise location of the regular and the chaotic
regime in the periodic Bose-Hubbard Hamiltonian with unit filling. As explained
in Section 4.3.1 the state |50000〉W = |00000〉p, where the subscript p denotes
the particle picture, is a separable state of five indistinguishable bosons. This
is the reason why quantum correlations initially are zero, i.e. QC(t = 0) = 0.
They more or less remain zero during the propagation in the regular regime
of J = 1 and U = 10, and this makes sense because there the initial state
|50000〉W is very close to an eigenstate, which is of course stationary. However,
as the ratio J

U
increases also the change of quantum correlations increases. The

inset of Figure 5.7 reveals that the initial growth of quantum correlations is
bigger in the regular regime of J = 10 and U = 1 than it is in the chaotic
regime of J = 1 = U . These observations can be explained because the ratio
J
U

determines how far the initial state is away from a stationary eigenstate. We
conclude that the quantum correlations change most in the regular regime for
J = 10 and U = 1 and in the chaotic regime for J = 1 and U = 1, and they
change least in the regular regime for J = 1 and U = 10.

5.8 shows the quantum correlations of the propagated Wannier Fock state
|50000〉W of highest energy evolving with the periodic Bose-Hubbard Hamilto-
nian with J = 1 − u and u = U at a specific time T = 100, T = 1000 and
T = 10000. Qualitatively the three curves look the same. There are huge oscil-
lations which are due to the finite size of the system, as we will later see when
we study bigger systems. We conclude that quantum correlations change most
in the regular regime of small u and in the chaotic regime of intermediate u and
they change least in the regular regime of large u.

In Figures 5.9 and 5.10 we applied Wannier and Bloch mode entanglement
between two neighbouring modes and the remaining modes to the setting from
above. Referring to Figure 5.9 we conclude that in the regular regime of J = 10
and U = 1 the change in Wannier mode entanglement is high and the change
in Bloch mode entanglement is low, in the chaotic regime of J = 1 = U the
change in both is high and in the regular regime of J = 1 and U = 10 the
change in Wannier mode entanglement is low and the change in Bloch mode
entanglement is high. This makes sense if one keeps in mind that for the intial



136 Chaotic entanglement in the Bose-Hubbard model

0 10 20 30 40 50

t

0,05

0,1

0,15

0,2

0,25

Q
C

(t
)

0 1 2 3 4 5
t

0,1

0,2

Q
C

(t
)

Figure 5.7: Quantum correlations QC(t) of the propagated Wannier Fock state
|50000〉W of highest energy evolving with the periodic Bose-Hubbard Hamilto-
nian of L = 5 = N in the regular regime for J = 10 and U = 1 (red, thin line),
in the chaotic regime for J = 1 and U = 1 (green, thin dashed line) and in the
regular regime for J = 1 and U = 10 (blue, thin dash dotted line); note the
inset which is a close-up of the beginning of the propagation. We conclude that
the quantum correlations change most in the regular regime for J = 10 and
U = 1 and in the chaotic regime for J = 1 and U = 1, and they change least in
the regular regime for J = 1 and U = 10.
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Figure 5.8: Change of quantum correlations QC(t = T )(u) of the initially sepa-
rable propagated Wannier Fock state |50000〉W of highest energy evolving with
the periodic Bose-Hubbard Hamiltonian parametrized by J = 1− u and U = u
with L = 5 = N at a time T = 100 (red, thin line), at a time T = 1000 (green,
thin dashed line) and at a time T = 10000 (blue, thin dash dotted line).
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Figure 5.9: Wannier entropy of entanglement EoEW (t) and Wannier superselec-
tion induced variance SiVW (t) (upper half) and Bloch entropy of entanglement
EoEB(t) and Bloch superselection induced variance SiVB(t) (lower half) be-
tween two neighbouring modes and the remaining modes applied to the setting
of Figure 5.7. We conclude that in the regular regime of J = 10 and U = 1 the
change in Wannier mode entanglement is high and the change in Bloch mode
entanglement is low, in the chaotic regime of J = 1 = U the change in both
is high and in the regular regime of J = 1 and U = 10 the change in Wannier
mode entanglement is low and the change in Bloch mode entanglement is high.

Wannier Fock state |50000〉W the ratio J
U

determines how far it is away from a
stationary eigenstate and for the initial Bloch Fock state |05000〉B the ratio U

J

determines how far it is away from a stationary eigenstate.

Referring to Figure 5.10 we see that the mode entanglement qualitatively
is the same at T = 100, T = 1000 and T = 10000. There are, however,
huge oscillations in the superselection induced variance, which are finite size
effects as we will soon see. We conclude that in the regular regime of small u
Wannier mode entanglement is high while Bloch mode entanglement is low, in
the chaotic regime of intermediate u both are high and in the regular regime
of large u Wannier mode entanglement is low and Bloch mode entanglement is
high.

Let us recapitulate the obtained results. The propagation of a highly excited
state indeed allows to distinguish the regular and the chaotic regime. In the
chaotic regime the change of entanglement is always high, and this is true for
quantum correlations as well as mode entanglement. In the regular regime there
exist modes such that the change in mode entanglement is low. Since we only
considered one propagated state in a rather small system of L = 5 = N it is now
self-evident to study the dynamic entanglement properties of many propagated
states in systems of different size. We do this in complete analogy to the above
static analysis.
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Figure 5.10: Change of Wannier entropy of entanglement EoEW (t = T ) and
change of Wannier superselection induced variance SiVW (t = T ) (upper half)
and change of Bloch entropy of entanglement EoEB(t = T ) and change of
Bloch superselection induced variance SiVB(t = T ) (lower half) between two
neighbouring modes and the remaining modes applied to the setting of Figure
5.8.

5.2.2 Many propagated states

Finally let us consider the average change of entanglement of many propagated
Fock states. More precisely, for quantum correlations and Wannier mode en-
tanglement we will propagate the complete Wannier Fock basis and for Bloch
mode entanglement we will propagate the complete Bloch Fock basis.

Figure 5.11 shows the average change of quantum correlations of all propa-
gated Wannier Fock states evolving with the periodic Bose-Hubbard Hamilto-
nian with unit filling and different system sizes at a sufficiently large time. This
sufficiently large time is taken from Figure 5.8 to be T = 1000, because there
we could not see a significant difference between the times T = 100, T = 1000
and T = 10000. Because Wannier Fock states in general have a huge amount of
quantum correlations, e.g. the state |11111〉W is a maximally entangled state of
five indistinguishable bosons according to our formalism in Section 4.3, we have
to plot the quantity |QC(t = T ) − QC(t = 0)|(u). Only this quantity reflects
the change of quantum correlations in time reasonably. We conclude that the
average change of quantum correlations of all propagated Wannier Fock states
is high in the regular regime of small u and in the chaotic regime of intermediate
u and it is low in the regular regime of large u. This is the same result that we
obtained for the single highly excited propagated state. However, in Figure 5.11
we see that as the system size grows and as the number of propagated states
grows the oscillations get smaller.

In Figure 5.12 we see the average change of Wannier mode entanglement
between two neighbouring modes and the remaining modes of all propagated
Wannier Fock states and the average change of Bloch mode entanglement be-
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Figure 5.11: Average change of quantum correlations 〈|QC(t = T ) − QC(t =
0)|(u)〉 of all propagated Wannier Fock states evolving with the periodic Bose-
Hubbard Hamiltonian of L = 3 = N (red, thin line), L = 4 = N (green, thin
dashed line), L = 5 = N (blue, thin dash dotted line) and L = 6 = N (violet,
thick line) at a time T = 1000.

tween two neighbouring modes and the remaining modes of all propagated Bloch
Fock states in the setting from above. The sufficiently large time T = 1000 is
justified by Figure 5.10 where no significant difference could be found between
the curves to T = 100, T = 1000 and T = 10000. We conclude that in the
regular regime of small u Wannier mode entanglement is high while Bloch mode
entanglement is low, in the chaotic regime of intermediate u both are high and
in the regular regime of large u Wannier mode entanglement is low and Bloch
mode entanglement is high. Again this can be understood if one keeps in mind
that the ratio J

U
determines how far initial Wannier Fock states are away from

stationary eigenstates and the ratio U
J

determines how far initial Bloch Fock
states are away from stationary eigenstates.

In summary we conclude that the change of quantum correlations, Wannier
mode entanglement and Bloch mode entanglement in the propagation of a highly
excited Fock state is high in the chaotic regime of intermediate u and it can be
low or high in the regular regime of small or large u. The same is true for the
average change of entanglement properties of all propagated Fock states. Hence
we can characterize the chaotic regime by a high change of entanglement. On
the other hand, in the regular regime there always exist modes such that the
change in mode entanglement is low.
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Figure 5.12: Average change of Wannier entropy of entanglement 〈EoEW (t =
T )(u)〉 and average change of Wannier superselection induced variance
〈SiVW (t = T )(u)〉 between two neighbouring modes and the remaining modes
of all initially separable propagated Wannier Fock states and average change
of Bloch entropy of entanglement 〈EoEB(t = T )(u)〉 and average change of
Bloch superselection induced variance 〈SiVB(t = T )(u)〉 between two neigh-
bouring modes and the remaining modes of all initially separable propagated
Bloch Fock states applied to the setting of Figure 5.11.



Chapter 6

Conclusions and perspectives

In this diploma thesis we studied aspects of quantum chaos and entanglement
in the Bose-Hubbard model.

Concerning quantum chaos we first analyzed dynamic characteristics by
means of the fidelity. Astonishingly its decay is always the same in the reg-
ular regime independent of the perturbation and this is not true in the chaotic
regime. This allows for a nice analogy between quantum chaos and classical
chaos, if one interprets the perturbation in the parameter of the fidelity as the
initial distance between two points in classical phase space. In classical regular
motion one would expect that the distance between the two resulting trajecto-
ries does not depend significantly on the initial distance. That this is true for
the fidelity confirms the close connection between the fidelity in quantum chaos
and the notion of classical chaos.

Then we investigated spectral properties and derived our own measure for
the detection of the chaotic regime by counting avoided crossings. The standard
approach for the classification of the regular and the chaotic regime is via inves-
tigation of the level spacing distribution and in general needs an unfolding of
the spectrum. This unfolding can be involved and severely limits the validity of
the result. Our novel method reliably and unambiguously distinguishes regular
and chaotic and is easy to evaluate. Moreover, we showed that the standard
approach can assign regularity to a spectrum which has a large number of dense
lying avoided crossings and hence cannot be regular. This was the case with the
spectrum of the periodic Bose-Hubbard Hamiltonian with L = 37 and N = 3.
Hence our new measure is a necessary supplementary tool for the investigation
of regular and chaotic spectra.

Concerning quantum entanglement we developed proper notions of entangle-
ment for our system concluding that there are mainly two different perspectives.
If the entangled entities under consideration are the indistinguishable bosons the
entanglement is called quantum correlations between indistinguishable particles.
If the entangled entities under consideration are the occupation numbers in the
Fock states the entanglement is called mode entanglement. We derive our own
measure for quantum correlations between indistinguishable bosons that has
a reasonable interpretation and allows to quantify entanglement in systems of
arbitrarily many indistinguishable bosons. Up to now there exist many ap-
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proaches to entanglement between indistinguishable particles in the literature.
These are, however, either formulated only for two indistinguishable particles
or they are not efficiently computable. Our measure is a completely new ap-
proach, and we confirm its validity in several different scenarios. In particular,
we showed that our measure pinpoints the quantum critical point of the quan-
tum phase transition in the periodic Bose-Hubbard Hamiltonian with unit filling
to ( J

U
)crit. = 0.26 ± 0.02 without need of finite size scaling. In this context we

also studied mode entanglement and showed that it does not locate this crit-
ical point comparably. Hence we conclude that the quantum phase transition
manifests itself rather in entanglement between indistinguishable bosons than
in entanglement between modes.

We then proposed a novel experimentally realizable method for the genera-
tion of practical entanglement in the Bose-Hubbard model. Here we introduced
the notion of practical entanglement for practically useful entanglement, that
is meant if one speaks about standard entanglement between distinguishable
particles. This standard entanglement, due to its nonlocal properties, can be
used for quantum teleportation and superdense coding. Even though there ex-
ist many works to the generation of entanglement in the Bose-Hubbard model,
mostly they are not concerned with practical entanglement and so it remains an
open question on how the generated entanglement can be used practically, e.g.
for quantum teleportation. We show with our novel technique how a maximally
entangled qutrit can be generated and stored in the Bose-Hubbard model.

Finally we addressed the question if the tools of entanglement theory can
be used to separate the regular and the chaotic regime in the Bose-Hubbard
model. We investigated static entanglement properties of the eigenstates and
dynamic entanglement properties of propagated states. We showed that the
chaotic regime is characterized by a high degree of entanglement, both quantum
correlations and mode entanglement, in the eigenstates and in propagated states.
Since we looked at two fundamentally different kinds of entanglement, namely
quantum correlations and mode entanglement, in static and dynamic settings
we conjecture that there is always a high degree of entanglement in the chaotic
regime, independent of the specific kind of entanglement and independent of
the specific setting. We showed that in the regular regime there always exists
a set of modes such that mode entanglement is low. We conclude that mode
entanglement is the proper entanglement measure to distinguish the regular and
the chaotic regime. If we can not find a set of modes with low mode entanglement
we are in the chaotic regime, whereas if we can find a set of modes with low
mode entanglement we are in the regular regime.

We conclude that the usefulness of a specific measure depends on the precise
task. Our proposed measure of quantum correlations between indistinguishable
bosons locates the quantum critical point very well, but does not allow a clear
separation of the regular and the chaotic regime. On the other hand mode en-
tanglement does not pinpoint the quantum critical point very well, but it is a
good tool for the specification of the regular and the chaotic regime. Neverthe-
less, in order to determine the regular to chaotic transition in the spectrum of
the Bose-Hubbard Hamiltonian our novel method of counting avoided crossings
turned out to be the best approach.
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In the future we want to apply our proposed measures to larger systems. This
is numerically demanding, but interesting from an experimental point of view,
since in experiments usually large numbers of bosons in extended lattices are
studied. In the context of quantum chaos, we want to determine the distribution
of avoided crossings in the spectrum of large systems. In the context of quantum
entanglement, we further want to analyze the quantum phase transition with
our new measure of quantum correlations between indistinguishable bosons by
means of finite size scaling.

We believe that the relation between single-copy and asymptotic entangle-
ment measures is an interesting topic for further studies. In Section 4.2 we
showed numerical evidence that a single-copy entanglement measure proposed
by Eisert qualitatively behaves the same as the asymptotic entanglement mea-
sure entropy of entanglement. However, while Eisert’s measure needs only the
largest Schmidt coefficient the entropy of entanglement needs all Schmidt co-
efficients. Since numerically the largest Schmidt coefficient can be obtained
more efficiently than all Schmidt coefficients, single-copy entanglement can be
evaluated for larger systems. Addtionally single-copy entanglement is favored
by experimentalists because its interpretation relies on only one copy of the
state under consideration, while the interpretation of asymptotic entanglement
requires infinitely many copies of the state under consideration.

Another exciting subject is multipartite entanglement in the Bose-Hubbard
model. Mintert introduced a measure for multipartite entanglement that can be
computed efficiently [101]. While we thoroughly studied bipartite entanglement
in this thesis, we are now in a position to address multipartite entanglement.
E.g. in this context an interesting question is the importance of multipartite
entanglement in the quantum phase transition.
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Appendix A

Quantum teleportation

This chapter on quantum teleportation is especially important for the proof of
the entropy of entanglement in Appendix B. Unfortunately in the literature only
the simplest form of quantum teleportation is explained [30], and so we derive
here our own procedure for the quantum teleportation of an arbitrary quantum
state.

Quantum teleportation is about sending the state of a quantum system over
a quantum channel represented by a maximally entangled state shared between
sender and receiver. As usual in quantum information theory the communicating
parties are called Alice and Bob, and they are sufficiently far away from each
other. We will explain the simplest settings first for the reader to become
acquainted with the subject, but in the end we will teach a constructive method
to teleport the entanglement present in an arbitrary finite-dimensional state
over a maximally entangled state.

First Alice and Bob share a Bell state |β〉 = 1√
2
(|00〉 + |11〉) and Alice has

a qubit |ψ〉 = α|0〉 + β|1〉 that she wants to teleport to Bob. Thus their entire
state reads

|ψ〉 ⊗ |β〉 = (α|0〉 + β|1〉) ⊗ (
1√
2
(|00〉 + |11〉))

=
α√
2
(|000〉 + |011〉) +

β√
2
(|100〉 + |111〉) .

It is important to have in mind that the first two kets correspond to Alice’s
qubit |ψ〉 and Alice’s half of the shared maximally entangled state |β〉 while the
third ket is Bob’s half of |β〉. We rewrite the state as

|ψ〉 ⊗ |β〉 =
1

2
(

1√
2
(|00〉 + |11〉)(α|0〉 + β|1〉) +

1√
2
(|00〉 − |11〉)(α|0〉 − β|1〉) +

1√
2
(|01〉 + |10〉)(β|0〉 + α|1〉) +

1√
2
(|01〉 − |10〉)(−β|0〉 + α|1〉))
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to find that if Alice does a projective measurement, a so-called von Neumann
measurement, in the Bell basis on her two qubits the state of Bob’s qubit im-
mediately alters and suddenly depends on α and β. Obviously the following
LOCC protocol allows Alice to teleport |ψ〉 to Bob:

1. Alice does a projective measurement in the Bell basis on her two qubits.

2. She uses a classical channel, e.g. a telephone, to communicate her mea-
surement result to Bob.

3. Finally Bob applies a unitary to his qubit conditional on Alice’s measure-
ment outcome, i.e.
if Alice measured 1√

2
(|00〉 + |11〉) Bob does nothing,

if Alice measured 1√
2
(|00〉 − |11〉) Bob applies a

σZ =

(

1 0
0 −1

)

to his qubit,
if Alice measured 1√

2
(|01〉 + |10〉) Bob applies a

σX =

(

0 1
1 0

)

to his qubit,
if Alice measured 1√

2
(|01〉 − |10〉) Bob applies σZσX to his qubit.

In the end Bob’s qubit will always be in the state |ψ〉 = α|0〉 + β|1〉.
At first glance this looks like a possibility to superluminal communication.

But Bob does not know the state of his qubit until Alice has used a classical
channel to send her measurement result to him. And the classical channel
prohibits messages to travel faster than light.

Second Alice and Bob share a Bell state |β〉 = 1√
2
(|00〉 + |11〉), Alice addi-

tionally has two qubits in the state |ψ〉 = α|00〉+β|11〉 and she wants to teleport
them to Bob. Again let us have a look at the total state:

|ψ〉 ⊗ |β〉 = (α|00〉 + β|11〉) ⊗ (
1√
2
(|00〉 + |11〉))

=
α√
2
(|00〉|00〉 + |00〉|11〉) +

β√
2
(|11〉|00〉 + |11〉|11〉) .

In this notation the first two kets denote the two qubits Alice additionally has,
the third ket is Alice’s qubit from the shared Bell state and the fourth ket stands
for Bob’s qubit from the shared Bell state. We now change this order such that
kets two and three become ket one and two and kets one and four become kets
three and four. Still the first three kets correspond to Alice’s qubits. We have
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then:

|ψ〉 ⊗ |β〉 =
α√
2
(|00〉|00〉 + |01〉|01〉) +

β√
2
(|10〉|10〉 + |11〉|11〉)

=
1

2
(

1√
2
(|00〉 + |11〉)(α|00〉 + β|11〉) +

1√
2
(|00〉 − |11〉)(α|00〉 − β|11〉) +

1√
2
(|01〉 + |10〉)(β|10〉 + α|01〉) +

1√
2
(|01〉 − |10〉)(−β|10〉 + α|01〉)) .

Clearly the following LOCC protocol does the job:

1. Alice does a projective measurement in the Bell basis on her first two
qubits, i.e. those that belong to the first two kets.

2. She uses a classical channel, e.g. a telephone, to communicate her mea-
surement result to Bob.

3. Finally Bob applies a unitary to his qubit conditional on Alice’s measure-
ment outcome, i.e.
if Alice measured 1√

2
(|00〉 + |11〉) Bob does nothing,

if Alice measured 1√
2
(|00〉 − |11〉) Bob applies a

σZ =

(

1 0
0 −1

)

to his qubit,
if Alice measured 1√

2
(|01〉 + |10〉) Bob applies a

σX =

(

0 1
1 0

)

to his qubit,
if Alice measured 1√

2
(|01〉 − |10〉) Bob applies σZσX to his qubit.

In the end Alice and Bob will share the state |ψ〉 = α|00〉 + β|11〉.
In order to teleport states of dimension greater than two Alice has to be

able to measure projectively in a new orthonormal complete basis other than
the Bell basis. We choose the Fourier transform since we already know it very
well from the transition of Wannier states ψl(x) to Bloch states φk(x), as it is
explained in Chapter 2:

φk(x) =
1√
L

L
∑

l=1

ei
2πk
L
lψl(x) .



148 Quantum teleportation

Here L is set equal to the Schmidt rank of the maximally entangled state and
k runs from 1 to L. E.g. in the case d = 2 we define as new basis states

|0〉 :=
1√
2
(eiπ|00〉 + ei2π|11〉)

=
1√
2
(−|00〉 + |11〉)

|1〉 :=
1√
2
(ei2π|00〉 + ei4π|11〉)

=
1√
2
(|00〉 + |11〉)

|2〉 :=
1√
2
(eiπ|01〉 + ei2π|10〉)

=
1√
2
(−|01〉 + |10〉)

|3〉 :=
1√
2
(ei2π|01〉 + ei4π|10〉)

=
1√
2
(|01〉 + |10〉)

and this is essentially the Bell basis. But we can equally construct a proper basis
for Alice to do her projective measurement in any dimension, enabling us to do
general quantum teleportation. The following third and last example gives a
constructive procedure for quantum teleportation of arbitrary finite-dimensional
states.

So third and finally Alice and Bob share a maximally entangled state |β〉 =
1√
3
(|00〉 + |11〉 + |22〉), Alice additionally has two qutrits in the state |ψ〉 =

α|00〉 + β|11〉 + γ|22〉 and she wants to teleport their state. Hence the entire
state reads

|ψ〉 ⊗ |β〉 = (α|00〉 + β|11〉 + γ|22〉) ⊗ (
1√
3
(|00〉 + |11〉 + |22〉))

=
α√
3
(|00〉|00〉 + |00〉|11〉 + |00〉|22〉) +

β√
3
(|11〉|00〉 + |11〉|11〉 + |11〉|22〉) +

γ√
3
(|22〉|00〉 + |22〉|11〉 + |22〉|22〉) .

Again we place kets two and three at positions one and two and kets one and
four at positions three and four:

|ψ〉 ⊗ |β〉 =
α√
3
(|00〉|00〉 + |01〉|01〉 + |02〉|02〉) +

β√
3
(|10〉|10〉 + |11〉|11〉 + |12〉|12〉) +

γ√
3
(|20〉|20〉 + |21〉|21〉 + |22〉|22〉) .
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We rewrite this state with the help of our new basis:

|ψ〉 ⊗ |β〉 =
1

3
(

1√
3
(ei

2π
3 |00〉 + ei

4π
3 |11〉 + |22〉)(e−i 2π

3 α|00〉 + e−i
4π
3 β|11〉 + γ|22〉) +

1√
3
(ei

4π
3 |00〉 + ei

8π
3 |11〉 + |22〉)(e−i 4π

3 α|00〉 + e−i
8π
3 β|11〉 + γ|22〉) +

1√
3
(|00〉 + |11〉 + |22〉)(α|00〉 + β|11〉 + γ|22〉) +

1√
3
(ei

2π
3 |01〉 + ei

4π
3 |12〉 + |20〉)(e−i 2π

3 α|01〉 + e−i
4π
3 β|12〉 + γ|20〉) +

1√
3
(ei

4π
3 |01〉 + ei

8π
3 |12〉 + |20〉)(e−i 4π

3 α|01〉 + e−i
8π
3 β|12〉 + γ|20〉) +

1√
3
(|01〉 + |12〉 + |20〉)(α|01〉 + β|12〉 + γ|20〉) +

1√
3
(ei

2π
3 |02〉 + ei

4π
3 |10〉 + |21〉)(e−i 2π

3 α|02〉 + e−i
4π
3 β|10〉 + γ|21〉) +

1√
3
(ei

4π
3 |02〉 + ei

8π
3 |10〉 + |21〉)(e−i 4π

3 α|02〉 + e−i
8π
3 β|10〉 + γ|21〉) +

1√
3
(|02〉 + |10〉 + |21〉)(α|02〉 + β|10〉 + γ|21〉)) ,

and choose the following LOCC protocol:

1. Alice does a projective measurement in the new orthonormal complete
basis on her first two qubits, i.e. those that belong to the first two kets.

2. She uses a classical channel, e.g. a telephone, to communicate her mea-
surement result to Bob.

3. Finally Bob applies a unitary to his qubit conditional on Alice’s measure-
ment outcome. We do not want to write out all resulting unitaries but
rather give an example that illustrates the general procedure. E.g. if Alice
measures 1√

3
(ei

4π
3 |02〉 + ei

8π
3 |10〉 + |21〉) Bob uses

U =







0 0 ei
2π
3

ei
4π
3 0 0

0 1 0






.

In the end Alice and Bob will share the state |ψ〉 = α|00〉 + β|11〉 + γ|22〉.
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Appendix B

Entropy of entanglement

The entropy of entanglement is the entanglement measure for pure bipartite
states. Because the complete proof is given nowhere in the literature and be-
cause it is relevant for the discussion of identical particles, we want to present
it here.

Theorem: m copies of an arbitrary state |ψ〉 can be transformed into r · m
copies of the maximally entangled state |β〉 revertibly by LOCC in the asymp-
totic limit m,n→ ∞ and

r = EoE(|ψ〉) ,

where

EoE(|ψ〉) := −
∑

j

λj log(λj)

is called the entropy of entanglement. For pure bipartite states distillable en-
tanglement and entanglement cost are equal to each other and they equal the
entropy of entanglement.

Proof: Our goal is on the one hand to specify a LOCC protocol that transforms
m copies of our state |ψ〉 into EoE(|ψ〉) ·m copies of the maximally entangled
state |β〉 in the asymptotic limit. This process is called entanglement distil-
lation, because maximally entangled states are distilled from partly entangled
states. On the other hand we have to derive a LOCC protocol that transforms
EoE(|ψ〉) ·m maximally entangled states |β〉 into m copies of our state |ψ〉 in
the asymptotic limit. This is called entanglement dilution, since the maximally
entangled states are diluted to partly entangled states. In short we will have to
prove

|ψ〉⊗m LOCC
⇋ |β〉⊗n=EoE(|ψ〉)·m m,n→ ∞ .

Finally we have to show that both given protocols are optimal, i.e. it is not
possible to distill more entanglement than with our protocol of entanglement
distillation and it is not possible to dilute more entanglement than with our
protocol of entanglement dilution. By this we then have also proved that dis-
tillable entanglement equals entanglement cost equals entropy of entanglement.
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The following proof uses ǫ-typical sequences and quantum teleportation. While
we will discuss ǫ-typical sequences now, quantum teleportation is extensively
explained in Appendix A.

Assume we have a source that produces letters from an alphabet {0, 1, . . . ,
d−1} with probabilities p0, p1, . . . , pd−1, such that after we have used the source
N times we have a string ~x of N letters. The typical sequence is such a string
~xtyp where the letters 0, 1, . . . , d − 1 appear exactly with absolute frequencies
Np0, Np1, . . . , Npd−1. An ǫ-typical sequence is a string ~xǫ−typ where the letters
0, 1, . . . , d− 1 appear approximately with absolute frequencies Np0, Np1, . . . ,
Npd−1. Of course a mathematically strict definition of ǫ-typical sequences can
be given and has to be used in a correct proof. However, this is done in most of
the literature and so we refuse to do it here because it complicates the subject
and does not lead to any deeper understanding. We believe that it suffices to
see a set of ǫ-typical sequences for a certain small ǫ to comprise all sequences
that are near to the typical sequence where the nearness is given by ǫ, i.e. the
smaller ǫ the less sequences are ǫ-typical. Thinking of our source again, for large
N it will mostly produce ǫ-typical sequences due to the central limit theorem.

There exists a nice analogy for d = 2. If we have N particles in a box of
volume V and bipartite the box into two volumes V1 and V − V1, then the
probability for a gas particle to be in volume V1 is p1 = V1

V
. The probability

for exactly n specific gas particles to be in V1 and N − n to be in V − V1 reads
P1

′

(n) = p1
n(1 − p1)

N−n. However asking for any n gas particles we have to
sum over all configurations:

P1(n) =

(

N

n

)

pn1 (1 − p1)
N−n .

It follows from the central limit theorem that in the limit of large N this prob-
ability P1 converges to a normal distribution with mean µ = Np1 and standard
deviation σ =

√

Np1(1 − p1),

N → ∞ : P1(n) → 1
√

2πNp1(1 − p1)
e
− (n−Np1)

2Np1(1−p1) ,

and the relative width scales as

N → ∞ :
σ

µ
→ 1√

N
.

In fact the applicability of the central limit theorem can be easily seen by
attaching a random variable X to each gas particle, where X takes on the
value x1 = xV1 with probability p1 = V1

V
and x2 = xV−V1 with probability

p2 = (1−p1) = V−V1
V

. Hence we have N independent and identically binomially
distributed random variables.

Let us call the configuration where Np1 gas particles are in V1 a typical
configuration, then the above result means that in the limit of large N we will
have a typical configuration in most of the times. It turns out that we could
have also divided the box into more than two volumes and would have arrived at
the same conclusion, only that then the typical configuration would be made up
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of Np1 = N V1
V

gas particles in V1, Np2 = N V2
V

gas-particles in V2, Np3 = N V3
V

gas-particles in V3, and so on.
Returning to our more abstract treatment it should be clear now that the

probability for obtaining a ǫ-typical sequence is

p(~xǫ−typ) = pNp00 · pNp11 · . . . · pNpd−1

d−1

and

logd(p(~xǫ−typ)) = logd(p
Np0
0 · pNp11 · . . . · pNpd−1

d−1 )

= N(p0 logd(p0) + p1 logd(p1) + . . .+ pd−1 logd(pd−1)

=: −NHd(X)

implies

p(~xǫ−typ) = d−NHd(X) .

Here X is a random variable with the above probability distribution and Hd is
the Shannon entropy on dits. As for large N almost all sequences are ǫ-typical
we can say that there are approximately dNHd(X) ǫ-typical sequences.

After this excursion to ǫ-typical sequences we can now come back to our
initial concern, the proof of the entropy of entanglement. We remark again
that quantum teleportation is a necessary ingredient for this proof and it is
explained thoroughly in Appendix A. Suppose Alice and Bob share m copies of
a d× d-dimensional entangled state

|ψ〉 =
∑

x

√

p(x)|xA〉|xB〉 ,

i.e.

|ψ〉⊗m =
∑

x1,x2,...,xm

√

p(x1)p(x2) . . . p(xm)|x1x2 . . . xm〉A ⊗ |x1x2 . . . xm〉B ,

in the asymptotic limit m → ∞. We adopt the point of view that the squared
Schmidt coefficients are interpreted as probabilities.

We will now explain a LOCC protocol that allows to distill n copies of the
maximally entangled pair from |ψ〉⊗m, entanglement distillation, and then give
a protocol that transforms n copies of the maximally entangled pair into m
copies of |ψ〉, entanglement dilution. The remarkable thing about asymptotic
entanglement is that the ratios r = n

m
in the asymptotic limit m,n → ∞ are

equal in both protocols,

r = EoE(|ψ〉) ,

and this is actually the maximum ratio achievable.

Entanglement distillation protocol:
Alice and Bob share |ψ〉⊗m. Now Alice measures the absolute frequencies of 0, 1,
. . . , d− 1 without specifying which of her quantum systems have that quantum
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numbers. This last point is very important: If she would measure both quan-
tum number and corresponding quantum system the total state would collapse
to only one ket, a separable state. With very high probability she will measure
an ǫ-typical sequence, i.e. she will measure quantum number 0 m · p(0) times,
quantum number 1 m · p(1) times, . . . and quantum number d − 1 m · p(d − 1)
times. Then the state will have reduced to a sum of dEoE(|ψ〉)·m summands
with equal coefficients

√
d−EoE(|ψ〉)·m. And this state is equivalent, up to local

unitaries, to sharing n = EoE(|ψ〉) ·m maximally entangled pairs.

Entanglement dilution protocol:
Alice and Bob share |β〉⊗n=EoE(|ψ〉)·m. Alice additionally has |ψ〉⊗m in her lab-
oratory. Now she prepares the ǫ-typical subspace of |ψ〉⊗m locally and teleports
Bob’s part to Bob. This she can do because she only needs n = EoE(|ψ〉) ·m
maximally entangled pairs for the quantum teleportation of the reduced |ψ〉⊗m.

Together with Appendix A, we have shown that

|ψ〉⊗m LOCC
⇋ |β〉⊗n=EoE(|ψ〉)·m m,n→ ∞ .

and it remains to be proved that both proposed protocols are also optimal.
Assume there existed a distillation protocol that would distill r

′ · m >
EoE(|ψ〉) · m maximally entangled pairs from |ψ〉⊗m. Then we could start
with EoE(|ψ〉) ·m Bell pairs, dilute |ψ〉⊗m and then distill r

′ ·m > EoE(|ψ〉) ·m
Bell pairs. So by LOCC only we would have enlarged the Schmidt number.
But this is forbidden by the majorization criterion. This ends the proof of the
entropy of entanglement.

We want to emphasize that with this proof we have shown that the entropy
of entanglement indeed is an entanglement monotone. It can be easily shown
that the entropy of entanglement is additive [50] and therefore it is a good en-
tanglement measure.
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