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Motivation for Quantum Gravity



Why quantum gravity?
General Relativity:

• several high precision tests
• latest confirmation:

Existence of black holes by LIGO
collaboration

• Simplest version of a black hole:
Schwarzschild black hole

physical singularity at r = 0.

⇒ GR is not a fundamental
theory

• For E > MPL =
√

~ c
GN

:
QG effects are expected

[LIGO Collaboration, 2016]
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Why quantum gravity with matter?

Standard Model:
• well tested low energy model
• formulated as QFT

• Triviality problem in scalar ϕ4 and
abelian gauge theories
[J. Fröhlich, 1982]

[M. Gockeler et al., 1997] , [H. Gies and J. Jäckel, 2004]

• Singularities might carry over to
SM
→ SM is only effective theory
→ breakdown beyond Planck scale
→ QG might cure Landau poles

[D. Buttazzo, 2013]
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→ SM is only effective theory
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→ QG might cure Landau poles
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compatibility with SM in IR provides test for quantum theory of gravity
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Asymptotically Safe Quantum Gravity



How to quantize Gravity?

• [GN] = 2− d
⇒ GR is perturbatively non-renormalizable in d = 4

[G. ’t Hooft and M. J. G. Veltman, 1974]

[M. H. Goroff and A. Sagnotti, 1986]

• Effective field theory approach: Loss of predictivity at MPL
[J. F. Donoghue and B. R. Holstein, 2015]
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Asymptotic safety

• Asymptotic freedom
I all couplings vanish in the UV
I perturbative renormalizability

• Asymptotic safety
[S. Weinberg, 1979]

I all dimensionless couplings enter
a scale invariant regime

I interacting theory in the UV
I non-perturbative

renormalizability

CMS Collaboration, 2017
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• Asymptotic freedom
• all couplings vanish in the UV
• perturbative renormalizability

• Asymptotic safety
[S. Weinberg, 1979]

I all dimensionless couplings enter
a scale invariant regime

I interacting theory in the UV
I non-perturbative

renormalizability
A. Eichhorn, 2017
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Search for Asymptotic safety

Study RG-flow of dimensionless couplings gi = ḡi k−dḡi

βgi (⃗g) = k ∂kgi = −dḡi gi + fi(⃗g)

dimensional quantum

⇒ balancing of dimensional term with quantum correction can lead to AS
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Critical Exponents

• Linearized β-functions

βgi = βgi

∣∣∣∣
g=g∗

+
∑

j

(
∂βgi

∂gj

) ∣∣∣∣
g=g∗

(gj − g∗j ) +O
(
(gj − g∗j )2

)

• Solution to linearized flow equations

gi(k) = g∗i +
∑

j
cjVi

j

(
k
k0

)−Θj

with − eig (M) = Θi .
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test Number of relevant directions determines predictivity
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Critical Exponents

[A. Eichhorn, 2017]

Re(Θi) < 0

• irrelevant direction
• g∗i is a prediction

Re(Θi) > 0

• relevant direction
• one free parameter for each

relevant direction
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Tool: Functional Renormalization Group

Non-Perturbative Renormalisation Group Equation [Wetterich, 1993], [Reuter, 1996]

k ∂kΓk =
1

2
STr

((
Γ
(2)
k + Rk

)−1
k ∂kRk

)
=

1

2

Γk = scale dependent effective action
Rk = IR regulator

• exact 1-loop equation
• extract β-functions via projection
• truncation needed → not closed

[H. Gies, 2006]
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Effective Universality for Gravity and
Matter



Avatars of the Newton coupling

• Einstein-Hilbert gravity minimally coupled to fermions, i.e.

S =− 1

16πGN

∫
d4x√g (R− 2Λ) +

Nf∑
i=1

∫
d4x√g ψ̄i /∇ψi

∼
√

G3h ∼
√

Ghψ̄ψ

• two different ”avatars” of the Newton coupling
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Effective universality

• Classically: Diffeomorphism invariance
⇒ there should only be one Newton coupling

• On the quantum level
I [GN] = −2 ⇒ 2-loop universality is lost

[Weinberg, 1995]

I Gauge fixing, Regulator
⇒ set of identities (mSTI’s) relates avatars

• Effective universality:
Quantitative agreement of different avatars of the Newton coupling
[A. Eichhorn, P. Labus, J. M. Pawlowski and M. Reichert, 2018]

• Compare both avatars on the level of their β-functions at (µ∗, λ∗3,G3h = Ghψ̄ψ)

βG3h =2G− 3.4G2 + 0.37G3 +O(G4)

βGhψ̄ψ =2G− 2.8G2 + 0.42G3 +O(G4)
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Effective universality for fermions and gravity

Measure of effective universal-
ity

ε(G, µ, λ3) =
∣∣∣∣∆βGi −∆βGj

∆βGi +∆βGj

∣∣∣∣
Gi=Gj

with

∆βGi = βGi − 2Gi

[A. Eichhorn, P. Labus, J. M. Pawlowski and M. Re-

ichert, 2018]
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Effective universality for all avatars of the Newton coupling

• Compare fermions,
scalars, vector fields and
gravity

15



Effective universality for all avatars of the Newton coupling

Zoomed in plot region!

• Compare fermions,
scalars, vector fields and
gravity

• Effective universality for
all avatars of the Newton
coupling

15



Effective universality for all avatars of the Newton coupling

• Compare fermions,
scalars, vector fields and
gravity

• Effective universality for
all avatars of the Newton
coupling

Implications
• Highly non-trivial cancellations
• Not expected for truncation artifact

→ strong hint for physical nature of asymptotically safe fixed point
15



Induced Couplings at UV Fixed Point



Induced Couplings at UV Fixed Point

• Naive expectation:
Flow equation generates all
interactions that are compatible
with symmetry

• For gravity-matter systems:
∃ chiral (shift) symmetric matter
interactions

• Corresponding coupling does not
have GFP if GN ̸= 0

• Explicit computations confirm
expectation
[A. Eichhorn and H. Gies, 2011]

[A. Eichhorn and A. Held, 2017]
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Induced non-minimal coupling

S =SEH + SDirac

+σ

∫
d4x√g Rµν

(
ψ̄iγµ

←→
∇ νψ

i
)

• σ features shifted Gaussian fixed
point (sGFP)

βσ =A0(G..) + A1(G..)σ

+O(σ2)

• σ∗ ̸= 0 for G∗
N ̸= 0
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Asymptotic safety passes non-minimal test for a UV complete theory
of gravity and matter
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Interacting nature of asymptotically safe fixed point percolates into
chiral symmetry-protected matter sector
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Summary and Outlook

• Effective universality
I hint for physical nature of

asymptotically safe fixed point
I guideline/ justification for

future/past truncations

• Induced couplings
I Non-minimal couplings are

present at the fixed point
I Symmetry protected matter

sector is interacting in the UV
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Thank you for your attention!
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Example for Asymptotic Safety

Example: Yang-Mills Theory in d = 4 + ϵ at 1-loop
[M. E. Peskin, 1980], [M. Creutz, 1979], [H. Gies, 2003]

[ḡ] = − ϵ
2

βg =
ϵ

2
g − b0 g3

= g
(
ϵ

2
−b0 g2

)
.

0.0 0.5 1.0 1.5
gi

−1.0

−0.5

0.0

0.5

βgi

20



Nontrivial cancellations
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