Approaching the sign problem by complexification

Manuel Scherzer

in collaboration with I.-O. Stamatescu, Jan M. Pawlowski, Erhard Seiler, Denés Sexty, Felix P. G. Ziegler, Stefan Bluecher, Sebastian Syrkowski, Mike Schlosser

Cold Quantum Coffee

May 29, 2018

Contents

What is the sign problem

The Complex Langevin Method

The Lefschetz Thimble Method

Beyond Lefschetz Thimbles

Some QCD results (with CL)

The path integral measure and probability

Euclidean path integral

$$Z = \int \mathcal{D}\phi e^{-S(\phi)}$$

 $\rho(\phi) = e^{-S(\phi)}$ is positive \rightarrow probability measure.

Observables via Monte Carlo simulations

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{O} e^{-S}$$

What is the sign problem?

What if $\rho(\phi) = e^{-S(\phi)} > 0$? Nontrivial cancellations \rightarrow high statistics for the tail. (1005.0539)

Or even $\rho(\phi) \in \mathbb{C}$? \to no Monte Carlo.

Reweighting

Reweighting (not limited to this particular form):

$$\left\langle \mathcal{O}\right\rangle = \frac{\int \mathcal{O}\rho}{\int \rho} = \frac{\int \mathcal{O}\mathsf{Arg}\left(\rho\right)\left|\rho\right|}{\int \mathsf{Arg}\left(\rho\right)\left|\rho\right|} = \frac{\left\langle \mathcal{O}\mathsf{Arg}\left(\rho\right)\right\rangle_{\left|\rho\right|}}{\left\langle \mathsf{Arg}\left(\rho\right)\right\rangle_{\left|\rho\right|}}$$

denominator:

$$\left\langle \mathsf{Arg}(\rho) \right\rangle_{|\rho|} = \left\langle \frac{\rho}{|\rho|} \right\rangle_{|\rho|} = \frac{\int \frac{\rho}{|\rho|} |\rho|}{\int |\rho|} = \frac{Z_{\rho}}{Z_{|\rho|}}$$

free energy density: $f = -\frac{T}{V} \log Z$:

$$\frac{Z_{\rho}}{Z_{|\rho|}} = e^{-\frac{V}{T}\Delta f} \xrightarrow{V \to \infty} 0$$

Overlap problem: Strong shift of $\rho \to |\rho|$ can lead to strong suppression of signal of observable.

Who cares?

Interesting Physics!

Finite density (most famous: QCD phase diagram)

Real time evolution

And much more in and beyond QFT!

What now?

Different ideas are needed!

For QCD Phase diagram: Taylor expansion, continuation from imaginary chemical potential

Complex Langevin

Lefschetz Thimbles and other path deformations
Dual formulations

Density of states

. . .

Complex Langevin

Langevin

Stochastic process

$$dx = -\frac{\partial S}{\partial x}dt + dw$$

The corresponding Fokker-Planck equation

$$\frac{\partial}{\partial t}\rho(x) = \left[\partial_x \left(\partial_x + (\partial_x S(x))\right)\right]\rho(x)$$

has solution

$$\rho(x; t \to \infty) = e^{-S(x)}$$

Complex Langevin

Complexify the field variable (Parisi '83, or see 0807.1597)

$$dz = -\frac{\partial S}{\partial z}dt + dw$$

or

$$dx = -\operatorname{Re}\left(\frac{\partial S}{\partial z}\right)dt + dw$$
$$dy = -\operatorname{Im}\left(\frac{\partial S}{\partial z}\right)dt$$

What happens?

Langevin evolution is driven by fixpoint structure

When does it work?

Action S(z) (and observables O) holomorphic

Fokker-Planck equation for complex variable and for real and imaginary part, i.e. $\rho(z;t)$ and P(x,y;t) CLE is correct, if: (0912.3360)

$$\langle \mathcal{O} \rangle_{\rho(z;t)} = \langle \mathcal{O} \rangle_{P(x,y;t)}$$

for all t!

When does it work?

Define interpolating quantity

$$F(t,\tau) = \int P(x,y;t-\tau)\mathcal{O}(x+iy;\tau)dxdy$$

with

$$F(t,0) = \langle \mathcal{O} \rangle_{P(x,y;t)}$$

 $F(t,t) = \langle \mathcal{O} \rangle_{\rho(z;t)}$

Requirement: $\partial_{\tau}F(t,\tau)=0$ (this is true if boundary terms vanish).

U(1)-one link model

$$S(z) = i\beta \cos(z)$$
$$\mathcal{O}(z) = e^{iz}$$

Can be solved numerically (e.g. $\beta=0.1$): $\langle \mathcal{O} \rangle = -0.0500626i$. CLE yields: $\langle \mathcal{O} \rangle = 0$. WHY?

 $F(t,\tau)$ shows buildup of boundary effects.

Boundary terms also visible in distribution (only in y-direction, becomes x-independent at large t for this model).

Why does it go wrong? Add term that makes real axis more attractive:

Lack of stable fixed points leads to large excursions.

Summary pt 1/3

There are clear criteria for correctness of CLE!

More complicated theories: Look at histogram of observables instead of solution of Fokker-Planck \rightarrow one can see if CL is correct by just looking at the simulation results!

Lefschetz Thimbles

The Lefschetz Thimble Method

Look at integrals of the form $Z=\int e^{-s}$

Starting point: Complexification of the real manifold

Find critical points $\frac{\partial S(z)}{\partial z} = 0$

Find Lefschetz thimbles: Steepest descent (ascent) paths that end (start) in the fixpoint

$$\dot{z} = \pm \frac{\partial S}{\partial z}$$

Can show: Im(S) is constant along thimbles

The Lefschetz Thimble Method

The following identity holds (1001.2933)

$$\int_{\mathbb{R}} e^{-S(x)} dx = \sum_{\sigma} n_{\sigma} e^{-Im(S(z_{\sigma}))} \int_{J_{\sigma}} e^{-Re(S(z))} dz$$

 n_{σ} is the intersection number of the antithimble (steepest ascent path) with the original manifold, encodes topology

Why does this work? Homotopy-equivalence of the original manifold with the union of (contributing) Lefschetz-thimbles

The Lefschetz Thimble Method

Real weight

$$\rho_{\sigma}(z) = e^{-Re(S(z))}$$

allows standard Monte Carlo sampling (1205.3996)

$$\langle \mathcal{O} \rangle = \frac{\sum_{\sigma} n_{\sigma} e^{-iIm(S(z_{\sigma}))} Z_{\sigma} \langle \mathcal{O} \rangle_{\sigma}}{\sum_{\sigma} n_{\sigma} e^{-iIm(S(z_{\sigma}))} Z_{\sigma}}$$

 $\langle \mathcal{O} \rangle_{\sigma}$ contains a residual sign problem, due to Jacobian, use reweighting (eq for one thimble:)

$$\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O} J \rangle}{\langle J \rangle}$$

ratio of weights via reweighting (1803.08418)

$$\frac{Z_1}{Z_2} = \left\langle e^{Re(S_2 - S_1)} \right\rangle_2$$

Why does this help?

Airy integral
$$S(x) = -i\left(\frac{x^3}{3} + \alpha x\right)$$

Makes Monte Carlo possible AND removes fluctuations note: plot borrowed from Felix Zieglers group meeting talk

BUT: Residual sign problem due to Jacobian

$$S(z) = \frac{1}{2}z^2 + \frac{1}{4}z^4 + (1+i)z$$

$$\langle z^2 \rangle_{exact} = 0.73922 + 0.63009i$$

 $\langle z^2 \rangle_{numerical} = 0.73922(6) + 0.63006(4)i$ (1803.08418)

Summary pt 2/3

Systematic way to apply Lefschetz Thimble Method in simple systems

We are currently working on field theories

Beyond Lefschetz Thimbles

Using homotopy equivalence, other paths are possible

Maryland approach: Use steepest descent to flow closer to thimbles

Path optimization: Maximize average sign by making an ansatz for a manifold and optimizing the parameters (either by gradient equations or neural networks)

Complex Langevin and QCD

We look at QCD (first CLE application: 1307.7748) Lattice action

$$S(U) = -eta \sum_{n \in \Lambda} \sum_{\mu <
u} \left(rac{1}{6} \left[\operatorname{Tr} U_{\mu
u}(n) + \operatorname{Tr} U_{\mu
u}^{-1}(n)
ight] - 1
ight)$$
 $+ \sum_{ ext{flavours}} a^4 \sum_{n,m \in \Lambda} \overline{\psi}(n) D(n|m) \psi(m)$

$$D(\mathbf{n}|\mathbf{m}) = \delta_{\mathsf{a},\mathsf{b}} \delta_{\alpha,\beta} \delta_{\mathsf{n},\mathsf{m}} - \kappa \sum_{\mu=\pm 1} (1 - \gamma_{\mu})_{\alpha\beta} U_{\mu}(\mathbf{n})_{\mathsf{a}\mathsf{b}} \delta_{\mathsf{n}+\hat{\mu},\mathsf{m}}$$

with $eta \sim g^{-2}$ and $\kappa \sim 1/m$

Complex Langevin and QCD

 $N_f=2$ Wilson fermions ($m_\pi\sim 1$ GeV so far)

Adaptive stepsize (no runaways)

Gauge cooling: keep unitarity norm $N_U = U^{\dagger}U - Tr1$ as small as possible (gauge transformation opposite to ∇N_U)

Some results

DISCLAIMER: All plots preliminary and low statistics! $N_s=8,~\kappa=0.15,~\beta=5.9,$ everything in lattice units (sorry Nicolas...)

Some results

Debunking CLE = phase quenched

Summary pt 3/3

Sign problem leads to need for exponential growth in computation time

Can be circumvented by Complex Langevin and Lefschetz Thimbles

Complex Langevin: Clear criteria for whether it works

Complex Langevin works in QCD in all interesting regions

Outlook: Application of Lefschetz thimbles to higher dimensional manifolds \rightarrow make use of symmetries

THE END

Thank you for your attention