Generic features of the heavy quark QCD phase diagram in 1-loop models and 2-loop Curci-Ferrari

Jan Maelger^{1,2}

In collaboration with: U.Reinosa 1 and J.Serreau 2 PRD 97 074027; arXiv:1805.10015

- 1. Centre de Physique Theorique, Ecole Polytechnique
- 2. AstroParticule et Cosmologie, Univ. Paris 7 Diderot

July 3, 2018

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Curci-Ferrari -loop

Vanishing $\mu=0$ Imaginary $\mu = i \mu$:

What is QCD?

Standard Model of Elementary Particles

A celebrated property: Asymptotic freedom $g_s(E) \ll 1$ for $E \gg 1$ GeV

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Curci-Ferrari a 2-loop Vanishing μ=0

What is QCD?

Jan Maelger

Motivation

generic 1-loop

Curci-Ferrari at 2-loop
Vanishing $\mu=0$

QCD Phase Diagram

Heavy Quark QCD Jan Maelger

Motivation

Several approaches on the market:

- Lattice QCD [de Forcrand, Philipsen, Rodriguez-Quintero, Mendes, ...]
- Dyson Schwinger Equations [Alkofer, Fischer, Huber, ...]
- Functional Renormalization Group [Pawlowski, Mitter, Schaefer...]
- Variational Approach [Reinhardt, Quandt, ...]
- Gribov-Zwanziger Action [Dudal, Oliveira, Zwanziger...]
- Matrix-, QM-, NJL-Model,... [Pisarski, Dumitru, Schaffner-B., Stiele, ...]
- Curci-Ferrari Model [Reinosa, Serreau, Tissier, Wschebor, ...]

Outline

- ▶ Lattice QCD
- Dyson Schwinger Equations
- Functional Renormalization Group
- Variational Approach
- ▶ Gribov-Zwanziger Action
- ▶ Matrix-, QM-, NJL-Model,...
- Curci-Ferrari Model

Part 1:

- generic aspects of the heavy quark region
- common to all approaches at one-loop order

Part 2:

- higher order corrections in one particular model
- Curci-Ferrari at two-loop order

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

2-loop
Vanishing $\mu=0$

At the YM point, a relevant order parameter for the deconfinement transition is the (anti-)Polyakov loop. It is related to the free energy ${\cal F}_q$ necessary to bring a quark into a "bath" of gluons.

$$\ell \equiv \frac{1}{3} {\rm tr} \left\langle P \exp \left(i g \, \int_0^{\,\beta} d \tau A_0^a t^a \right) \right\rangle \sim e^{-\beta F_q} \qquad \bar{\ell} \sim e^{-\beta F_{\overline{q}}}$$

Hence

$$\ell = 0 \leftrightarrow F_q = \infty \leftrightarrow \text{confinement} \qquad \ell \neq 0 \leftrightarrow F_q < \infty \leftrightarrow \text{deconfinement}$$

In all models, for each value of the temperature T, one then minimizes an effective potential

$$V_{
m glue}(\ell,ar\ell)$$

to find the physical position of the system. The particular form of this potential is model-dependent.

onclusion

Introducing quarks, center symmetry is explicitly broken. For heavy quarks, this breaking is "soft", thus:

$$\ell \approx 0 \leftrightarrow F_q \approx \infty \leftrightarrow \text{confinement} \qquad \ell \not\approx 0 \leftrightarrow F_q < \infty \leftrightarrow \text{deconfinement}$$

Therefore $\ell,\bar\ell$ are still approximately good order parameters.

At leading order, the new effective potential is simply found by adding a quark part at one-loop level:

$$V_{\mathrm{glue}}(\ell,\bar{\ell}) + V_{\mathrm{quark}}(\ell,\bar{\ell},\mu)$$

- → Let's look at some possible shapes of such a potential.
- → Let's look at some particular cases in more detail.

Order of the transition

→ Let's look at some particular cases in more detail.

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Curci-Ferrari a 2-loop

Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$

Explicit Potentials in various Models

Gribov-Zwanziger: [JM, U.Reinosa, J.Serreau (2018)]

$$V_{GZ} = \underbrace{-\frac{d}{2} \frac{\sum_{\kappa} m_{\kappa}^4}{g^2 C_{\mathrm{ad}}} + \frac{d-1}{2} \sum_{\kappa} \int_{Q}^{T} \ln \frac{Q_{\kappa}^4 + m_{\kappa}^4}{Q_{\kappa}^2} - \frac{1}{2} \sum_{\kappa} \int_{Q}^{T} \ln Q_{\kappa}^2}_{\text{Vglue}} \quad - \text{Tr} \operatorname{Ln} \left(\partial \!\!\!/ + M \right)$$

Curci-Ferrari: [U. Reinosa, J. Serreau, M. Tissier (2015)]

$$V_{CF} = \underbrace{\sum_{\kappa} \frac{T}{2\pi^2} \int_{0}^{\infty} dq \, q^2 \left\{ 3 \ln \left[1 - e^{-\beta \varepsilon_q + i r_{\kappa}} \right] - \ln \left[1 - e^{-\beta q + i r_{\kappa}} \right] \right\}}_{V_{\text{elue}}} - \text{Tr} \operatorname{Ln} \left(\cancel{\partial} + M - i g \gamma_0 \bar{A}^k t^k \right) \operatorname{naishing}_{\text{anginary}} \mu = 0$$

$$\underbrace{V_{\text{elue}}}_{\text{Conclusion}}$$

Matrix-Models: [K.Kashiwa, R.D.Pisarski and V.V.Skokov (2012)]

$$V_{M} = -\frac{4\pi^{2}}{3} T^{2} T_{d}^{2} \left(c_{1} \sum_{i,j=1}^{N} V_{1}(q_{i} - q_{j}) + c_{2} \sum_{i,j=1}^{N} V_{2}(q_{i} - q_{j}) + \frac{(N^{2} - 1)}{60} c_{3} \right)$$

$$- \underbrace{\frac{(N^{2} - 1)\pi^{2}}{45} T^{4} + \frac{2\pi^{2}}{3} T^{4} \sum_{i,j=1}^{N} V_{2}(q_{i} - q_{j})}_{V_{glue}} + \frac{\ln \det(\gamma^{\mu} \partial_{\mu} + q \delta^{\mu 4} + im)}{e^{\mu}}$$

Lattice: [M.Fromm, J.Langelage, S.Lottini and O.Philipsen (2012)]

$$Z_{\mathrm{eff}} = \int \left[\mathrm{d}U_{0}\right] \underbrace{\left(\prod_{< i\bar{j}>} \left[1 + 2\lambda_{1} \mathrm{Re}L_{i}^{*}L_{j}\right]\right)}_{Z_{\mathrm{glue}}} \left(\prod_{\vec{x}} \det\left[\left(1 + h_{1}W_{\vec{x}}\right)\left(1 + \bar{h}_{1}W_{\vec{x}}^{\dagger}\right)\right]^{2N_{f}}\right)$$

Heavy Quark QCD

Jan Maelger

generic 1-loop

Commonalities & Assumptions

- ▶ Potential $v_{\rm glue}$ is confining, with a minimum at ℓ = 0 at zero temperature
- Quarks are added at one-loop level, in form of a Tr Ln

$$V = V_{\text{glue}} - \text{Tr} \operatorname{Ln} (\partial \!\!\!/ + M)$$

Then in the heavy quark limit, the Tr Ln expands and one finds

$$\beta^4 V(\ell, \beta, M) = v_{\text{glue}}(\ell, \beta) - 2N_f f(\beta M) \ell$$

$$f(x) = (3x^2/\pi^2)K_2(x)$$

is the modified Bessel fund

 $K_2(x)$ is the modified Bessel function of the second kind

 ℓ : Polyakov loop

 β : inverse temp.

M: deg. quark mass

→ How do we find the 2nd order critical line?

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Curci-Ferrari a 2-loop

Vanishing $\mu=0$ Imaginary $\mu = i\mu_i$

Determination of the critical line

$$\beta^4 V(\ell, \beta, M) = v_{\text{glue}}(\ell, \beta) - 2N_f f(\beta M) \ell$$

For a fixed N_f :

3 parameters: ℓ , β , βM

3 equations: $\partial_{\ell}V = \partial_{\ell}^{2}V = \partial_{\ell}^{3}V = 0$

This yields:

$$\underbrace{\partial_{\ell} v_{\text{glue}} = 2N_f f(\beta M)}_{\text{determines model-dep. } \beta M},$$

$$\underbrace{\partial_{\ell}^{2} v_{\text{glue}} = \partial_{\ell}^{3} v_{\text{glue}} = 0}_{\text{determines } \ell, \, \beta, \, \text{indep. of } \beta M, N_{f}$$

$$\longrightarrow$$
 $N_f f(\beta M) = N'_f f(\beta M') = f(\beta M_s) + 2f(\beta M_{ud})$ is const. on the critical line!

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Ourci-Ferrari at 2-loop Vanishing $\mu{=}0$

Determination at non-vanishing chemical potential

$$\beta^4 V = v_{\rm glue}(\ell,\bar{\ell},\beta) - N_f f(\beta M) (e^{-\beta \mu} \ell + e^{\beta \mu} \bar{\ell})$$

For a fixed N_f , μ :

4 parameters: ℓ , $\bar{\ell}$, β , βM

4 equations:

$$\partial_{\ell}V = \partial_{\bar{\ell}}V = 0, \qquad (1)$$

$$\underbrace{\partial_{\ell}^{2} V \partial_{\bar{\ell}}^{2} V - (\partial_{\ell} \partial_{\bar{\ell}} V)^{2} = (a\partial_{\ell} - b\partial_{\bar{\ell}})^{3} V = 0}_{\ell(\beta), \bar{\ell}(\beta) \text{ indep. of } N_{f}, \mu} \tag{2}$$

with $a=\partial_{\bar{\ell}}^2 V|_c$ and $b=\partial_{\ell}\partial_{\bar{\ell}} V|_c$. The first two equations rewrite

$$N_f f(\beta M) = e^{\beta \mu} \, \partial_{\ell} v_{\text{glue}} = e^{-\beta \mu} \, \partial_{\bar{\ell}} v_{\text{glue}} \longrightarrow \underbrace{e^{-2\beta \mu} = \partial_{\ell} v_{\text{glue}} / \partial_{\bar{\ell}} v_{\text{glue}}}_{\ell(\beta(\mu)), \bar{\ell}(\beta(\mu)) \text{ indep. of } N_f} \tag{3}$$

$$\longrightarrow N_f f(\beta M) = N_f' f(\beta M') = f(\beta M_s) + 2f(\beta M_{ud})$$
 for each value of μ

Heavy Quark QCD

Jan Maelger

Aotivation

generic 1-loop

2-loop Vanishing μ =0

 $= \iota \mu_i$

Red: Model-dep. $N_f=3$ input determined from: $\partial_\ell V=\partial_\ell^2 V=\partial_\ell^3 V=0$

Blue: Model-indep. line from: $N_f f(\beta M) = f(\beta M_s) + 2f(\beta M_{ud})$

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Curci-Ferrari at 2-loop

$$N_f f(\beta M) = N'_f f(\beta M')$$
 So what?

If expanded in large $R \equiv \beta M$, allows for the simple relation

$$R_{N_f'} - R_{N_f} \approx \ln \frac{N_f'}{N_f} \quad \longrightarrow \quad \boxed{ Y_{N_f} \equiv \frac{R_{N_f} - R_1}{R_2 - R_1} \approx \frac{\ln N_f}{\ln 2} }$$

- satisfied both in continuum approaches as well as on the lattice
- \blacktriangleright robust against higher order corrections in the large βM expansion
- independent of chemical potential
- predict R_{N_f} for $N_f > 3$ or $\notin \mathbb{Z}$

Y_3	$\mu = 0$	$\mu = i\pi T/3$
Lattice	1.59	1.59
GZ1	1.58	1.57
GZ2	1.58	1.58
Matrix	1.59	1.56
CF	1.58	1.57

$$Y_3 \approx \frac{\ln 3}{\ln 2} \approx 1.58$$

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Ourci-Perrarr a 2-loop Vanishing μ=0 Imaginary

- Heavy Quark region exhibits generic features among all one-loop models
- ▶ T_c constant along the critical line, whose shape is completely fixed, independently of μ
- Flavor dependence of the critical mass is independent of the gluon dynamics, as predicted by the universal quantity Y_{Nf}

$$Y_{N_f} \equiv \frac{R_{N_f} - R_1}{R_2 - R_1} \approx \frac{\ln N_f}{\ln 2}$$

Two assumptions were made:

- large quark mass epansion
- quarks contribute at one-loop level

$$S = \int_{x} \left\{ \frac{1}{4} (F_{\mu\nu}^{a})^{2} + \bar{\psi} (\mathcal{D} + M + \mu \gamma_{0}) \psi \right\} + S_{FP} + \int_{x} \left\{ \frac{1}{2} m^{2} (A_{\mu}^{a})^{2} \right\}$$

This gluon mass term can be motivated in several ways

- phenomenologically from lattice data of the Landau gauge gluon propagator saturating in the IR
- Residual ambiguity after non-complete gauge-fixing in Fadeev-Popov procedure due to presence of Gribov copies

one-loop gluon propagator against lattice data, from [Tissier, Wschebor (2011)]

from [Tissier, Wschebor (2011)]
[Bogolubsky et al. (2009), Dudal, Oliveira,
Vandersickel (2010)]

from [Serreau, Tissier (2012)]

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Curci-Ferrari at 2-loop

Vanishing $\mu=0$ Imaginary $\mu = i \mu_i$

$$A_{\mu}^{a} = \bar{A}_{\mu}^{a} + a_{\mu}^{a}$$

In practice, at each temperature, the background field \bar{A}^a_μ is chosen such that the expectation value $\langle a^a_\mu \rangle$ vanishes in the limit of vanishing sources.

This corresponds to finding the absolute minimum of $\tilde{\Gamma}[\bar{A}] \equiv \Gamma[\bar{A}, \langle a \rangle = 0]$, where $\Gamma[\bar{A}, \langle a \rangle]$ is the effective action for $\langle a \rangle$ in the presence of \bar{A} .

Seek the minima in the subspace of configurations \bar{A} that respect the symmetries of the system at finite temperature.

→ One restricts to temporal and homogenous backgrounds:

$$\bar{A}_{\mu}(\tau,\mathbf{x}) = \bar{A}_0 \delta_{\mu 0}$$

 \longrightarrow functional $\tilde{\Gamma}[\bar{A}]$ reduces to an effective potential $V(\bar{A}_0)$ for the constant matrix field \bar{A}_0 .

One can always rotate this matrix \bar{A}_0 into the Cartan subalgebra:

$$\beta g\bar{A}_0=r_3\frac{\lambda_3}{2}+r_8\frac{\lambda_8}{2}$$

Then $V(\bar{A}_0)$ reduces to a function of 2 components $V(r_3, r_8)$.

Heavy Quark QCD

Jan Maelger

Iotivation

generic 1-loop

Curci-Ferrari at 2-loop Vanishing $\mu=0$

$$\begin{array}{c|cccc} & r_3 & r_8 \\ \mu = 0 & \mathbb{R} & 0 \\ \mu \in i \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mu \in \mathbb{R} & \mathbb{R} & i \mathbb{R} \end{array}$$

Two-loop Expansion

$$V(r_3, r_8) = -\operatorname{Tr} \operatorname{Ln} \left(\partial \!\!\!/ + M + \mu \gamma_0 - ig \gamma_0 \bar{A}^k t^k \right)$$
$$+ \frac{3}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 + m^2 \right) - \frac{1}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 \right)$$
$$+ \frac{3}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 + m^2 \right)$$

Heavy Quark QCD

Jan Maelger

Motivatior

generic 1-loop

Curci-Ferrari at 2-loop

Vanishing μ =0 Imaginary μ = $i\mu_i$

Vanishing chemical potential

$$R_{N_f} \equiv \frac{M_c(N_f)}{T_c(N_f)}$$

$$\begin{array}{ll} \mathcal{O}(1) \colon & M_{\mathrm{bare}} = M_{\mathrm{ren.}} \\ \mathcal{O}(g^2) \colon & M_{\mathrm{bare}} = Z_M \, M_{\mathrm{ren.}} + C_M \end{array}$$

→ hard to compare between different approaches!

However, Z_M , C_M are independent of N_f at $\mathcal{O}(g^2)$, and observing

$$\frac{T_c(N_f = 3) - T_c(N_f = 1)}{T_c(N_f = 1)} \approx 0.2\%$$

allows for:

$$\underbrace{R_{N_f'}/R_{N_f} \approx M_c(N_f')/M_c(N_f)}_{\text{if } C_M = 0} \underbrace{Y_{N_f} \equiv \frac{R_{N_f} - R_1}{R_2 - R_1}}_{$$

is scheme indep. & comparable to other approaches up to higher order corrections.

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

2-loop Vanishing μ =0

Vanishing chemical potential

$\mu = 0$	R_1	R_2	R_3	R_2/R_1	R_3/R_1	Y_3
Matrix [1]	8.04	8.85	9.33	1.10	1.16	1.59
GZ1 [2]	7.09	7.92	8.40	1.12	1.19	1.58
GZ2 [2]	9.45	10.25	10.72	1.08	1.13	1.58
CF 1-loop [3]	6.74	7.59	8.07	1.13	1.20	1.58
CF 2-loop [2]	7.53	8.40	8.90	1.12	1.18	1.57
Lattice [4]	7.23	7.92	8.33	1.10	1.15	1.59
DSE [5]	1.42	1.83	2.04	1.29	1.43	1.51

- \longrightarrow The Y_3 values are still satisfied to very good approximation which underlines its importance as a universal quantity
- \longrightarrow The overall good agreement seems to suggest that the underlying dynamics is well-described within (Curci-Ferrari) perturbation theory.
- [1] Kashiwa, Pisarski, Skokov (2012) [2] JM, Reinosa, Serreau (2017+18)
- [3] Reinosa, Serreau, Tissier (2015) [4] Fromm, Langelage, Lottini, Philipsen (2012)
- [5] Fischer, Luecker, Pawlowski (2015)

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Curci-Ferrari at 2-loop

Vanishing $\mu=0$ Imaginary $\mu = i\mu$:

Imaginary chemical potential $\mu = i\mu_i$

The vicinity of the tricritical point is approximately described by the mean field scaling behavior

$$\frac{M_c(\mu_i)}{T_c(\mu_i)} = \frac{M_{\text{tric.}}}{T_{\text{tric.}}} + K \left[\left(\frac{\pi}{3} \right)^2 - \left(\frac{\mu_i}{T_c} \right)^2 \right]^{\frac{2}{5}}$$

[de Forcrand, Philipsen (2010); Fischer, Luecker, Pawlowski (2015)]

$$x \equiv (\pi/3)^2 + (\mu/T_c)^2 = (\pi/3)^2 - (\mu_i/T_c)^2 + (\mu/T_c)^2 + (\mu$$

Heavy Quark QCD

Jan Maelger

Imaginary

 $\mu = i\mu_i$

Imaginary chemical potential $\mu = i\mu_i$

$\mu = i\pi T/3$	R_1	R_2	R_3	R_2/R_1	R_3/R_1	Y_3
Matrix [1]	5.00	5.90	6.40	1.18	1.28	1.56
GZ1 [2]	5.02	5.92	6.43	1.18	1.28	1.57
GZ2 [2]	7.51	8.34	8.82	1.11	1.17	1.58
CF 1-loop [3]	4.74	5.63	6.15	1.19	1.30	1.57
CF 2-loop [2]	5.47	6.41	6.94	1.17	1.27	1.57
Lattice [4]	5.56	6.25	6.66	1.12	1.20	1.59
DSE [5]	0.41	0.85	1.11	2.07	2.70	1.59

 \longrightarrow The Y_3 values are in overall very good agreement between all cases, one loop models and higher order ones.

- [1] Kashiwa, Pisarski, Skokov (2012) [2] JM, Reinosa, Serreau (2017+18)
- [3] Reinosa, Serreau, Tissier (2015) [4] Fromm, Langelage, Lottini, Philipsen (2012)
- [5] Fischer, Luecker, Pawlowski (2015)

Heavy Quark QCD

Jan Maelger

Motivation

generic 1-loop

Curci-rerrari a 2-loop Vanishing μ=0 Imaginary

Conclusion

One-loop:

- Heavy Quark region exhibits generic features among all one-loop models
- \blacktriangleright T_c constant along the critical line, whose shape is completely fixed, independently of μ
- Flavor dependence of the critical mass is independent of the gluon dynamics, as predicted by the universal quantity Y_{N_f}

Higher order:

- updated Y₃ values still agree with one-loop predictions
- suggests that the perturbative description of the phase diagram within the CF model is robust

Outlook:

Can we describe the chiral transition in the lower left part of the Columbia plot?