Dimensional crossover in ultracold Fermi gases

from Functional Renormalisation

Bruno Faigle-Cedzich 8th May 2018

Cold Quantum Coffee Heidelberg University

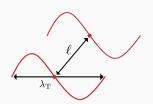
Table of contents

- 1. Physics of ultracold atoms
- 2. BCS-BEC physics from Functional Renormalisation
- 3. Dimensional crossover
- 4. Conclusion

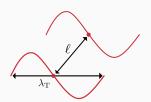
Physics of ultracold atoms

• interparticle spacing $n=\ell^{-d}$

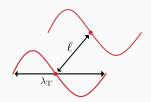
- interparticle spacing $n=\ell^{-d}$
- thermal wavelength λ_{th}



- interparticle spacing $n=\ell^{-d}$
- \cdot thermal wavelength $\lambda_{\rm th}$

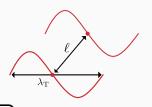


- interparticle spacing $n = \ell^{-d}$
- \cdot thermal wavelength $\lambda_{\rm th}$



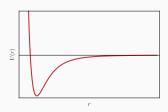
Ultracold: $\ell/\lambda_{\rm th} \lesssim 1$

- interparticle spacing $n = \ell^{-d}$
- \cdot thermal wavelength λ_{th}

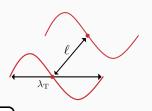


Ultracold: $\ell/\lambda_{\rm th} \lesssim 1$

 \cdot van der Waals length $\lambda_{ ext{vdW}}$



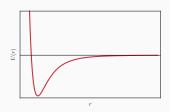
- interparticle spacing $n = \ell^{-d}$
- \cdot thermal wavelength λ_{th}



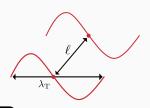
Ultracold: $\ell/\lambda_{\rm th} \lesssim 1$

- \cdot van der Waals length $\lambda_{
 m vdW}$
- oscillator length $\ell_{\rm osc}$

$$V_{\mathrm{ext}} = rac{\hbar\,\omega}{2}\,(r/\ell_{\mathrm{OSC}})^2$$

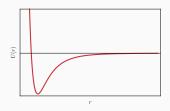


- interparticle spacing $n = \ell^{-d}$
- \cdot thermal wavelength $\lambda_{
 m th}$



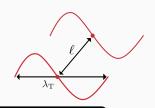
Ultracold: $\ell/\lambda_{\rm th} \lesssim 1$

- \cdot van der Waals length $\lambda_{ ext{vdW}}$
- · oscillator length $\ell_{\rm osc}$
- \cdot scattering length a



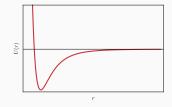
- interparticle spacing $n = \ell^{-d}$
- \cdot thermal wavelength $\lambda_{
 m th}$

Ultracold: $\ell/\lambda_{\rm th} \lesssim 1$

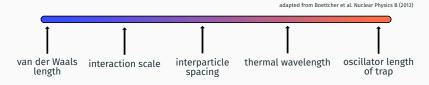


Dilute: $a n^{1/d} \ll 1$

- \cdot van der Waals length $\lambda_{
 m vdW}$
- \cdot oscillator length $\ell_{
 m osc}$
- \cdot scattering length a



Scale hierarchy & Hamiltonian



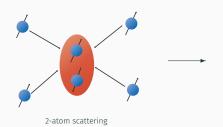
Effective Hamiltonian valid on scales $\gg \ell_{\text{vdW}}$:

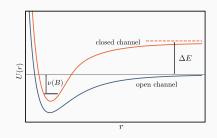
$$\hat{H} = \int_{\vec{x}} \left[\hat{a}^\dagger(\vec{x}) \left(-\frac{\hbar \, \nabla^2}{2 \, M} + V_{\rm ext}(\vec{x}) \right) \hat{a}(\vec{x}) + g_\Lambda \, \hat{n}(\vec{x})^2 \right] \label{eq:hamiltonian}$$

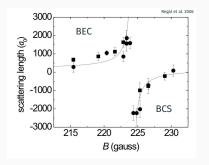
with
$$\hat{n}=\hat{a}^{\dagger}\,\hat{a}$$
 and $g_{\Lambda}=\frac{4\,\pi\,\hbar^2}{M}\,a$

3

Feshbach resonances





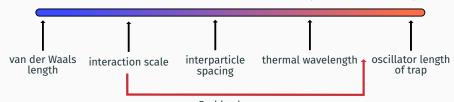


$$\begin{split} \nu(B) &= \Delta \mu \left(B - B_0 \right) \\ a &= a_{\text{bg}} \left(1 - \frac{\Delta B}{B - B_0} \right) \end{split}$$

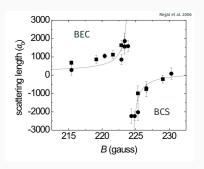
with $\nu \to 0$ @ resonance

Feshbach resonances

adapted from Boettcher et al. Nuclear Physics B (2012)



Feshbach resonance



$$\begin{split} \nu(B) &= \Delta \mu \left(B - B_0 \right) \\ a &= a_{\text{bg}} \left(1 - \frac{\Delta B}{B - B_0} \right) \end{split}$$

with $\nu \to 0$ @ resonance

two-component fermionic atoms

two-component fermionic atoms

fermions with attractive interactions

two-component fermionic atoms

fermions with attractive interactions

bound molecules of two atoms

two-component fermionic atoms

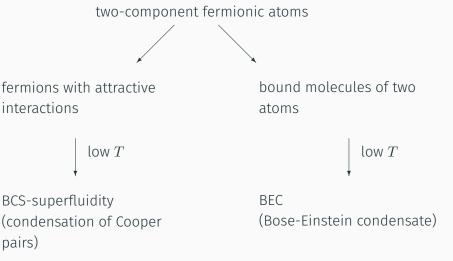
fermions with attractive interactions

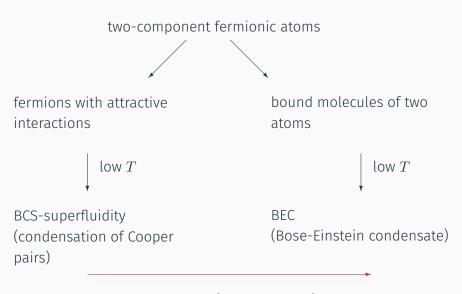
bound molecules of two atoms

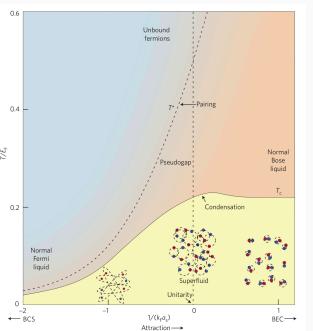
 $\log T$

BCS-superfluidity (condensation of Cooper pairs)

pairs)







 $k_F = \\ (3\,\pi^2\,n)^{1/3}$

Randeria Nature (2010)

Features

advantages

- couplings are tunable
- high precision experiments
- microphysics known

challenges

- from microphysic laws to macroscopic observation including fluctuations
- large couplings
- · different effective degrees of freedom
 - microphysics: single atoms & molecules
 - · macrophysics: bosonic collective degrees of freedom

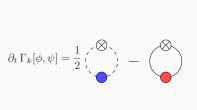
BCS-BEC physics from Functional Renormalisation

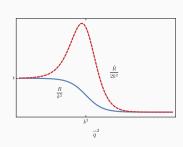
The functional RG

Flow equation (Wetterich 1993)

$$\partial_k \, \Gamma_k = \frac{1}{2} \, \mathrm{STr} \left[(\Gamma^{(2)} + R_k)^{-1} \, \partial_k \, R_k \right]$$

Exact 1-loop equation



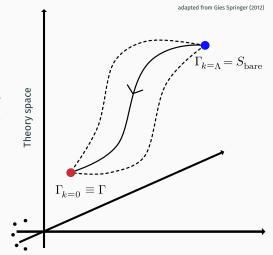


bosons _ _ _ _

fermions _____

Regulator and truncation dependence

- flow of Γ_k regulator dependent, yet Γ is not
- during flow all possible interactions may be produced
- \cdot $\partial_t \Gamma^{(n)}$ depends on $\Gamma^{(n+1)}$ and $\Gamma^{(n+2)}$ \to truncation needed



Action and truncation

Microscopic action

$$\begin{split} S &= \int_X \left[\psi^* \left(\partial_\tau - \nabla^2 - \mu \right) \psi + \phi^* \left(\partial_\tau - \frac{\nabla^2}{2} + \nu - 2 \mu \right) \phi \right. \\ &\left. - h \, \left(\phi^* \, \psi_1 \, \psi_2 - \phi \, \psi_1^* \, \psi_2^* \right) \right] \end{split}$$

with

- ψ : Grassmann field
- ϕ : bosonic field consisting of two atoms
- \cdot ν : detuning
- \cdot au. Euclidean time on torus with circumference 1/T
- \cdot μ : chemical potential

Units

Chosen such that:

$$\hbar = k_B = 2M = 1$$

Consequences:

- $\hbar=1$: [momentum]=[length] $^{-1}$ with typical momentum unit k_F
- $k_B = 1$: [temperature]=[energy]
- 2M = 1: [momentum]=[energy] (equiv. c = 1)

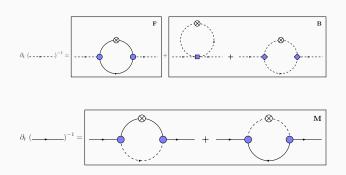
i.e.

$$[t] = l^2, \, [\vec{p}] = l^{-1}, \, [T] = l^{-2}, \, [\mu] = l^{-2}, \, [n] = l^{-3} \, .$$

 \rightarrow canonical dimensions differ from relativistic QFT!

Truncation: derivative expansion

- · vertices are expanded in powers of the momenta
- effective average potential U_k @ least to 2nd order in $\rho = \phi^* \phi$ (2nd order phase transition)



Ansatz for effective action $\Gamma_k = \Gamma_{\rm kin} + \Gamma_{\rm int}$

$$\begin{split} &\Gamma_{\mathrm{kin}}[\psi,\phi] = \int_{X} \left[\sum_{\sigma=\{1,2\}} \psi_{\sigma}^{*} \left(S_{\psi} \partial_{\tau} - \nabla^{2} - \mu \right) \psi_{\sigma} + \phi^{*} \left(S_{\phi} \partial_{\tau} - \frac{1}{2} \nabla^{2} \right) \phi \right] \\ &\Gamma_{\mathrm{int}}[\psi,\phi] = \int_{X} \left[U(\phi^{*} \, \phi) - h \, \left(\phi^{*} \, \psi_{1} \, \psi_{2} - \phi \, \psi_{1}^{*} \, \psi_{2}^{*} \right) \right] \end{split}$$

with

- · renormalised fields: $\psi = A_{\psi}^{1/2} \bar{\psi}$, $\phi = A_{\phi}^{1/2} \bar{\phi}$
- $\cdot S_{\psi,\phi} = Z_{\psi,\phi}/A_{\psi,\phi}$
- · anomalous dimensions: $\eta_{\psi,\phi} = -\partial_t \log A_{\psi,\phi}$

and

$$U(\rho) = \sum_{n=1}^{N} \frac{u_n}{n!} (\rho - \rho_0)^n - n_k (\mu - \mu_0) + \sum_{m=1}^{M} \frac{\alpha_m}{m!} (\mu - \mu_0) (\rho - \rho_0)^m$$

 $u_1 = m_{\phi}^2$

Regularisation scheme

IR-regularisation:

$$\lim_{p^2/k^2 \to 0} R_k(p^2)/k^2 > 0, \qquad \lim_{k^2/p^2 \to 0} R_k(p^2) \to 0$$

Litim-type regulator:

$$\begin{split} R_{\phi,k}(Q) &= R_{\phi,k}(q^2) = \left(k^2 - \frac{q^2}{2}\right) \, \theta \left(k^2 - \frac{q^2}{2}\right) \\ R_{\psi,k}(Q) &= R_{\psi,k}(q^2) = \left[k^2 \, \mathrm{sgn} \left(q^2 - \mu\right) - (q^2 - \mu)\right] \, \theta \left(k^2 - |q^2 - \mu|\right) \end{split}$$

→analytic evaluation of Matsubara sums

UV renormalisation

Connecting to experiment

- · initial condition for U_k : $U_{\Lambda}(\rho) = (\nu_{\Lambda} 2 \, \mu) \, \rho$
- @ T=0: connect to correct vacuum physics at unitarity $(a^{-1}=0)$, i.e. $m_{\phi,k=0}^2=0=\mu$

Thus:

$$a=a(B)=\frac{h_{\Lambda}^2}{8\,\pi\,\nu(B)}\,,\qquad \nu(B)=\nu_{\Lambda}-\delta\nu(\Lambda)$$

Universality

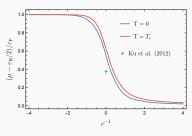
- existence of FPs in RG flow: macrophysics independent of the microphysics
- · loss of memory of microphysics: start at the FP values

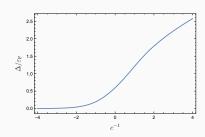
initial values

$$\begin{split} h_{\Lambda}^2 &= 6\,\pi^2\,\Lambda, \qquad \lambda_{\phi,\Lambda} = \frac{\tilde{\lambda}_{\phi,*}}{\Lambda}, \qquad m_{\phi,\Lambda}^2 = \nu_{\Lambda} - 2\,\mu, \\ S_{\phi,\Lambda} &= 1, \qquad \alpha_{\Lambda} = -2, \qquad n_{\Lambda} = \frac{\mu^{3/2}}{3\,\pi^2}\,\Theta(\mu). \end{split}$$

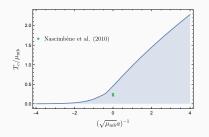
3D BCS-BEC crossover

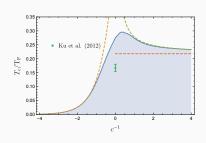
$$T=0$$
: (with $c=k_Fa$)





T > 0:



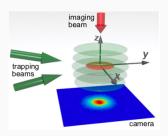


Dimensional crossover

Why are quasi-2D systems interesting?

- \bullet promising materials: graphene, high $T_c\text{-superconductors},$ layered semiconductors
- · pronounced influence of quantum fluctuations
- experimental accessibility via highly anisotropic trapping potentials
- for insufficient anisotropy → dimensional crossover

→disentangle dimensionality from many-body physics



Boundary conditions

· delimit z-direction by potential well of length L

$$V_{\mathrm{box}}(z) = \begin{cases} 0 & \quad 0 \leq z \leq L \\ \infty & \quad \mathrm{else} \end{cases}$$

· impose **periodic** boundary conditions: $\Psi = \{\psi, \phi\}$

$$\Psi(\tau, x, y, z = 0) = \Psi(\tau, x, y, z = L)$$

 \rightarrow quantisation of momentum in z-direction:

$$q_z \to k_n = \frac{2\,\pi\,n}{L}, \qquad n \in \mathbb{N}$$

spatial Matsubara sum

$$\int \frac{d^d q}{(2\pi)^d} = \frac{1}{L} \sum_{k_n} \int \frac{d^{d-1} q}{(2\pi)^{d-1}}$$

Regulator and method

Litim-type regulator (as before) with $\vec{q} = \hat{\vec{q}} + q_z \rightarrow \hat{\vec{q}} + k_n$

Regulator and method

Litim-type regulator (as before) with $\vec{q}=\hat{\vec{q}}+q_z \rightarrow \hat{\vec{q}}+k_n$ Idea:

- initialise RG flow at UV scale $k=\Lambda$ where Γ_{Λ} coincides with S of 3D gas
- \cdot L introduces new length scale to 3D system
- following the RG flow we successively integrate out the 3rd dimension
 - ightarrow @ k
 ightarrow 0: system @ given confinement length scale L

Regulator and method

Litim-type regulator (as before) with $\vec{q}=\hat{\vec{q}}+q_z \rightarrow \hat{\vec{q}}+k_n$ Idea:

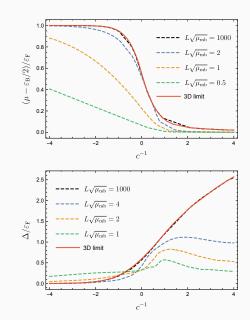
- initialise RG flow at UV scale $k=\Lambda$ where Γ_{Λ} coincides with S of 3D gas
- \cdot L introduces new length scale to 3D system
- following the RG flow we successively integrate out the 3rd dimension
 - ightarrow @ k
 ightarrow 0: system @ given confinement length scale L

Note

- \cdot UV scale is always chosen such that $\Lambda\gg(L^{-1},\mu^{1/2},T^{1/2})$
- * system is effectively 2D if $L^{-1}\gg$ all other many-body scales

Zero temperature

- · correct 3D-limit reached
- qualitatively correct behaviour of equation of state (except very small confinements)

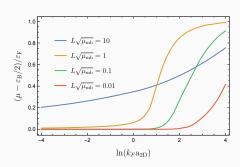


Connecting to experiment

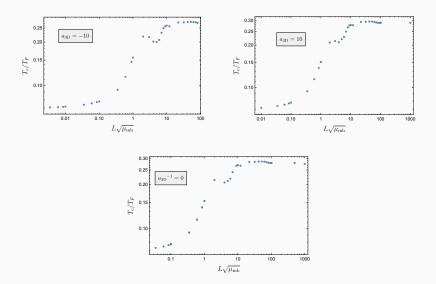
quasi-2d scattering length:

$$a_{\mathrm{2D}}^{(\mathrm{pbc})} = L \, \exp\left\{-\frac{1}{2} \, \frac{L}{a_{\mathrm{3D}}}\right\}, \qquad a_{\mathrm{2D}}^{(\mathrm{trap})} = \ell_z \, \sqrt{\frac{\mu}{A}} \, \exp\left\{-\sqrt{\frac{\mu}{2}} \, \frac{\ell_z}{a_{\mathrm{3D}}}\right\}$$

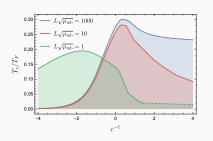
quasi-2d crossover parameter: $\ln(k_F a_{\mathrm{2D}})$

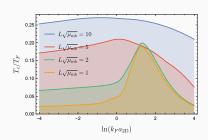


Finite temperature



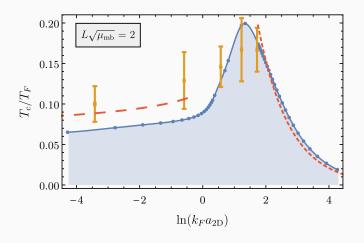
Phase diagram





- \cdot 3D phase diagram reproduced for large L
- increased T_c/T_F around $\ln(k_F a_{\rm 2D}) \sim 1$

Comparison to experiment



Conclusion

Summary and Outlook

Conclusion

- · dimensional crossover in Fermi gas with FRG
- · qualitatively comparable to experiments

Outlook

- · employ harmonic trapping potential
- · quantitative precision
 - particle-hole fluctuations
 - · frequency dependent regulator
- explore thermodynamics

Thank you for your attention!

Phase diagram from experiment

