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The path integral measure and probability

Euclidean path integral

Z =

∫
Dφe−S(φ)

ρ(φ) = e−S(φ) is positive → probability measure.

Observables via Monte Carlo simulations

〈O〉 = 1
Z

∫
Oe−S



What is the sign problem?

What if ρ(φ) = e−S(φ) ≯ 0? Nontrivial cancellations →
high statistics for the tail. (1005.0539)
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Or even ρ(φ) ∈ C? → no Monte Carlo.



Reweighting
Reweighting (not limited to this particular form):

〈O〉 =
∫
Oρ∫
ρ

=

∫
OArg (ρ) |ρ|∫
Arg (ρ) |ρ|

=
〈OArg (ρ)〉|ρ|
〈Arg (ρ)〉|ρ|

denominator:

〈Arg(ρ)〉|ρ| =
〈
ρ

|ρ|

〉
|ρ|

=

∫
ρ
|ρ| |ρ|∫
|ρ|

=
Zρ
Z|ρ|

free energy density: f = −T
V
log Z :

Zρ
Z|ρ|

= e−
V
T

∆f V→∞−−−→ 0

Overlap problem: Strong shift of ρ→ |ρ| can lead to
strong suppression of signal of observable.



Who cares?

Interesting Physics!

Finite density (most famous: QCD phase diagram)

Real time evolution

And much more in and beyond QFT!



What now?

Different ideas are needed!
For QCD Phase diagram: Taylor expansion, continuation
from imaginary chemical potential
Complex Langevin

Lefschetz Thimbles and other path deformations
Dual formulations
Density of states
...



Complex Langevin



Langevin

Stochastic process

dx = −∂S
∂x

dt + dw

The corresponding Fokker-Planck equation

∂

∂t
ρ(x) = [∂x (∂x + (∂xS(x)))] ρ(x)

has solution
ρ(x ; t →∞) = e−S(x)



Complex Langevin

Complexify the field variable (Parisi ’83, or see 0807.1597)

dz = −∂S
∂z

dt + dw

or

dx = −Re
(
∂S

∂z

)
dt + dw

dy = −Im
(
∂S

∂z

)
dt



What happens?
Langevin evolution is driven by fixpoint structure
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When does it work?

Action S(z) (and observables O) holomorphic

Fokker-Planck equation for complex variable and for real
and imaginary part, i.e. ρ(z ; t) and P(x , y ; t)

CLE is correct, if: (0912.3360)

〈O〉ρ(z;t) = 〈O〉P(x ,y ;t)

for all t!



When does it work?

Define interpolating quantity

F (t, τ) =

∫
P(x , y ; t − τ)O(x + iy ; τ)dxdy

with

F (t, 0) = 〈O〉P(x ,y ;t)

F (t, t) = 〈O〉ρ(z;t)

Requirement: ∂τF (t, τ) = 0 (this is true if boundary
terms vanish).



Example
U(1)-one link model

S(z) = iβ cos(z)

O(z) = e iz

Can be solved numerically (e.g. β = 0.1):
〈O〉 = −0.0500626i . CLE yields: 〈O〉 = 0. WHY?
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Example
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F (t, τ) shows buildup of boundary effects.



Example
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Boundary terms also visible in distribution (only in
y -direction, becomes x-independent at large t for this
model).



Example

Why does it go wrong? Add term that makes real axis
more attractive:
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Lack of stable fixed points leads to large excursions.



Summary pt 1/3

There are clear criteria for correctness of CLE!

More complicated theories: Look at histogram of
observables instead of solution of Fokker-Planck
→ one can see if CL is correct by just looking at the
simulation results!



Lefschetz Thimbles



The Lefschetz Thimble Method

Look at integrals of the form Z =
∫
e−s

Starting point: Complexification of the real manifold

Find critical points ∂S(z)
∂z

= 0

Find Lefschetz thimbles: Steepest descent (ascent) paths
that end (start) in the fixpoint

ż = ±∂S
∂z

Can show: Im(S) is constant along thimbles



The Lefschetz Thimble Method

The following identity holds (1001.2933)∫
R
e−S(x)dx =

∑
σ

nσe
−Im(S(zσ))

∫
Jσ

e−Re(S(z))dz

nσ is the intersection number of the antithimble (steepest
ascent path) with the original manifold, encodes topology

Why does this work? Homotopy-equivalence of the
original manifold with the union of (contributing)
Lefschetz-thimbles



The Lefschetz Thimble Method
Real weight

ρσ(z) = e−Re(S(z))

allows standard Monte Carlo sampling (1205.3996)

〈O〉 =
∑

σ nσe
−iIm(S(zσ))Zσ 〈O〉σ∑

σ nσe
−iIm(S(zσ))Zσ

〈O〉σ contains a residual sign problem, due to Jacobian,
use reweighting (eq for one thimble:)

〈O〉 = 〈OJ〉
〈J〉

ratio of weights via reweighting (1803.08418)

Z1

Z2
=
〈
eRe(S2−S1)

〉
2



Why does this help?

Airy integral S(x) = −i
(

x3

3 + αx
)
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Makes Monte Carlo possible AND removes fluctuations
note: plot borrowed from Felix Zieglers group meeting talk

BUT: Residual sign problem due to Jacobian



Example

S(z) = 1
2z

2 + 1
4z

4 + (1+ i)z
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〈z2〉exact = 0.73922+ 0.63009i
〈z2〉numerical = 0.73922(6) + 0.63006(4)i (1803.08418)



Summary pt 2/3

Systematic way to apply Lefschetz Thimble Method in
simple systems

We are currently working on field theories



Beyond Lefschetz Thimbles

Using homotopy equivalence, other paths are possible

Maryland approach: Use steepest descent to flow closer
to thimbles

Path optimization: Maximize average sign by making an
ansatz for a manifold and optimizing the parameters
(either by gradient equations or neural networks)



QCD



Complex Langevin and QCD

We look at QCD (first CLE application: 1307.7748)
Lattice action

S(U) = −β
∑
n∈Λ

∑
µ<ν

(
1
6
[
TrUµν(n) + TrU−1µν (n)

]
− 1
)

+
∑

flavours

a4
∑
n,m∈Λ

ψ(n)D(n|m)ψ(m)

D(n|m) = δa,bδα,βδn,m − κ
±4∑

µ=±1

(1− γµ)αβUµ(n)abδn+µ̂,m

with β ∼ g−2 and κ ∼ 1/m



Complex Langevin and QCD

Nf = 2 Wilson fermions (mπ ∼ 1GeV so far)

Adaptive stepsize (no runaways)

Gauge cooling: keep unitarity norm NU = U†U − Tr1 as
small as possible (gauge transformation opposite to ∇NU)



Some results
DISCLAIMER: All plots preliminary and low statistics!
Ns = 8, κ = 0.15, β = 5.9, everything in lattice units
(sorry Nicolas...)
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Some results

Debunking CLE = phase quenched
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Summary pt 3/3

Sign problem leads to need for exponential growth in
computation time

Can be circumvented by Complex Langevin and Lefschetz
Thimbles

Complex Langevin: Clear criteria for whether it works

Complex Langevin works in QCD in all interesting regions

Outlook: Application of Lefschetz thimbles to higher
dimensional manifolds → make use of symmetries



THE END
Thank you for your attention


