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Several approaches on the market:
> Lattice QCD
> Dyson Schwinger Equations
> Functional Renormalization Group
» Variational Approach
> Gribov-Zwanziger Action
> Matrix-, QM-, NJL-Model,...

» Curci-Ferrari Model
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Part 1:

> generic aspects of the heavy

quark region

» common to all approaches at

one-loop order

>

Part 2:
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Lattice QCD Motivation
Dyson Schwinger Equations

Functional Renormalization
Group

Variational Approach
Gribov-Zwanziger Action
Matrix-, QM-, NJL-Model,...

Curci-Ferrari Model

> higher order corrections in
one particular model

» Curci-Ferrari at two-loop
order
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Polyakov loops & effective potentials oD
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At the YM point, a relevant order parameter for the deconfinement
transition is the (anti-)Polyakov loop. It is related to the free energy Fy generic 1-loop
necessary to bring a quark into a ”bath” of gluons.

14 %tr (Pexp(ig foﬁdTAgt“)) ~ e BFa Z~ePFa
Hence
£ =0 < Fy = co < confinement £+ 0 < Fy < oo <> deconfinement
In all models, for each value of the temperature T', one then minimizes an

effective potential
‘/glue (Z: z)

to find the physical position of the system. The particular form of this

potential is model-dependent.
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Polyakov loops & effective potentials oD
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Introducing quarks, center symmetry is explicitly broken. For heavy generic 1-loop
quarks, this breaking is ”soft”, thus:

£~ 0 < Fy~ oo < confinement £#0 < Fy < oo <> deconfinement

Therefore £, are still approximately good order parameters.

At leading order, the new effective potential is simply found by adding a
quark part at one-loop level:

Vglue (ea Z) + unark (Za Z: M)

— Let’s look at some possible shapes of such a potential.

— Let’s look at some particular cases in more detail.
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Order of the transition

generic 1-loop
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— Let’s look at some particular cases in more detail.




Explicit Potentials in various Models
Gribov-Zwanziger:
4 - m
Vaz :73 ?’;Ca: + %;/QTI % - 72[ InQ2  ~TrLn (7 + M)

Vglue

generic 1-loop

Curci-Ferrari:

Vglue

4r® 5 o X, Y (N2%-1)
Vi = ———T°Tg |ler X Vi(ai—aj)+ec2 3 Vala;—aj)+ ———c3
ig=1 ij=1 60

(N2—1)71'2 4 on2 LN .
,TT + TT ‘Z] Va(q; —q;) + Indet(v* 9y, )
5=

Vglue
Lattice:

Zogr = j[dUO]( II [1+2A1ReL§LJ-])( Il det[(1+h1Wi)(1+fz1W;)]2Nf )

<ij>

Zglue




Commonalities & Assumptions e

> Potential vg1ye is confining, with a minimum at £ = 0 at zero
temperature

generic 1-loop

» Quarks are added at one-loop level, in form of a Tr Ln

V = Vglue — TrLn (@ + M)

Then in the heavy quark limit, the Tr Ln expands and one finds

BV (€, 8, M) = vgiue (£, B) = 2Ny f(BM) £

f(z) = (3332/71'2)1(2 () ¢:  Polyakov loop
fB: inverse temp.

K5 (z) is the modified Bessel func- M: deg. quark mass

tion of the second kind

— How do we find the 2nd order critical line?




Determination of the

Gauge
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This yields:

a@vgluc = 2fo(6M) 3

determines model-dep. BM
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critical line

generic 1-loop

BV (€, 8, M) = vg1ue (£, B)-2Ny f(BM) £
For a fixed Nf:

3 parameters: £, 3, BM
3 equations: 09V = B?V = 6?V =0

2 3
a@ Vglue = a@ Vglue = 0

determines ¢, 3, indep. of BM, N

_>’ N f(BM) = N} f(BM') = f(BMs) +2f(BMyq) | is const. on the

critical line!




Determination at non-vanishing chemical T ™
potential Jan Maelger
,84V = 'Uglue(gvgnﬁ) - fo(,BM)(e_ﬁ“é + GB'LLZ) generic 1-loop

For a fixed Ny, u:

4 parameters: £, ¢, 8, BM
4 equations:

AV =08;V =0, (1)
VIV - (8,9;V)? = (ady - b3p)*V = 0 (2)

£(B),6(B) indep.of Ny,u
with a = 92V/|c and b= 9,97V |c. The first two equations rewrite

Ny f(BM) = e 9pvgine = €7 Opvgiie —> €% = 9yvgue/Opvgme  (3)

Z(B(M))vz(ﬁ(li))indep.ofo

— | Ny f(BM) = N}f(ﬁM’) = f(BMs) +2f(BMyq) | for each value of p




N} f(BM) = NLf(BM?)  So what?
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Ny f(BM) =N }f (BM')  So what? Heavy Quark

If expanded in large R = M , allows for the simple relation

N/, Ry, -R1 InN generic 1-loo
Ry/ Ry, sIn—L — |yy,=—2L —~—"F generic Toop
f f Nf f Ro - Ry In2

> satisfied both in continuum approaches as well as on the lattice

> robust against higher order corrections in the large SM expansion
> independent of chemical potential

> predict RNf for Ny >3 or ¢ Z

[ Vs [ p=0]p=aT[3]
[ Lattice [ 1.59 [ 159 |
GZ1 1.58 1.57
GZ2 1.58 1.58 In3
Matrix || 1.59 1.56 Ysm = ~1.58
CF 1.58 1.57
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Intermediate Summary for One-loop Models acb
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> Heavy Quark region exhibits generic features among all one-loop
models generic 1-loop

> T constant along the critical line, whose shape is completely fixed,
independently of

» Flavor dependence of the critical mass is independent of the gluon
dynamics, as predicted by the universal quantity Yy ¢

RNf_Rl lan
F7 Ry-Ri  In2

Two assumptions were made:
> large quark mass epansion

> quarks contribute at one-loop level




Heavy Quark

Curci-Ferrari and gluon mass term acb
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S:‘[x{i(FSU)Q+1Z(¢+M+H’YO)’¢'}+SFP+L{ETH (Aa) }

This gluon mass term can be motivated in several ways
> phenomenologically from lattice data of the Landau gauge gluon i-Ferrari at
propagator saturating in the IR
> Residual ambiguity after non-complete gauge-fixing in Fadeev-Popov
procedure due to presence of Gribov copies

60

G(p)
e
@

No Landau pole

. e ) e re———
v 05 i3 2 3 3 0 5 4
p(GeV)

m 6 8 10
one-loop gluon propagator against lattice YM one-loop RG flow,
data, from

from




Landau-DeWitt gauge

a _ Aa a
A=A +a

In practice, at each temperature, the background field AZ is chosen such
that the expectation value (af,) vanishes in the limit of vanishing sources.

This corresponds to finding the absolute minimum of I'[A] = T'[4, (a) = 0],

where I'[ A, (a)] is the effective action for (a) in the presence of A.

Seek the minima in the subspace of configurations A that respect the
symmetries of the system at finite temperature.
— One restricts to temporal and homogenous backgrounds:

A7, %) = Agduo

— functional I'[A4] reduces to an effective potential V(Ag) for the
constant matrix field Ag.

One can always rotate this matrix Ay into
the Cartan subalgebra:

3 T8
S VS =0 [ R 0
BHAO:7"37+7"8? neiR | R R
peR | R iR

Then V(Ag) reduces to a function of 2

components V(r3,rs).

i-Ferrari at
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Two-loop Expansion oD
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Curci-Ferrari at

V(rs,rs) = -TrLn (a + M + pvyo — ig'yOAktk) 2-loop

+gTan (D? +m?) - %TYLH(DQ)




Vanishing chemical potential

1

Hcavvﬂ(,guark
_ Mc(Ny)
we 0.95 \ RNf =T
1em k. TC(Nf)
09 s — 0(1) Mbare = MI‘CFL
0.9 0.95

0(92): Myare = Zagr Mren. + Car

Vanishing p=0

— hard to compare between different approaches!

However, Zps, Cps are independent of Ny at O(g2) , and observing

Te(Ny=3)-Te(Ny=1) _ 0.9%
T.(Ny=1) ’

allows for:

if Cpp#0
if Cpr=0 —_—
, _ By, -Ra
RNJQ/RN,» R"]\/[c(l\[f)/]\/[c(Nf) YNf:ﬁ

is scheme indep. & comparable to other approaches up to higher order
corrections.
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Vanishing chemical potential
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[ #=0 [ R R: Rs | Re/Ri Rs/Ri| Y3 |
Matrix [1] | 8.04 885 933 | 1.10 116 | 159
GZ1 2 700 792 840 | 112 119 | 158
GZ2 |2 9.45 1025 1072 | 1.08 113 | 158 oo
CF Iloop (3] | 6.74 759 807 | 113 120 | 1.8 naginary
[ CF 2-loop [2] | 7.53 840 890 | 1.2 118 | 157 |
[ Lattice 4] [723 792 833 [ 1.10 115 [ 1.59 |
[ DSE[] [142 1.83 204 [ 1.29 143 | 1.51 |

— The Y3 values are still satisfied to very good approximation which
underlines its importance as a universal quantitiy

— The overall good agreement seems to suggest that the underlying
dynamics is well-described within (Curci-Ferrari) perturbation theory.
(1] [2]

(3] (4]




Imaginary chemical potential p = iu;

. T/m
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The vicinity of the tricritical point is approximately described by the mean
field scaling behavior

2
Me(pi) _ Miric. +K[([)2_(ﬁ)2]5
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Imaginary chemical potential p = iu;
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w=1irT/3 ‘ R Ro R3 ‘RQ/RI R3/Ry ‘ Y3 ‘

Matrix [1] [ 5.00 5.90 6.40 [ 1.18 1.28 1.56
GZ1 ]2 5.02 592 643 | 1.18 1.28 157
GZ72 2 751 834 882 [ 111 117 1.58
CF 1-loop [3] [ 474 5.63 6.15 | 1.19 1.30 157
[ CF 2-loop [2] [ 547 641 694 [ 117 127 | 157 |
[ Lattice [d] [556 6.25 6.66 | 1.12 1.20 | 1.59 |
[ DSE[F] [o041 0.85 1.11] 2.07 270 [ 159 ]

— The Y3 values are in overall very good agreement between all cases,
one loop models and higher order ones.

(1] [2]

(3] (4]




Conclusion

One-loop:

> Heavy Quark region exhibits generic features among all one-loop
models

> T constant along the critical line, whose shape is completely fixed,
independently of u

» Flavor dependence of the critical mass is independent of the gluon Conclusion
dynamics, as predicted by the universal quantity Yy ¢

Higher order:
> updated Y3 values still agree with one-loop predictions

> suggests that the perturbative description of the phase diagram
within the CF model is robust

Outlook:

> Can we describe the chiral transition in the lower left part of the
Columbia plot?
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