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Physics of ultracold atoms



Scales

• interparticle spacing 𝑛 = ℓ−𝑑

• thermal wavelength 𝜆th

• van der Waals length 𝜆vdW
• oscillator length ℓosc
• scattering length 𝑎
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Scales

• interparticle spacing 𝑛 = ℓ−𝑑

• thermal wavelength 𝜆th

Ultracold: ℓ/𝜆th ≲ 1 Dilute: 𝑎 𝑛1/𝑑 ≪ 1
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Scale hierarchy & Hamiltonian

van der Waals
length

interaction scale interparticle
spacing

adapted from Boettcher et al. Nuclear Physics B (2012)

thermal wavelength oscillator length
of trap

Effective Hamiltonian valid on scales ≫ ℓvdW:

𝐻̂ = ∫
𝑥⃗

[ ̂𝑎†( ⃗𝑥) (−ℏ ∇2

2 𝑀
+ 𝑉ext( ⃗𝑥)) ̂𝑎( ⃗𝑥) + 𝑔Λ 𝑛̂( ⃗𝑥)2]

with 𝑛̂ = ̂𝑎† ̂𝑎 and 𝑔Λ = 4 𝜋 ℏ2

𝑀 𝑎
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Feshbach resonances
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2-atom scattering

BEC

BCS

Regal et al. 2006

𝜈(𝐵) = Δ𝜇 (𝐵 − 𝐵0)

𝑎 = 𝑎bg (1 − Δ𝐵
𝐵 − 𝐵0

)

with 𝜈 → 0 @ resonance
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two-component fermionic atoms

fermions with attractive
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bound molecules of two
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BCS-superfluidity
(condensation of Cooper
pairs)

low 𝑇

BEC
(Bose-Einstein condensate)

Crossover (magnetic field)



The BCS-BEC crossover in 3D

5

𝑘𝐹 =
(3 𝜋2 𝑛)1/3

Randeria
Nature (2010)



Features

advantages

• couplings are tunable
• high precision experiments
• microphysics known

challenges

• from microphysic laws to macroscopic observation
including fluctuations

• large couplings
• different effective degrees of freedom

• microphysics: single atoms & molecules
• macrophysics: bosonic collective degrees of freedom
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BCS-BEC physics from Functional
Renormalisation



The functional RG

UVIR

Flow equation (Wetterich 1993)

𝜕𝑘 Γ𝑘 = 1
2
STr [(Γ(2) + 𝑅𝑘)−1 𝜕𝑘 𝑅𝑘]

Exact 1-loop equation

∂t Γk[φ, ψ] =
1

2
1

7

full quantum

effective action

bosons fermions



Regulator and truncation dependence
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• flow of Γ𝑘 regulator
dependent, yet Γ is not

• during flow all possible
interactions may be
produced

• 𝜕𝑡Γ(𝑛) depends on
Γ(𝑛+1) and Γ(𝑛+2)

→truncation needed

adapted from Gies Springer (2012)
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Action and truncation

Microscopic action

𝑆 = ∫
𝑋

[𝜓∗ (𝜕𝜏 − ∇2 − 𝜇) 𝜓 + 𝜙∗ (𝜕𝜏 − ∇2

2
+ 𝜈 − 2𝜇) 𝜙

− ℎ (𝜙∗ 𝜓1 𝜓2 − 𝜙 𝜓∗
1 𝜓∗

2) ]

with

• 𝜓: Grassmann field

• 𝜙: bosonic field consisting of two atoms

• 𝜈: detuning

• 𝜏: Euclidean time on torus with circumference 1/𝑇

• 𝜇: chemical potential
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Units

Chosen such that:
ℏ = 𝑘𝐵 = 2 𝑀 = 1

Consequences:

• ℏ = 1: [momentum]=[length]−1 with typical momentum
unit 𝑘𝐹

• 𝑘𝐵 = 1: [temperature]=[energy]
• 2 𝑀 = 1: [momentum]=[energy] (equiv. 𝑐 = 1)

i.e.
[𝑡] = 𝑙2, [ ⃗𝑝] = 𝑙−1, [𝑇 ] = 𝑙−2, [𝜇] = 𝑙−2, [𝑛] = 𝑙−3 .

→ canonical dimensions differ from relativistic QFT!
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Truncation: derivative expansion

• vertices are expanded in powers of the momenta
• effective average potential 𝑈𝑘 @ least to 2nd order in

𝜌 = 𝜙∗𝜙 (2nd order phase transition)

∂t ( )
−1

=

F

+

B

∂t ( )
−1

=

M
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Ansatz for effective action Γ𝑘 = Γkin + Γint

Γkin[𝜓, 𝜙] = ∫
𝑋

[ ∑
𝜎={1,2}

𝜓∗
𝜎 (𝑆𝜓𝜕𝜏 − ∇2 − 𝜇) 𝜓𝜎 + 𝜙∗ (𝑆𝜙𝜕𝜏 − 1

2
∇2) 𝜙]

Γint[𝜓, 𝜙] = ∫
𝑋

[𝑈 (𝜙∗ 𝜙) − ℎ (𝜙∗ 𝜓1 𝜓2 − 𝜙 𝜓∗
1 𝜓∗

2) ]

with

• renormalised fields: 𝜓 = 𝐴1/2
𝜓

̅𝜓, 𝜙 = 𝐴1/2
𝜙

̅𝜙
• 𝑆𝜓,𝜙 = 𝑍𝜓,𝜙/𝐴𝜓,𝜙
• anomalous dimensions: 𝜂𝜓,𝜙 = − 𝜕𝑡 log 𝐴𝜓,𝜙

and

𝑈(𝜌) =
𝑁

∑
𝑛=1

𝑢𝑛
𝑛!

(𝜌 − 𝜌0)𝑛 − 𝑛𝑘 (𝜇 − 𝜇0) +
𝑀

∑
𝑚=1

𝛼𝑚
𝑚!

(𝜇 − 𝜇0) (𝜌 − 𝜌0)𝑚 ,

𝑢1 = 𝑚2
𝜙
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Regularisation scheme

IR-regularisation:

lim
𝑝2/𝑘2→0

𝑅𝑘(𝑝2)/𝑘2 > 0, lim
𝑘2/𝑝2→0

𝑅𝑘(𝑝2) → 0

Litim-type regulator:

𝑅𝜙,𝑘(𝑄) = 𝑅𝜙,𝑘(𝑞2) = (𝑘2 − 𝑞2

2
) 𝜃 (𝑘2 − 𝑞2

2
)

𝑅𝜓,𝑘(𝑄) = 𝑅𝜓,𝑘(𝑞2) = [𝑘2 sgn (𝑞2 − 𝜇) − (𝑞2 − 𝜇)] 𝜃 (𝑘2 − |𝑞2 − 𝜇|)

→analytic evaluation of Matsubara sums
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UV renormalisation

Connecting to experiment

• initial condition for 𝑈𝑘: 𝑈Λ(𝜌) = (𝜈Λ − 2 𝜇) 𝜌
• @ 𝑇 = 0: connect to correct vacuum physics at unitarity
(𝑎−1 = 0), i.e. 𝑚2

𝜙,𝑘=0 = 0 = 𝜇

Thus:

𝑎 = 𝑎(𝐵) =
ℎ2

Λ
8 𝜋 𝜈(𝐵)

, 𝜈(𝐵) = 𝜈Λ − 𝛿𝜈(Λ)
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Universality

• existence of FPs in RG flow: macrophysics independent of
the microphysics

• loss of memory of microphysics: start at the FP values

initial values

ℎ2
Λ = 6 𝜋2 Λ, 𝜆𝜙,Λ =

𝜆̃𝜙,∗
Λ

, 𝑚2
𝜙,Λ = 𝜈Λ − 2 𝜇,

𝑆𝜙,Λ = 1, 𝛼Λ = −2, 𝑛Λ = 𝜇3/2

3 𝜋2 Θ(𝜇).
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3D BCS-BEC crossover

𝑇 = 0: (with 𝑐 = 𝑘𝐹 𝑎)
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Dimensional crossover



Why are quasi-2D systems interesting?

• promising materials: graphene, high 𝑇𝑐-superconductors,
layered semiconductors

• pronounced influence of quantum fluctuations
• experimental accessibility via highly anisotropic trapping
potentials

• for insufficient anisotropy →dimensional crossover

17

→disentangle dimensionality from
many-body physics

Zürn et al. PRL (2015)



Boundary conditions

• delimit 𝑧-direction by potential well of length 𝐿

𝑉box(𝑧) =
⎧{
⎨{⎩

0 0 ≤ 𝑧 ≤ 𝐿

∞ else

• impose periodic boundary conditions: Ψ = {𝜓, 𝜙}

Ψ(𝜏, 𝑥, 𝑦, 𝑧 = 0) = Ψ(𝜏, 𝑥, 𝑦, 𝑧 = 𝐿)

→quantisation of momentum in 𝑧-direction:

𝑞𝑧 → 𝑘𝑛 = 2 𝜋 𝑛
𝐿

, 𝑛 ∈ ℕ

• spatial Matsubara sum

∫ 𝑑𝑑𝑞
(2 𝜋)𝑑 = 1

𝐿
∑
𝑘𝑛

∫ 𝑑𝑑−1𝑞
(2 𝜋)𝑑−1
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Regulator and method

Litim-type regulator (as before) with ⃗𝑞 = ̂⃗𝑞 + 𝑞𝑧 → ̂⃗𝑞 + 𝑘𝑛

Idea:

• initialise RG flow at UV scale 𝑘 = Λ where ΓΛ coincides
with 𝑆 of 3D gas

• 𝐿 introduces new length scale to 3D system
• following the RG flow we successively integrate out the 3rd
dimension
→@ 𝑘 → 0: system @ given confinement length scale 𝐿

Note

• UV scale is always chosen such that Λ ≫ (𝐿−1, 𝜇1/2, 𝑇 1/2)
• system is effectively 2D if 𝐿−1 ≫ all other many-body
scales

19
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Zero temperature

20

• correct 3D-limit reached
• qualitatively correct
behaviour of equation
of state (except very
small confinements)

3D limit
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Connecting to experiment

quasi-2d scattering length:

𝑎(pbc)
2D = 𝐿 exp {−1

2
𝐿

𝑎3D
} , 𝑎(trap)

2D = ℓ𝑧 √ 𝜇
𝐴

exp {−√𝜇
2

ℓ𝑧
𝑎3D

}

quasi-2d crossover parameter: ln(𝑘𝐹 𝑎2D)
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Finite temperature
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Phase diagram
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• 3D phase diagram reproduced for large 𝐿
• increased 𝑇𝑐/𝑇𝐹 around ln(𝑘𝐹 𝑎2D) ∼ 1
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Comparison to experiment
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experimental data from Ries et al. PRL (2015)
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Conclusion



Summary and Outlook

Conclusion

• dimensional crossover in Fermi gas with FRG
• qualitatively comparable to experiments

Outlook

• employ harmonic trapping potential
• quantitative precision

• particle-hole fluctuations
• frequency dependent regulator

• explore thermodynamics
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Phase diagram from experiment
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4

thermal wavelength of the coldest samples. The normal-
ized peak momentum density shows a sudden change of
slope which we assume to occur at the phase transition.
We estimate Tc/TF by the intersection of linear fits to
the regimes above and below the phase transition. For
the example shown in Fig. 3, this results in a critical
temperature of Tc/TF = 0.129 (35), where the statisti-
cal uncertainty is obtained from the standard errors of
the two linear fits. The critical phase space density is
⇢c = n0,c�

2
dB,c

= 3.9 (6), where �dB,c and n0,c are the
thermal de Broglie wavelength and the peak in situ den-
sity at the critical temperature, respectively.

-8 -6 -4 -2 0 2 4
0.0

0.1

0.2

0.3

BEC  

T/
T F

ln(kFa2D)

0.00

0.10
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0.40

0.50
Nq/N

BCS 

FIG. 4: Phase diagram of the strongly interacting 2D
Fermi gas. The experimentally determined critical temper-
ature Tc/TF is shown as black data points and the error bars
indicate the statistical errors. Systematic uncertainties are
discussed in detail in [27]. The color scale indicates the non-
thermal fraction Nq/N and is linearly interpolated between
the measured data points (white crosses). Each data point
is the average of about 30 measurements. The dashed white
line is the theoretical prediction for the BKT transition tem-
perature given in [40].

By repeating this analysis for all investigated inter-
action strengths, we obtain the transition temperature
as a function of the interaction parameter ln(kFa2D).
The resulting values are shown as black dots in Fig.4
together with the corresponding non-Gaussian fraction
Nq/N , which is displayed as a color scale. Comparing
the data for Tc/TF and Nq/N , one finds that the phase
transition occurs at a significant non-Gaussian fraction
of Nq/N ⇡ 0.3 for all measured interaction strengths.

On the BEC side of the phase diagram, one observes
a slow increase of the measured critical temperature to-
wards the crossover region. Within their statistical un-
certainties, the measured values of Tc/TF are in good
agreement with an e↵ective description in terms of 2D
bosons [40]. This theoretical prediction describes a BKT

transition into a superfluid phase with algebraically de-
caying phase coherence. Interestingly, the bosonic the-
ory provides a reasonable description of the data up to
ln(kFa2D) = 0, where the 2D scattering amplitude di-
verges. This indicates that the fermionic nature of the
constituents of the bosonic dimers has only a small e↵ect
on the many-body physics of the system up to this point.
The crossover to a fermionic description should thus oc-
cur at positive values of ln(kFa2D). This is in line with
recent theoretical predictions [6, 41].

Far on the BCS side, fermionic theories predict an ex-
ponential decrease of Tc/TF [7, 42]. Although we can
only give an upper limit for the critical temperature
Tc/TF  0.16 for ln(kFa2D) � 2, the observed non-
Gaussian fraction is consistent with a decrease towards
the BCS limit. However, Tc/TF is systematically above
the theoretical predictions for ln(kFa2D) > 0 [7, 8, 40].
Part of this deviation might be due to the residual in-
fluence of the third dimension. In our system, resid-
ual axial excitations grow with increasing ln(kFa2D) [27].
Recently, it was predicted that they would lead to an in-
creased critical temperature [43]. Additionally, the three-
dimensional internal structure of atom pairs might lead
to corrections in the regime where EB ⇡ ~!z, which go
beyond the two-body sector. Whether this e↵ect has any
influence on the measured phase diagram still needs fur-
ther experimental and theoretical consideration. Initial
steps in this direction have been taken [44].

Our work constitutes a basis for future theoretical and
experimental studies of quantum gases in the quasi-2D
BEC-BCS crossover. The measured critical temperature
suggests the validity of BKT theory on the bosonic side.
Superfluidity and the algebraic decay of correlations be-
low the transition remain to be validated. Indeed, our
ability to extract the in situ momentum distribution with
negligible distortion o↵ers direct access to the coherence
properties of the system. A first analysis of the trap av-
eraged first order correlation function, which we obtain
by Fourier transforming the pair momentum distribution,
suggests algebraically decaying phase correlations below
the critical temperature. However, due to the inhomo-
geneity of our system, a careful analysis is required to
unambiguously confirm the BKT nature of the observed
transition. Additionally, the equation of state can be
extracted from the density distribution in the trap. Fi-
nally, the exploration of the dimensional crossover to 3D,
in which an increased Tc/TF is predicted [43], o↵ers new
opportunities to understand mechanisms which lead to
high critical temperatures.
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