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What is QCD?

gs(E) gs(E) g2
s(E)

A celebrated property:
Asymptotic freedom
gs(E) << 1 for E >> 1GeV

Mass/Energy/Temp E

1TeV1GeV1MeV1keV

e− pπ

perturbative, gs(E) << 1

deconfined quarks

non-perturbative

quarks confined inside hadrons
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QCD Phase Diagram

Several approaches on the market:

▸ Lattice QCD [de Forcrand, Philipsen, Rodriguez-Quintero, Mendes, ...]

▸ Dyson Schwinger Equations [Alkofer, Fischer, Huber, ...]

▸ Functional Renormalization Group [Pawlowski, Mitter, Schaefer...]

▸ Variational Approach [Reinhardt, Quandt, ...]

▸ Gribov-Zwanziger Action [Dudal, Oliveira, Zwanziger...]

▸ Matrix-, QM-, NJL-Model,... [Pisarski, Dumitru, Schaffner-B., Stiele, ...]

▸ Curci-Ferrari Model [Reinosa, Serreau, Tissier, Wschebor, ...]
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Outline

▸ Lattice QCD

▸ Dyson Schwinger Equations

▸ Functional Renormalization
Group

▸ Variational Approach

▸ Gribov-Zwanziger Action

▸ Matrix-, QM-, NJL-Model,...

▸ Curci-Ferrari Model

Part 1:

▸ generic aspects of the heavy
quark region

▸ common to all approaches at
one-loop order

Part 2:

▸ higher order corrections in
one particular model

▸ Curci-Ferrari at two-loop
order
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Polyakov loops & effective potentials

At the YM point, a relevant order parameter for the deconfinement
transition is the (anti-)Polyakov loop. It is related to the free energy Fq
necessary to bring a quark into a ”bath” of gluons.

` ≡
1

3
tr ⟨P exp(ig∫

β

0
dτAa0t

a)⟩ ∼ e−βFq ¯̀∼ e−βFq̄

Hence

` = 0↔ Fq = ∞↔ confinement ` ≠ 0↔ Fq < ∞↔ deconfinement

In all models, for each value of the temperature T , one then minimizes an
effective potential

Vglue(`, ¯̀)

to find the physical position of the system. The particular form of this

potential is model-dependent.
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Polyakov loops & effective potentials

Introducing quarks, center symmetry is explicitly broken. For heavy
quarks, this breaking is ”soft”, thus:

` ≈ 0↔ Fq ≈ ∞↔ confinement ` ≉ 0↔ Fq < ∞↔ deconfinement

Therefore `, ¯̀ are still approximately good order parameters.

At leading order, the new effective potential is simply found by adding a
quark part at one-loop level:

Vglue(`, ¯̀) + Vquark(`, ¯̀, µ)

Ð→ Let’s look at some possible shapes of such a potential.

Ð→ Let’s look at some particular cases in more detail.
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Order of the transition
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Ð→ Let’s look at some particular cases in more detail.
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Explicit Potentials in various Models
Gribov-Zwanziger: [JM, U.Reinosa, J.Serreau (2018)]

VGZ = − d
2

∑κm4
κ

g2Cad

+ d − 1

2
∑
κ
∫
T

Q
ln
Q4
κ +m4

κ

Q2
κ

− 1

2
∑
κ
∫
T

Q
lnQ

2
κ
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Vglue

−TrLn (∂/ +M)

Curci-Ferrari: [U. Reinosa, J. Serreau, M. Tissier (2015)]

VCF = ∑
κ

T

2π2 ∫
∞

0
dq q

2{3 ln [1 − e−βεq+irκ ] − ln [1 − e−βq+irκ ]}
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Vglue

−TrLn(∂/ +M − igγ0Ā
ktk)

Matrix-Models: [K.Kashiwa, R.D.Pisarski and V.V.Skokov (2012)]

VM = − 4π2

3
T

2
T

2
d

⎛
⎝c1

N

∑
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V1(qi − qj) + c2
N

∑
i,j=1

V2(qi − qj) +
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60
c3

⎞
⎠

− (N2 − 1)π2

45
T

4 + 2π2

3
T

4
N

∑
i,j=1

V2(qi − qj)
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Vglue

+ lndet(γµ∂µ + qδµ4 + im)

Lattice: [M.Fromm, J.Langelage, S.Lottini and O.Philipsen (2012)]

Zeff = ∫ [dU0]
⎛
⎝ ∏<ij>

[1 + 2λ1ReL
∗
iLj]

⎞
⎠
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Zglue

⎛
⎝ ∏x⃗ det [(1 + h1Wx⃗)(1 + h̄1W

†
x⃗
) ]2Nf ⎞

⎠
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Commonalities & Assumptions

▸ Potential vglue is confining, with a minimum at ` = 0 at zero
temperature

▸ Quarks are added at one-loop level, in form of a Tr Ln

V = Vglue −Tr Ln (∂/ +M)

Then in the heavy quark limit, the Tr Ln expands and one finds

β4V (`, β,M) = vglue(`, β) − 2Nf f(βM) `

f(x) = (3x2/π2)K2(x)

K2(x) is the modified Bessel func-
tion of the second kind

`: Polyakov loop
β: inverse temp.
M : deg. quark mass

Ð→ How do we find the 2nd order critical line?
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Determination of the critical line

β4V (`, β,M) = vglue(`, β)−2Nf f(βM) `

For a fixed Nf :

3 parameters: `, β, βM
3 equations: ∂`V = ∂2

` V = ∂3
` V = 0

This yields:

∂`vglue = 2Nff(βM)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

determines model−dep. βM

, ∂2
` vglue = ∂3

` vglue = 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

determines `, β , indep.of βM,Nf

Ð→ Nff(βM) = N ′
ff(βM

′) = f(βMs) + 2f(βMud) is const. on the

critical line!
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Determination at non-vanishing chemical
potential

β4V = vglue(`, ¯̀, β) −Nff(βM)(e−βµ` + eβµ ¯̀)

For a fixed Nf , µ:

4 parameters: `, ¯̀, β, βM
4 equations:

∂`V = ∂¯̀V = 0 , (1)

∂2
` V ∂

2
¯̀V − (∂`∂¯̀V )2 = (a∂` − b∂¯̀)3V = 0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
`(β),¯̀(β) indep.ofNf ,µ

(2)

with a = ∂2
¯̀V ∣c and b = ∂`∂¯̀V ∣c. The first two equations rewrite

Nff(βM) = eβµ ∂`vglue = e−βµ ∂¯̀vglue Ð→ e−2βµ = ∂`vglue/∂¯̀vglue

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
`(β(µ)), ¯̀(β(µ)) indep.ofNf

(3)

Ð→ Nff(βM) = N ′
ff(βM

′) = f(βMs) + 2f(βMud) for each value of µ
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Nff(βM) = N ′ff(βM
′
) So what?
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Red: Model-dep. Nf = 3 input determined from: ∂`V = ∂2
` V = ∂3

` V = 0

Blue: Model-indep. line from: Nff(βM) = f(βMs) + 2f(βMud)
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Nff(βM) = N ′ff(βM
′
) So what?

If expanded in large R ≡ βM , allows for the simple relation

RN ′
f
−RNf ≈ ln

N ′
f

Nf
Ð→ YNf ≡

RNf −R1

R2 −R1
≈

lnNf

ln 2

▸ satisfied both in continuum approaches as well as on the lattice

▸ robust against higher order corrections in the large βM expansion

▸ independent of chemical potential

▸ predict RNf for Nf > 3 or ∉ Z

Y3 µ = 0 µ = iπT /3
Lattice 1.59 1.59

GZ1 1.58 1.57
GZ2 1.58 1.58

Matrix 1.59 1.56
CF 1.58 1.57

Y3 ≈
ln 3

ln 2
≈ 1.58
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Intermediate Summary for One-loop Models

▸ Heavy Quark region exhibits generic features among all one-loop
models

▸ Tc constant along the critical line, whose shape is completely fixed,
independently of µ

▸ Flavor dependence of the critical mass is independent of the gluon
dynamics, as predicted by the universal quantity YNf

0.970 0.975 0.980 0.985 0.990 0.995 1.000
0.970

0.975

0.980

0.985

0.990

0.995

1.000

1 - ⅇ
-
Mu
2 T

1
-
ⅇ
-
M
s

2
T

YNf ≡
RNf −R1

R2 −R1
≈

lnNf

ln 2

Two assumptions were made:

▸ large quark mass epansion

▸ quarks contribute at one-loop level
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Curci-Ferrari and gluon mass term

S = ∫
x
{

1

4
(Faµν)

2 + ψ̄(D/ +M + µγ0)ψ} + SFP + ∫
x
{

1

2
m2(Aaµ)

2}

This gluon mass term can be motivated in several ways

▸ phenomenologically from lattice data of the Landau gauge gluon
propagator saturating in the IR

▸ Residual ambiguity after non-complete gauge-fixing in Fadeev-Popov
procedure due to presence of Gribov copies

G
(p

)

p (GeV)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.5  1  1.5  2  2.5  3

one-loop gluon propagator against lattice
data,

from [Tissier, Wschebor (2011)]

[Bogolubsky et al. (2009), Dudal, Oliveira,

Vandersickel (2010) ]

Landau
pole

No Landau pole

 60

 40

 20

 0
 0  2  4  6  8  10

g

m̃

YM one-loop RG flow,

from [Serreau, Tissier (2012)]
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Landau-DeWitt gauge [Braun, Pawlowski, Gies (2010)]

Aaµ = Āaµ + a
a
µ

In practice, at each temperature, the background field Āaµ is chosen such
that the expectation value ⟨aaµ⟩ vanishes in the limit of vanishing sources.

This corresponds to finding the absolute minimum of Γ̃[Ā] ≡ Γ[Ā, ⟨a⟩ = 0],
where Γ[Ā, ⟨a⟩] is the effective action for ⟨a⟩ in the presence of Ā.

Seek the minima in the subspace of configurations Ā that respect the
symmetries of the system at finite temperature.
Ð→ One restricts to temporal and homogenous backgrounds:

Āµ(τ,x) = Ā0δµ0

Ð→ functional Γ̃[Ā] reduces to an effective potential V (Ā0) for the
constant matrix field Ā0.

One can always rotate this matrix Ā0 into
the Cartan subalgebra:

βgĀ0 = r3
λ3

2
+ r8

λ8

2

Then V (Ā0) reduces to a function of 2

components V (r3, r8).

r3 r8

µ = 0 R 0
µ ∈ iR R R

µ ∈ R R iR
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Two-loop Expansion

V (r3, r8) = −Tr Ln (∂/ +M + µγ0 − igγ0Ā
ktk)

+
3

2
Tr Ln (D̄2 +m2) −

1

2
Tr Ln (D̄2)

+
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Vanishing chemical potential

0.9 0.95 1

0.9

0.95

1

1-e
-

Mu
m

1-e
-

Ms
m

RNf ≡
Mc(Nf )
Tc(Nf )

O(1): Mbare =Mren.

O(g2): Mbare = ZMMren. +CM

Ð→ hard to compare between different approaches!

However, ZM , CM are independent of Nf at O(g2) , and observing

Tc(Nf = 3) − Tc(Nf = 1)
Tc(Nf = 1)

≈ 0.2%

allows for:

ifCM=0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
RN ′

f
/RNf ≈Mc(N ′

f )/Mc(Nf )

ifCM≠0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

YNf ≡
RNf −R1

R2 −R1

is scheme indep. & comparable to other approaches up to higher order
corrections.
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Vanishing chemical potential

µ = 0 R1 R2 R3 R2/R1 R3/R1 Y3

Matrix [1] 8.04 8.85 9.33 1.10 1.16 1.59
GZ1 [2] 7.09 7.92 8.40 1.12 1.19 1.58
GZ2 [2] 9.45 10.25 10.72 1.08 1.13 1.58

CF 1-loop [3] 6.74 7.59 8.07 1.13 1.20 1.58

CF 2-loop [2] 7.53 8.40 8.90 1.12 1.18 1.57

Lattice [4] 7.23 7.92 8.33 1.10 1.15 1.59

DSE [5] 1.42 1.83 2.04 1.29 1.43 1.51

Ð→ The Y3 values are still satisfied to very good approximation which

underlines its importance as a universal quantitiy

Ð→ The overall good agreement seems to suggest that the underlying

dynamics is well-described within (Curci-Ferrari) perturbation theory.

[1] Kashiwa, Pisarski, Skokov (2012) [2] JM, Reinosa, Serreau (2017+18)

[3] Reinosa, Serreau, Tissier (2015) [4] Fromm, Langelage, Lottini, Philipsen (2012)

[5] Fischer, Luecker, Pawlowski (2015)
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The vicinity of the tricritical point is approximately described by the mean
field scaling behavior

Mc(µi)
Tc(µi)

=
Mtric.

Ttric.
+K [(

π

3
)

2

− (
µi

Tc
)

2

]
2
5

[de Forcrand, Philipsen (2010); Fischer, Luecker, Pawlowski (2015)]
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µ = iπT /3 R1 R2 R3 R2/R1 R3/R1 Y3

Matrix [1] 5.00 5.90 6.40 1.18 1.28 1.56
GZ1 [2] 5.02 5.92 6.43 1.18 1.28 1.57
GZ2 [2] 7.51 8.34 8.82 1.11 1.17 1.58

CF 1-loop [3] 4.74 5.63 6.15 1.19 1.30 1.57

CF 2-loop [2] 5.47 6.41 6.94 1.17 1.27 1.57

Lattice [4] 5.56 6.25 6.66 1.12 1.20 1.59

DSE [5] 0.41 0.85 1.11 2.07 2.70 1.59

Ð→ The Y3 values are in overall very good agreement between all cases,

one loop models and higher order ones.

[1] Kashiwa, Pisarski, Skokov (2012) [2] JM, Reinosa, Serreau (2017+18)

[3] Reinosa, Serreau, Tissier (2015) [4] Fromm, Langelage, Lottini, Philipsen (2012)

[5] Fischer, Luecker, Pawlowski (2015)
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Conclusion

One-loop:

▸ Heavy Quark region exhibits generic features among all one-loop
models

▸ Tc constant along the critical line, whose shape is completely fixed,
independently of µ

▸ Flavor dependence of the critical mass is independent of the gluon
dynamics, as predicted by the universal quantity YNf

Higher order:

▸ updated Y3 values still agree with one-loop predictions

▸ suggests that the perturbative description of the phase diagram
within the CF model is robust

Outlook:

▸ Can we describe the chiral transition in the lower left part of the
Columbia plot?
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