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Chiral symmetry

Chiral transformation acts indipendently on
the right and left components of fermions:

U(Nf)R × U(Nf)L ⇒

{
ψL −→ e iθLψL

ψR −→ e iθRψR

A mass term is not chiral invariant

It can be used to define a chiral
condensate

meff ' 〈ψ̄ψ〉

The condensate represents the order
parameter

λk

β(λk)
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Gravitational catalysis

� Gravitational catalysis indicates the breaking of chiral symmetry due to the presence of
a curved background [Buchbinder and Kirillova, 1989; Sachs and Wipf, 1994; Elizalde, Leseduarte,

Odinstov and Sil’nov, 1996].

� In negatively curved spacetimes it can be understood as an effective dimensional
reduction of the long range dynamics of fermionic modes from D + 1 to 1 + 1 dimensions
[Gorbar, 2009].

λk

β(λk)

� The fixed point structure of sys-
tems undergoing gravitational catal-
ysis was studied [Scherer and Gies, 2012;

Gies and Lippoldt, 2013].
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Light fermions

Under the assumption of chiral symmetry breaking being triggered by quantum gravity
one would expect a consequent mass gap comparable to the Planck mass [Eichhorn and Gies,

2011].

wwww�

Can we use gravitational catalysis to constrain quantum gravity?
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Bosonization

The action for our model reads:

S [ψ̄, ψ] =

∫
x

{
ψ̄ /∇ψ +

λ̄+

2

[(
ψ̄aγµψ

a
)2

−
(
ψ̄aγµγ5ψ

a
)2]}

. (1)

By means of Fierz identities we re organize the interaction as

(V ) + (A) = −2[(SN)− (PN)] (2)

where

(SN) = (ψ̄aψb)2 = (ψ̄aψb)(ψ̄bψa),

(PN) = (ψ̄aγ5ψ
b)2 = (ψ̄aγ5ψ

b)(ψ̄bγ5ψ
a) , (3)

obtaining a NJL-type of action:

S [ψ̄, ψ] =

∫
x

{
ψ̄ /∇ψ − λ̄+

[(
ψ̄aψb

)2

−
(
ψ̄aγ5ψ

b
)2]}

. (4)
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Bosonization

Making use of the chiral projectors

PL =
1− γ5

2
, PR =

1 + γ5

2
, 1 = PL + PR , (5)

and the following auxiliary fields, satisfying:

φab = −2λ̄ψ̄b
Rψ

a
L , (φ†)ab = −2λ̄ψ̄b

Lψ
a
R

λ̄ = 2λ̄+ , (6)

we can implement the Hubbard-Stratonovich trick and map
our model to a Yukawa-type interaction as:

L(φ, ψ̄, ψ) = ψ̄a[ /∇+ PL(φ†)ab + PRφab]ψb +
1

2λ̄
tr(φ†φ) . (7)

It is clear that the nonzero components of 〈φab〉 are connected
to the dynamically generated fermion mass.

=⇒
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Mean field analysis

assuming breaking pattern, φab = φ0δab and introducing Schwinger proper time T we
finally write:

U(φ) =
Nf

2λ̄
φ2

0 +
Nf

2

∫ ∞
0

dT

T
e−φ

2
0T Tr e

/∇2T . (8)

with:
Tr e

/∇2T = TrK(x , x ′;T ) =: KT , (9)

and the heat kernel obeying:

∂

∂T
K = /∇2

K , lim
T→0+

K(x , x ′;T ) =
δ(x − x ′)
√
g

. (10)
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RG analysis

� In order to investigate the flow of the potential we introduce a propertime regulator
function fk :

fk = e−(k2T )p

. (11)

� Thus, at some given average scale kIR ∼ 1√
T

:

UkIR = UΛ −
∫ Λ

kIR

dk ∂kUk (12)

together with

UΛ = Nf

2λ̄Λ
φ2

0 , (13)

∂kUk = Nf
2

∫∞
0

dT
T

e−φ
2
0T∂k fkKT .

1/kIR
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SSB

The fermion mass is generated by breaking a U(Nf )R × U(Nf )L symmetry.

We focus on a second order phase transition mechanism.

We check the curvature of the
potential in the origin of the
field space.

The condition U ′′(0) = 0 will

be a function of the ratio
k2

IR
R

U''(0)>0

U''(0)<0

1 2 3 4 5

-50

50

100
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D = 3

Given κ2 = |R|
D(D−1)

= |R|
6

the heat kernel can be expressed as:

KD=3
T =

1

8π
3
2 T

3
2

(
1 +

1

2
κ2T

)
, (14)

and the effective potential can be computed analytically:

UkIR =− Nf

2
φ2

0

( 1

λ̄cr

− 1

λ̄Λ

− kIR

4π

)
+

Nf

12π

(
(φ2

0 + k2
IR)

3
2 − 3

2
kIRφ

2
0 − k3

IR

)
− Nf

16π
κ2
(√

φ2
0 + k2

IR − kIR

)
. (15)

At criticality, in order to avoid chiral symmetry breaking the curvature needs to satisfy:

κ2

k2
IR

≤ 4 =⇒ |R| ≤ 24k2
IR (16)
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D = 4

UkIR

∣∣∣
φ2

0

= −Nfφ
2
0

2

[ 1

λ̄cr

− 1

λ̄Λ

+ κ2A
( κ

kIR
; p
)]
− 12NfξkIRφ

2
0κ

2 , (17)

A ∼ −Γ
(

1− 1

p

) k2
IR

(4π)2κ2
+ 2

κ

kIR

Γ
(

1 + 1
2p

)
√
π

, λ̄cr =
(4π)2

Λ2Γ
(

1− 1
p

) , (18)
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kIR

κ
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Curvature bound

� For ξkIR = 0, in order to avoid gravitationally catalyzed chiral symmetry breaking we
have:

κ

kIR

∣∣∣
p=2
≤ 1.8998,

κ

kIR

∣∣∣
p→∞

≤ 1.5757. (19)

� Allowing different values for ξkIR , the bound is shifted:

0.1 1 10 100 1000 104

κ

kIR

- 150
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- 50
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100

U''(0)IR

ξIR 2

ξIR 1

ξIR 0

ξ
IR 1

ξ
IR 2

κ
kIR

U'' (0)k

=-

= -

=

=

=

IR
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Constraining quantum gravity in asymptotic safety

The background metric is a solution of the semiclassical equations of motion

Rµν(〈g〉k ) = Λ̄k〈gµν〉k =⇒
at UV f.p.

R

k2
= 4λ∗ , (20)

where Λ̄k is the scale dependent cosmological constant and λ∗ its UV fixed point value.
The presence of fermionic d.o.f. drags the cosmological constant UV fixed points
towards negative values.

Identifying kIR with the coarse graining scale k of asymptotic safety is possible to study a
bound on the number of matter d.o.f.:

κ2

k2
IR

=
|λ∗|

3
with λ∗ = λ∗(NS ,Nf ,NV ) . (21)
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Constraining quantum gravity in asymptotic safety

Given dg = NS − 4NV + 2Nf , dλ = NS + 2NV − 4Nf we can parametrize the space of fixed
point of a matter-gravity system:

Gravitational catalysis

R>0

p=2

p=∞

SM+Nf

PF

-30 -20 -10 10 20 30
dg

-400

-300

-200

-100

100
dλ

Plot based on the results from [Biemans, Platania and Saueressig, 2017].
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Comparing different techniques

Nf,gc

PF SM+Nf MSSM+Nf

one-loop approx.
(type IIa)
[Codello, Percacci and

Rahmede, 2009]

17.58 35.97 20.3

background-field
approximation
[Doná, Eichhorn and

Percacci, 2014]

8.21 26.5 no FP

RG flow on foliated
spacetimes
[Biemans, Platania and

Saueressig, 2017]

9.27 27.67 10.01

dynamical
FRG
[Meybohm, Pawlowski

and Reichert, 2016]

48.7
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Higher dimensions

In absence of new operators and in the limit p →∞, the bound in D = 6 results in

κ

kIR

∣∣∣
p→∞

≤ 1.0561 . (22)

For D odd the decreasing behavior
is clear:

κ

kIR
≤ 1

σ0
≡

( √
π

Γ
(

D
2

)
(D − 2)

) 1
D−1
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Summary and Conclusions

� We investigated the scale dependence of gravitational catalysis showing how the
curvature of local patches of spacetime may trigger chiral symmetry breaking when being
competitive with respect to the energy scale of the process involved.

� It is always possible to find a set of values for the parameters kIR and R preventing the
generation of massive fermionic matter.

� We showed that gravitational catalysis can be used as a tool to test quantum gravity
theories. The requirements result in a bound for the average curvature of the background
spacetime measured in units of the energy scale kIR.

� Even if the formulation of the bound is scheme-dependent, we expect the result to have
a scheme-independent meaning.
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Thank you!
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Heat Kernel

It is possible to give an integral representation of the Heat Kernel [Camporesi, 1991]:

D odd:

K odd
T =

2

(4πT )
D
2 Γ
(

D
2

) ∫ ∞
0

du e−u2

D
2
−1∏

j= 1
2

(u2 + j2κ2T ) , (23)

D even:

K even
T =

2

(4πT )
D
2 Γ
(

D
2

) ∫ ∞
0

du e−u2

u coth(π
u

κ
√
T

)

D
2
−1∏

j=1

(u2 + j2κ2T ) . (24)
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Operator structure

The operator structure can be investigated by expressing the product inside the heat
kernel as a sum:

D
2
−1∏

j=j0

(u2 + j2κ2T ) =

D−1
2∑

m=0

Cmu
2m(κ2T )

D−1
2
−m , 0 =

{ 1
2

for D odd
1 for D even

(25)

κ-independent term −→ its UV behavior defines λ̄cr

u-independent term −→ UV-regular, most relevant contribution to g.c.

The competition of their IR behaviors leads to the bound.

other terms will be relevant/marginal and require regularization via counter-terms.

In D = 4 the only new operator is proportional to φ2
0R.
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Scheme dependence

The general choice of regulator can be performed in terms of a parameter p in the
following way:

fk = e−(k2T )p

(26)

p specifies the details of the regulator function:

p = 1 we have the Callan-Symanzik regulator
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Scheme dependence

The general choice of regulator can be performed in terms of a parameter p in the
following way:

fk = e−(k2T )p

(26)

p specifies the details of the regulator function:

p = 1 we have the Callan-Symanzik regulator −→ Insufficient in D > 3,

p → 0 =⇒ fk is a constant,

p →∞ =⇒ fk → θ( 1
k2 − T ) .
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