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Motivation
Langevin Dynamics

Langevin equation:

∂

∂τ
φx (τ) = − δS

δφx (τ) + ηx (τ)

with Gaussian noise:

〈ηx (τ), ηx ′(τ ′)〉η = 2δ(x − x ′)δ(τ − τ ′)
〈ηx (τ)〉η = 0

⇒
Aim: Application of this
formalism on neuromorphic
hardware

http://mathsissmart.tumblr.com

http://www.fair-center.eu
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Motivation
Human Brain Project/BrainScaleS - Introduction

I Neuromorphic
computing system

I 1.6 million neurons

I 0.4 billion dynamic
synapses

I 10000 times faster than
their biological
archetypes

Petrovici M.A., PhD Thesis, 2016

Electronic Vision(s) Group, Heidelberg University

Electronic Vision(s) Group, Heidelberg University
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Motivation
Human Brain Project/BrainScaleS - Stochastic interference

Ornstein-Uhlenbeck process:

dueff(t)
dt = Θ [µ− ueff(t)] + ση(t)

with:

Θ = 1
τsyn

, µ = uleak+
∑
syni

∑
spks

κ(t, ts,i)

Free
membrane
potential
ueff(t):

http://www.kdnuggets.com and Petrovici M.A., PhD Thesis, 2016
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Motivation
Comparison

Langevin dynamics:

∂

∂τ
φx (τ) = − δS

δφx (τ)+ηx (τ)

I Continuous system
I Gaussian noise
contribution

I Coupled system

⇔

BrainScaleS:

dueff(t)
dt = Θ [µ− ueff(t)]+ση(t)

I Effective two-state
system

I Gaussian noise
contribution

I Coupled system

Langevin equation for a discrete two-state system?
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How could a Langevin equation look like for the
Ising model?
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Langevin Dynamics for the 2D Ising Model
2D Ising Model

I N2 states si ∈ {−1, 1} = {↓, ↑}
on a square lattice

I Hamiltonian:

H = −J
∑
〈i ,j〉

sisj − h
∑

i
si

I Second order phase transition

⇒ Can be mapped easily onto a
Boltzmann machine with si ∈ {0, 1}:

H = −1
2
∑

ij
Wijsisj −

∑
i

bisi
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Langevin Dynamics for the 2D Ising Model
Heuristic Approach

Langevin equation:
∂

∂τ
φx (τ) = − δS

δφx (τ) + ηx (τ)

⇓
Discrete Langevin equation (φx := φx (τ), φ′x := φx (τ + ε)):

φ′x = φx − ε
δS
δφx

+
√
εηx ,

⇓
Identifications S = βH , φx = sx :

s ′i = si − εβ
∂H
∂si

+
√
εηi
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Langevin Dynamics for the 2D Ising Model
Heuristic Approach

Hamiltonian with si ∈ {−1, 1} = {↓, ↑}:

H = −J
∑
〈i ,j〉

sisj − h
∑

i
si

Langevin equation:

s ′i = sign
(

si − εβ
∂H
∂si

+
√
εηi

)
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Langevin Dynamics for the 2D Ising Model
Numerical Results

Langevin equation:

s ′i = sign
(

si − εβ
∂H
∂si

+
√
εηi

)

⇓
Improved Langevin equation
with adapted noise
〈η̃i , η̃

′
j〉 = δ(j − i)δ(t ′ − t):

s ′i = sign
(

si − ε
β

λ(ε)
∂H
∂si

+
√
εη̃i

)
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I. Is this a Langevin equation for the Ising model?

s ′i = sign
(

si − ε
β

λ(ε)
∂H
∂si

+
√
εη̃i

)

II. Why does this work?

III. Is this a MCMC algorithm with the Boltzmann
distribution P(s) ∝ exp(−βH(s)) as
equilibrium distribution?
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To III.: Markov Chain Monte Carlo Algorithm?
Markov Property

Update rule:

s ′i = sign
(

si − ε
β

λ(ε)
∂H
∂si

+
√
εη̃i

)
Transition probabilities (Φ(x) =

∫ x
−∞ dt 1√

2π exp(−t2/2)):

W (↓→↑) = W (↓ | ↑) = Φ
(
− 1√

ε
−
√
εβ

λ(ε)
∂H
∂si

)

W (↑→↓) = W (↑ | ↓) = Φ
(
− 1√

ε
+
√
εβ

λ(ε)
∂H
∂si

)

⇒ Markov property is fulfilled.
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To III.: Markov Chain Monte Carlo Algorithm?
Ergodicity and Detailed Balance

I Ergodicity ⇒ Yes!

I Detailed balance equation:

W (↑→↓)P(↑) = W (↓→↑)P(↓)

⇒ W (↓→↑)
W (↑→↓)

!= P(↑)
P(↓) = exp [−β(E (↑)− E (↓))]

⇒ Detailed balance equation seems to be satisfied.
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To II.: Why does this work?
I Limit between the cumulative Gaussian distribution and
the exponential function:

Φ
(
− 1√

ε
−
√
ε

λ(ε)x
)
∝ exp(−x)

I Symmetry properties of the Ising model
(H = −J ∑〈i ,j〉 sisj − h∑i si):

E (↑) = −E (↓) = ∂H
∂si

Detailed balance equation:

⇒ W (↓→↑)
W (↑→↓) =

Φ
(
− 1√

ε
−
√
εβ

λ(ε)
∂H
∂si

)
Φ
(
− 1√

ε
+
√
εβ

λ(ε)
∂H
∂si

) = exp [−β(E (↑)− E (↓))]
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To I.: Is this is a Langevin equation for the Ising model?

s ′i = sign
(

si − ε
β

λ(ε)
∂H
∂si

+
√
εη̃i

)

⇒ No!

⇒ It is a Langevin like MCMC algorithm
with Gaussian noise input.

Did we learn something?
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Result I: Generalised Relations
Cumulative Gaussian Distribution
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√
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√
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Result I: Generalised Relations
Derivatives of the Cumulative Gaussian Distribution
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x
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∂m

∂tm Φ
(
− 1√

ε
+
√
εt
) ∣∣∣∣

t=− Hem(−1/
√
ε)√

εHem−1(−1/
√
ε) x

∂m
∂tm Φ(− 1√
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+
√
εt)
∣∣
t=0
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Result II: MCMC Algorithm based on Gaussian Noise

Generalised update rule:

s ′i = si + (ν − si)Θ
[
−1− εβ

2λ(ε)∆E (ν, si) +
√
εηT

i

]

with a proposal state ν.

For the Ising model this is equivalent to:

⇔ s ′i = sign
(

si − ε
β

λ(ε)
∂H
∂si

+
√
εη̃i

)
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Application I: Numerical Results for Other Models

q-Potts model:

Hp = −Jp
∑
〈i ,j〉

δsi ,sj ,

with si ∈ {1, 2, . . . , q}.

Clock model:

Hc = −Jc
∑
〈i ,j〉

cos (θi − θj) ,

with θi = 2πn
q ) and n ∈

{1, 2, . . . , q}.
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Application II: Langevin Machine
Scheme: Identifications:

I W ′
ii = 1√

ε

I b′i =
√
ε

λ(ε)bi

I W ′
ij =

√
ε

λ(ε)Wij

Implicit update rule:

s ′i = sign(ui + η̃i)

Activation function: pi (↑) = 1
1 + exp(2Hi (↑))

⇒ Alternative implementation of the Boltzmann machine
with a different update dynamic and self interaction
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Does this help for a computation on the
neuromorphic hardware of the BrainScaleS project?

⇒ No! Still different dynamics.
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Application III: Modified Ornstein-Uhlenbeck Process

Ornstein-Uhlenbeck process (free membrane potential):

dsi

dt = θ(µ− si) + ση(t)

Resulting activation function for θ = 1 and σ = 1:

p(↑) = p(si ≥ 0) =
∫ ∞
0

p(si)dsi = Φ(µ)

Desired activation function:

p(↑) = p(si ≥ 0) = 1
1 + exp(−2µ)
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Application III: Modified Ornstein-Uhlenbeck Process

Modified Ornstein-Uhlenbeck process (free membrane
potential):

dsi

dt = θ

( √
ε̄

λ(ε̄)µ− si + sign(si)√
ε̄

)
+ ση(t)

Resulting activation function for θ = 1 and σ = 1:

lim
ε̄→0

p(↑) = lim
ε̄→0

p(si ≥ 0) = 1
1 + exp(−2µ)
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Application III: Modified Ornstein-Uhlenbeck Process
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Conclusion

Results:
I Limit between the cumulative Gaussian distribution and
the exponential function

I A Langevin like MCMC algorithm based on Gaussian noise
for discrete systems

I Langevin machine
I Modified Ornstein-Uhlenbeck process

Future work:
I Find useful applications (other neuromorphic systems)
I Investigate interactions and further aspects of the
neuromorphic hardware
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