Ultraviolet Dynamics of Fermions and Gravity

Cold Quantum Coffee on June 26, 2018

Marc Schiffer, Heidelberg University

with A. Eichhorn and S. Lippoldt arXiv 18xx.xxxxx

with A. Eichhorn, S. Lippoldt, J. M. Pawlowski and M. Reichert arXiv 1807.xxxx

Motivation for Quantum Gravity

Why quantum gravity?

General Relativity:

- several high precision tests
- latest confirmation:
 Existence of black holes by LIGO collaboration

Why quantum gravity?

General Relativity:

- several high precision tests
- latest confirmation:
 Existence of black holes by LIGO collaboration
- Simplest version of a black hole:
 Schwarzschild black hole
 physical singularity at r = 0.
 - \Rightarrow GR is not a fundamental theory

Source: Northern Arizona University

Why quantum gravity?

General Relativity:

- several high precision tests
- latest confirmation:
 Existence of black holes by LIGO collaboration
- Simplest version of a black hole: Schwarzschild black hole

physical singularity at r = 0.

- \Rightarrow GR is not a fundamental theory
- For $E > M_{PL} = \sqrt{\frac{\hbar c}{G_N}}$: QG effects are expected

Source: Northern Arizona University

Standard Model:

- well tested low energy model
- formulated as QFT

[D. Buttazzo, 2013]

Standard Model:

- well tested low energy model
- formulated as QFT
- Triviality problem in scalar ϕ^4 and abelian gauge theories

```
[J. Fröhlich, 1982][M. Gockeler et al., 1997] , [H. Gies and J. Jäckel, 2004]
```


Image credits: Fleur Versteegen

Standard Model:

- well tested low energy model
- formulated as QFT
- Triviality problem in scalar ϕ^4 and abelian gauge theories

```
[J. Fröhlich, 1982][M. Gockeler et al., 1997] , [H. Gies and J. Jäckel, 2004]
```

- Singularities might carry over to SM
 - \rightarrow SM is only effective theory
 - → breakdown beyond Planck scale
 - \rightarrow QG might cure Landau poles

Image credits: Fleur Versteegen

Standard Model:

- well tested low energy model
- formulated as QFT
- Triviality problem in scalar ϕ^4 and abelian gauge theories

```
[J. Fröhlich, 1982][M. Gockeler et al., 1997] , [H. Gies and J. Jäckel, 2004]
```

- Singularities might carry over to SM
 - \rightarrow SM is only effective theory
 - → breakdown beyond Planck scale
 - ightarrow QG might cure Landau poles

Image credits: Fleur Versteegen

compatibility with SM in IR provides test for quantum theory of gravity

Outline

Motivation for Quantum Gravity

Asymptotically Safe Quantum Gravity

Effective Universality for Gravity and Matter

Induced Couplings at UV Fixed Point

Asymptotically Safe Quantum Gravity

How to quantize Gravity?

• $[G_{\rm N}] = 2 - d$ \Rightarrow GR is perturbatively non-renormalizable in d=4

[M. H. Goroff and A. Sagnotti, 1986]

[G. 't Hooft and M. J. G. Veltman, 1974]

How to quantize Gravity?

- $[G_{\mathsf{N}}] = 2 d$ $\Rightarrow \mathsf{GR}$ is perturbatively non-renormalizable in d = 4[G. 't Hooft and M. J. G. Veltman, 1974]
 [M. H. Goroff and A. Sagnotti, 1986]
- Effective field theory approach: Loss of predictivity at M_{PL}

[J. F. Donoghue and B. R. Holstein, 2015]

Asymptotic safety

- Asymptotic freedom
 - ► all couplings vanish in the UV
 - perturbative renormalizability

CMS Collaboration, 2017

Asymptotic safety

- Asymptotic freedom
 - all couplings vanish in the UV
 - perturbative renormalizability
- Asymptotic safety
 - [S. Weinberg, 1979]
 - all dimensionless couplings enter a scale invariant regime
 - ► interacting theory in the UV
 - non-perturbative renormalizability

A. Eichhorn, 2017

Search for Asymptotic safety

Study RG-flow of dimensionless couplings $g_i = \bar{g}_i \, k^{-d_{\bar{g}_i}}$

$$eta_{g_i}(ec{g}) = k \, \partial_k g_i = egin{bmatrix} -d_{ar{g}_i} \, g_i \ & + egin{bmatrix} f_i(ec{g}) \ & ext{quantum} \end{bmatrix}$$

 \Rightarrow balancing of dimensional term with quantum correction can lead to AS

• Linearized β -functions

$$\beta_{g_i} = \beta_{g_i} \bigg|_{\mathbf{g} = \mathbf{g}^*} + \sum_{j} \left(\frac{\partial \beta_{g_i}}{\partial g_j} \right) \bigg|_{\mathbf{g} = \mathbf{g}^*} (g_j - g_j^*) + \mathcal{O}\left((g_j - g_j^*)^2 \right)$$

• Linearized β -functions

$$\beta_{g_i} = \beta_{g_i} \bigg|_{\mathbf{g} = \mathbf{g}^*} + \sum_{j} \left(\frac{\partial \beta_{g_i}}{\partial g_j} \right) \bigg|_{\mathbf{g} = \mathbf{g}^*} (g_j - g_j^*) + \mathcal{O}\left((g_j - g_j^*)^2 \right)$$

Solution to linearized flow equations

$$g_i(k) = g_i^* + \sum_j c_j V_j^i \left(\frac{k}{k_0}\right)^{-\Theta_j} \quad \text{with} \quad -\operatorname{eig}\left(M\right) = \Theta_i \,.$$

Solution to linearized flow equations

$$g_i(k) = g_i^* + \sum_j c_j V_j^i \left(\frac{k}{k_0}\right)^{-\Theta_j} \quad \text{with} \quad -\operatorname{eig}\left(M\right) = \Theta_i \,.$$

$$\mathsf{Re}(\Theta_i) < 0$$

- irrelevant direction
- $g_i(k) \xrightarrow{k \to \infty} g_i^*$
- c_j drop out
- g_i^* is a prediction

Solution to linearized flow equations

$$g_i(k) = g_i^* + \sum_j c_j V_j^i \left(\frac{k}{k_0}\right)^{-\Theta_j} \quad \text{with} \quad -\operatorname{eig}\left(M\right) = \Theta_i.$$

$$Re(\Theta_i) < 0$$

- irrelevant direction
- $g_i(k) \xrightarrow{k \to \infty} g_i^*$
- c_j drop out
- g_i^* is a prediction

$Re(\Theta_i) > 0$

- relevant direction
- c_j remain
- adjust c_j to reach g_i^*
- one free parameter for each relevant direction

Solution to linearized flow equations

$$g_i(k) = g_i^* + \sum_i c_j V_j^i \left(\frac{k}{k_0}\right)^{-\Theta_j} \quad \text{with} \quad -\operatorname{eig}\left(M\right) = \Theta_i \,.$$

$$Re(\Theta_i) < 0$$

- irrelevant direction
- $g_i(k) \xrightarrow{k \to \infty} g_i^*$
- c_j drop out
- g_i^* is a prediction

$$Re(\Theta_i) > 0$$

- relevant direction
- c_i remain
- adjust c_i to reach g_i^*
- one free parameter for each relevant direction

Number of relevant directions determines predictivity

[A. Eichhorn, 2017]

$$Re(\Theta_i) < 0$$

- irrelevant direction
- g_i^* is a prediction

$$Re(\Theta_i) > 0$$

- relevant direction
- one free parameter for each relevant direction

Tool: Functional Renormalization Group

Non-Perturbative Renormalisation Group Equation [Wetterich, 1993], [Reuter, 1996]

$$k\,\partial_k\Gamma_k=\frac{1}{2}\,\mathrm{STr}\left(\left(\Gamma_k^{(2)}+R_k\right)^{-1}\;k\,\partial_kR_k\right)=\frac{1}{2} {\bigotimes}$$

 $\Gamma_k = \text{scale dependent effective action} \\ R_k = \text{IR regulator}$

- exact 1-loop equation
- extract β -functions via projection
- truncation needed → not closed

Matter

Effective Universality for Gravity and

Avatars of the Newton coupling

• Einstein-Hilbert gravity minimally coupled to fermions, i.e.

$$S = -\frac{1}{16 \pi G_{\text{N}}} \int \!\! \mathrm{d}^4 x \sqrt{g} \left(R - 2\Lambda\right) + \sum_{i=1}^{N_{\text{f}}} \int \!\! \mathrm{d}^4 x \sqrt{g} \, \bar{\psi}^i \nabla \!\!\!/ \psi^i$$

Avatars of the Newton coupling

• Einstein-Hilbert gravity minimally coupled to fermions, i.e.

$$\begin{split} S = & -\frac{1}{16\,\pi\,G_{\text{N}}} \int \!\!\mathrm{d}^4 x \,\sqrt{g}\,(R-2\Lambda) + \sum_{i=1}^{N_{\text{f}}} \int \!\!\mathrm{d}^4 x \,\sqrt{g}\,\bar{\psi}^i \vec{\nabla}\,\psi^i \\ & \qquad \sim \sqrt{G_{3h}} \\ & \sim \sqrt{G_{3h}} & \sim \sqrt{G_{h\bar{\psi}\psi}} \end{split}$$

two different "avatars" of the Newton coupling

Effective universality

- Classically: Diffeomorphism invariance
 - \Rightarrow there should only be **one** Newton coupling

Effective universality

- Classically: Diffeomorphism invariance
 - ⇒ there should only be **one** Newton coupling
- On the quantum level
 - ► $[G_{\rm N}] = -2 \Rightarrow$ 2-loop universality is lost [Weinberg, 1995]
 - ► Gauge fixing, Regulator

Effective universality

- Classically: Diffeomorphism invariance
 - ⇒ there should only be **one** Newton coupling
- On the quantum level
 - $\qquad \qquad [G_{\rm N}] = -2 \Rightarrow \text{2-loop universality is lost}$ [Weinberg, 1995]
 - ► Gauge fixing, Regulator
 - \Rightarrow set of identities (mSTI's) relates avatars
- Effective universality:

Quantitative agreement of different avatars of the Newton coupling

[A. Eichhorn, P. Labus, J. M. Pawlowski and M. Reichert, 2018]

• Compare both avatars on the level of their eta-functions at $(\mu^*,\lambda_3^*,G_{3h}=G_{har{\psi}\psi})$

$$\beta_{G_{3h}} = 2G - 3.4G^2 + 0.37G^3 + \mathcal{O}(G^4)$$
$$\beta_{G_{h\bar{\psi}\psi}} = 2G - 2.8G^2 + 0.42G^3 + \mathcal{O}(G^4)$$

Effective universality for fermions and gravity

Measure of effective universality

$$\varepsilon(G, \mu, \lambda_3) = \left| \frac{\Delta \beta_{G_i} - \Delta \beta_{G_j}}{\Delta \beta_{G_i} + \Delta \beta_{G_j}} \right|_{G_i = G_j}$$

with

$$\Delta \beta_{G_i} = \beta_{G_i} - 2 \ G_i$$

[A. Eichhorn, P. Labus, J. M. Pawlowski and M. Re-

ichert, 2018]

Effective universality for fermions and gravity

Measure of effective universality

$$\varepsilon(G, \mu, \lambda_3) = \left| \frac{\Delta \beta_{G_i} - \Delta \beta_{G_j}}{\Delta \beta_{G_i} + \Delta \beta_{G_j}} \right|_{G_i = G_i}$$

with

$$\Delta \beta_{G_i} = \beta_{G_i} - 2 G_i$$

[A. Eichhorn, P. Labus, J. M. Pawlowski and M. Reichert, 2018]

[A. Eichhorn, S. Lippoldt, MS, in preparation]

 $[A.\ Eichhorn,\ S.\ Lippoldt,\ J.\ M.\ Pawlowski,\ M.\ Reichert,\ MS,\ in\ preparation]$

Effective universality for all avatars of the Newton coupling

 Compare fermions, scalars, vector fields and gravity

Effective universality for all avatars of the Newton coupling

Zoomed in plot region!

- Compare fermions, scalars, vector fields and gravity
- Effective universality for all avatars of the Newton coupling

Effective universality for all avatars of the Newton coupling

- Compare fermions, scalars, vector fields and gravity
- Effective universality for all avatars of the Newton coupling

<u>Implications</u>

- Highly non-trivial cancellations
- Not expected for truncation artifact

 \rightarrow strong hint for physical nature of asymptotically safe fixed point

Induced Couplings at UV Fixed Point

Induced Couplings at UV Fixed Point

- Naive expectation: Flow equation generates all interactions that are compatible with symmetry
- For gravity-matter systems:
 ∃ chiral (shift) symmetric matter
 interactions

Induced Couplings at UV Fixed Point

- Naive expectation:
 Flow equation generates all interactions that are compatible with symmetry
- For gravity-matter systems:
 ∃ chiral (shift) symmetric matter interactions
- Corresponding coupling does not have GFP if $G_N \neq 0$

[A. Eichhorn, A. Held and J. M. Pawlowski, 2016]

Induced Couplings at UV Fixed Point

- Naive expectation:
 Flow equation generates all interactions that are compatible with symmetry
- For gravity-matter systems:
 ∃ chiral (shift) symmetric matter interactions
- Corresponding coupling does not have GFP if G_N ≠ 0
- Explicit computations confirm expectation

```
[A. Eichhorn and H. Gies, 2011]

[A. Eichhorn and A. Held, 2017]
```

	scalars	fermions	gauge fields
scalars	GFP $\lambda_4 \phi^4$	GFP $y \phi \bar{\psi} \psi$	
	$\begin{array}{c} \text{sGFP} \\ \rho (\partial_{\mu} \phi \partial^{\mu} \phi)^2 \end{array}$	$\begin{array}{c} \text{sGFP} \\ \partial_{\mu}\phi\partial^{\mu}\phi\bar{\psi} \nabla\!\!\!/ \psi \end{array}$	$\begin{array}{c} \text{sGFP} \\ \partial_{\mu}\phi\partial^{\mu}\phiF^2 \end{array}$
fermions			GFP $e \bar{\psi} A \psi$
		$\begin{array}{c} \text{sGFP} \\ (\bar{\psi}\gamma_{\mu}\psi)^2 \end{array}$	sGFP $\bar{\psi} \nabla \psi F^2$
gauge fields			GFP gluon self-interaction in F^2 $SGFP$ $w_2(F^2)^2$ Abelian
complex scalars			GFP $e^2 A_\mu \phi^\dagger A^\mu \phi$
			$sGFP \partial_{\mu}\phi^{\dagger}\partial^{\mu}\phi F^{2}$

[A. Eichhorn, A. Held and J. M. Pawlowski, 2016]

$$\begin{split} S = & S_{\text{EH}} + S_{\text{Dirac}} \\ + & \sigma \int \!\! \mathrm{d}^4 x \sqrt{g} \, R^{\mu\nu} \, \left(\bar{\psi}^i \gamma_\mu \overleftrightarrow{\nabla}_\nu \psi^i \right) \end{split}$$

$$\begin{split} S = & S_{\text{EH}} + S_{\text{Dirac}} \\ & + \sigma \, \int \!\! \mathrm{d}^4 x \sqrt{g} \, R^{\mu\nu} \, \left(\bar{\psi}^i \gamma_\mu \overleftrightarrow{\nabla}_\nu \psi^i \right) \end{split}$$

 σ features shifted Gaussian fixed point (sGFP)

$$\beta_{\sigma} = A_0(G_{..}) + A_1(G_{..}) \sigma + \mathcal{O}(\sigma^2)$$

$$\begin{split} S = & S_{\text{EH}} + S_{\text{Dirac}} \\ & + \sigma \, \int \!\! \mathrm{d}^4 x \sqrt{g} \, R^{\mu\nu} \, \left(\bar{\psi}^i \gamma_\mu \overleftrightarrow{\nabla}_\nu \psi^i \right) \end{split}$$

 σ features shifted Gaussian fixed point (sGFP)

$$\beta_{\sigma} = \underline{A_0(G_{..})} + A_1(G_{..}) \sigma + \mathcal{O}(\sigma^2)$$

 $\quad \quad \quad \sigma^* \neq 0 \text{ for } G_N^* \neq 0$

$$\begin{split} S = & S_{\text{EH}} + S_{\text{Dirac}} \\ & + \sigma \int \!\! \mathrm{d}^4 x \sqrt{g} \, R^{\mu\nu} \, \left(\bar{\psi}^i \gamma_\mu \overleftrightarrow{\nabla}_\nu \psi^i \right) \end{split}$$

 σ features shifted Gaussian fixed point (sGFP)

$$\beta_{\sigma} = A_0(G_{..}) + A_1(G_{..}) \sigma + \mathcal{O}(\sigma^2)$$

 $\quad \quad \quad \sigma^* \neq 0 \text{ for } G_N^* \neq 0$

Asymptotic safety passes non-minimal test for a UV complete theory of gravity and matter

$$\begin{split} S = & S_{\text{EH}} + S_{\text{Dirac}} \\ & + \sigma \int \!\! \mathrm{d}^4 x \sqrt{g} \, R^{\mu\nu} \, \left(\bar{\psi}^i \gamma_\mu \overleftrightarrow{\nabla}_\nu \psi^i \right) \end{split}$$

 σ features shifted Gaussian fixed point (sGFP)

$$\beta_{\sigma} = A_0(G_{..}) + A_1(G_{..}) \sigma + \mathcal{O}(\sigma^2)$$

Interacting nature of asymptotically safe fixed point percolates into chiral symmetry-protected matter sector

Summary and Outlook

- Effective universality
 - hint for physical nature of asymptotically safe fixed point
 - guideline/ justification for future/past truncations

- Induced couplings
 - Non-minimal couplings are present at the fixed point
 - Symmetry protected matter sector is interacting in the UV

Summary and Outlook

- Effective universality
 - hint for physical nature of asymptotically safe fixed point
 - guideline/ justification for future/past truncations

- Induced couplings
 - Non-minimal couplings are present at the fixed point
 - Symmetry protected matter sector is interacting in the UV

- Extend analysis to phenomenologically relevant numbers of scalars, fermions and vector fields
- Explore restrictions of the gravitational parameter space under the inclusion of non-minimal couplings (weak gravity bound

[A. Eichhorn and A. Held, 2017]

Summary and Outlook

- Effective universality
 - hint for physical nature of asymptotically safe fixed point
 - guideline/ justification for future/past truncations

- Induced couplings
 - Non-minimal couplings are present at the fixed point
 - Symmetry protected matter sector is interacting in the UV

- Extend analysis to phenomenologically relevant numbers of scalars, fermions and vector fields
- Explore restrictions of the gravitational parameter space under the inclusion of non-minimal couplings (weak gravity bound

[A. Eichhorn and A. Held, 2017]

Thank you for your attention!

Example for Asymptotic Safety

Example: Yang-Mills Theory in $d=4+\epsilon$ at 1-loop

[M. E. Peskin, 1980], [M. Creutz, 1979], [H. Gies, 2003]

$$[\bar{g}] = -\frac{\epsilon}{2}$$

$$\beta_g = \frac{\epsilon}{2} g - b_0 g^3$$
$$= g \left(\frac{\epsilon}{2} - b_0 g^2 \right).$$

Nontrivial cancellations

