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This is a translation of the paper appeared in Sitzungsber. phys.-math. Kl. 1924, Gesamtsitzung
vom 10. Juli 1924, p.261-267. It seems this paper has never been translated in English so far.
In this paper Einstein develops for the first time the Bose-Einstein statistics, applying the ideas
first discussed in a paper by D. Bose and extending them to massive particles (here called atoms or
molecules). In 1925 Einstein publishes a second part of this paper (Sitzungsberichte der Preussischen
Akademie der Wissenschaften, Berlin, Physikalisch-mathematische Klasse, 1925, p. 3–14; we refer
to this as the second paper) in which he investigates, among other, the existence of what is now known
as the Bose-Einstein condensates. Except for abstract, footnotes in italic and final acknowledgments,
all the test is from the original paper (o.p. in the following). The equation numbering does not
conform to the original one.

A quantum theory of ideal gases free from arbitrary Ansätzen does not yet exist today. This gap will be filled in
the following on the basis of a new approach proposed by Mr. D. Bose, from which that author has obtained a most
remarkable derivation of Planck’s radiation formula [1].

The method following Bose can be characterized as follows. The phase space of an elementary object (in this case
monoatomic molecules) with respect to a given (three dimensional) volume is divided into "cells" of extension h3.
Considering many elementary objects, their thermodynamic can be characterized by how the objects are distributed
among these cells. The "probability" of a macroscopically defined state (in Planck’s sense) is equal to the number of
different microscopic states through which the macroscopic state can be thought realized. The entropy of the macro-
scopic state and thus the statistical and thermodynamic behavior of the system is then determined by Boltzmann’s
theorem.

I. THE CELLS

The phase-space volume to which a certain range of coordinates x, y, z and corresponding momenta px, py, pz of a
monoatomic molecule belongs, can be estimated through the integral

Φ =

ˆ
dxdydzdpxdpydpz (1)

If V is the volume available to the molecule, then the phase volume of all states whose energy E = 1
2m (p2

x + p2
y + p2

z)
is smaller than a certain value E, is given by

Φ = V · 4

3
· π(2mE)3/2 (2)

The number ∆s of the cells belonging to a given elementary range ∆E of energy is as follows

∆s = 2π
V

h3
(2m)3/2E1/2∆E (3)

No matter how small a ∆E/E is given, one can always choose V so large that ∆s is a very large number.

II. STATE PROBABILITY AND ENTROPY

We define now the macroscopic state of the gases.
Let be present in the volume V a number n [2]of molecules with mass m. A number ∆n of these will have energies

between E and E + ∆E. These will distribute themselves among the ∆s cells. Of these ∆s cells, a number

p0∆s, contain no molecules

p1∆s, contain 1 molecule

p2∆s, contain 2 molecules
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and so on. The probability pr associated to the s-th cell is then clearly function of the cell number s and of the integer
r and will be therefore denoted in the following wth psr. It is evident that for any s∑

r

psr = 1 (4)

For a given psr and a given ∆n the number of possible distributions of the ∆n molecules over the considered energy
range is

∆s!∏r=∞
r=0 (psr∆s)!

(5)

which can be replaced by[3]

1∏
r(p

s
r)
psr∆s

(6)

by employing Stirling’s formula[4] and Eq. (4), which can also be written as a productory over all values of r and s

1∏
r,s(p

s
r)
psr

(7)

By extending the product to all values of s from 1 to ∞, the expression (7) represents clearly the total number of
complexions[5], i.e. the probability in the Planckian sense of the macroscopic state of a gas defined though the psr.
The Boltzmann theorem gives for the entropy S of these states the expression[6]

S = −k log
∑
r,s

(psr log psr) (8)

III. THERMODYNAMIC EQUILIBRIUM

In thermodynamic equilibrium S is a maximum, for which additional conditions to be satisfied, beside Eq. (4), are
that the total number n of atoms and their total energy Ē are fixed. These conditions can be clearly expressed as[7]

n =
∑
r,s

rpsr (9)

Ē =
∑
r,s

Esrpsr (10)

where Es denotes the energy of a molecule that belongs to the s-th phase-space cell. From Eq. (3) it follows that

Es = cs2/3 (11)

c = (2m)−1h2(
4

3
πV )−

2
3

Performing the variation [8] with the psr as variables, one finds with an appropriate choice of the constants βs, A and
B [9] that [10]

psr = βse−α
sr (12)

αs = A+Bs
2
3 (13)

Because of Eq. (4) one has therefore

βs = 1− e−α
s

(14)

This results in the average number of molecules per cell∑
r

rpsr = βs
∑
r

re−α
sr = −βs d

dαs
(
∑

e−α
s

) = −βs d

dαs
(

1

1− e−αs
) =

1

eαs − 1
(15)
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The equations (9) and (10) become then

n =
∑
s

1

eαs − 1
(16)

Ē = c
∑
s

s
2
3

eαs − 1
(17)

which, together with

αs = A+Bs
2
3 (18)

determine the constants A and B. In this way the distribution law in thermodynamic equilibrium is completely
detemined.

Inserting the results of this paragraph in Eq. (8) gives the following expression for the equilibrium entropy

S = −k

{∑
s

[
log(1− e−α

s

)
]
−An− B

c
Ē

}
(19)

We should now estimate the temperature of the system. To this scope we employ the definition of entropy in a
infinitesimally small isopycnal heating [11] and obtain

dĒ = TdS = −kT

{∑
s

dαs

1− eαs
− ndA− Ē

c
dB −Bd

(
Ē

c

)}
(20)

which in consideration of Eqs. (12,9 and 10) gives

dĒ = kTBd

(
Ē

c

)
= kT

B

c
dĒ (21)

or

1

kT
=
B

c
(22)

In this way the temperature is also expressed indirectly through the energy and the other quantities given above.
From Eq. (21) and (22) it follows also that the free energy F of the system is given by

F = Ē − TS = kT

{
log
∑
s

(1− e−α
s

)−An

}
(23)

The pressure p of the gas is given by

p = −∂F
∂V

= −kT Ē
c

∂B

∂V
= −Ē ∂ log c

∂V
=

2

3

Ē

V
(24)

This yields the remarkable result that the relation between the kinetic energy and the pressure is the same as in the
classical theory, where it is obtained by the virial theorem.

IV. THE CLASSICAL THEORY AS LIMITING CASE

By discarding the unity next to eα
s

one recovers the result of the classical theory; in the following it will be shown
under which conditions this is legitimate. In view of (15), (12) and (22), the average number ns of molecules per cell
is given by

ns = e−α
s

= e−Ae−
Es

kT (25)

Because of (11) the number of molecules with energy within the small range dEs is also given by

3

2
c−

3
2 e−Ae−

E
kT E

1
2 dE (26)
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in agreement with the classical theory. Eq. (9) gives then, under the same condition of neglecting the unity term,

eA = π
3
2h−3V

n
(2mkT )

3
2 (27)

For hydrogen at atmospheric pressure this quantity is roughly 6 · 104, that is much larger then unity. This shows
that the classical theory is a rather good approximation. The error however grows with larger densities and smaller
temperatures and for helium at the critical state is quite considerable; in this case however one can not any longer
speak of an ideal gas.

We now estimate from (21) the entropy for our limiting case. Replacing log(1 − e−αs) with −eαs and this with
−1/(eα

s − 1), one obtains, also in view of (16),

S = νR log

[
e

5
2
V

h3n
(2πmkT )

3
2

]
(28)

where ν is the number of moles of gas and R is the ideal gas constant. This result for the absolute value of entropy
is in agreement with well-known results of quantum statistics.

According to the theory presented here, Nernst theorem[12] is satisfied for ideal gases. In reality, our formulas can
not be applied directly to extremely low temperatures, as we have assumed in their derivation that the psr change only
relatively infinitely little when s changes by 1. However, one can see immediately that the entropy must vanish at
absolute zero. In fact, in that case all the molecules lie in the first cell; for this state there is only a single distribution
of molecules according to our counting. From this it immediately follows the correctness of the assertion.

V. THE DEPARTURE OF THE GAS EQUATION FROM THE CLASSICAL THEORY

Our results for as concerns the equation of state are contained into the following equations[13]:

n =
∑
s

1

eαs − 1
(29)

Ē =
3

2
pV = c

∑
s

s
2
3

eαs − 1
(30)

αs = A+
cs

2
3

kT
(31)

c =
Es

s
2
3

=
h2

2m

(
4

3
πV

)− 2
3

(32)

We wish now to transform and discuss these results. From the argument in Sect. 4 it follows that the quantity e−A,
which we will denote with λ [14], is smaller than unity. This is a measure of the “degeneration” of the gas. We can
now put Eqs. (29) and (30) in form of a double sum

n =
∑
s,τ

λτe−
cs2/3τ
kT (33)

Ē = c
∑
s,τ

s
2
3λτe−

cs2/3τ
kT (34)

where τ is to be summed for all s from 1 to ∞.
The sum over s can be performed by replacing it with an integration from 0 to ∞. This is allowed since the

exponential function is slowly changing with s[15]. We obtain then

n =
3
√
π

4

(
kT

c

) 3
2 ∑

τ

τ−
3
2λτ (35)

Ē = c
9
√
π

8

(
kT

c

) 5
2 ∑

τ

τ−
5
2λτ (36)
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Eq. (35) determines the degeneracy parameter λ as a function of V, T and n, while Eq. (36) gives the energy and
therefore also the pressure of the gas. A general discussion of these equations consists in finding the function that
expresses the sum in (36) through the sum in (35). One obtains through division

Ē

n
=

3

2
kT

∑
τ τ
− 5

2λτ∑
τ τ
− 3

2λτ
(37)

The average energy of the gas molecules for a given temperature (and also the pressure) is then always smaller than the
classical value and in fact the factor that expresses this reduction is the smaller the larger the degeneracy parameter
λ. In turn this parameter, in view of Eqs (35) and (32), is a function of (V/n)

2
3mT .

If λ is so small that λ2 is negligible with respect to unity then one obtains[16]

Ē

n
=

3

2
kT
[
1− 0.0318h3 n

V
(2πmkT )−

3
2

]
(38)

We consider now in which way the Maxwellian distribution is influenced by the quantum effects. Expanding Eq.
(15) in powers of λ and taking into account Eq. (31) one obtains

ns = const× e−E
s

kT (1 + λe−
Es

kT + ...) (39)

The parenthesis expresses the quantum effects on the Maxwellian distribution. One sees that there are more slow
molecules with respect to fast ones than would be the case with Maxwell law.

Finally, I would like to draw attention to a paradox whose resolution I have not succeeded to obtain [17]. There is
no difficulty to handle by the method given here also the case of the mixture of two different gases. In this case, each
type of molecule has its special “cell”. This yields the additivity of the entropy of the components of the mixture. Each
component behaves, with respect to molecular energy, pressure and statistical distribution, as if it alone were present.
A mixture of molecule numbers n1, n2, with molecules of the first and second kind no matter how little different
from each other (in particular with respect to the molecular mass m), yields a different pressure and a different state
distribution when compared to a single gas of n1 +n2 molecules at the same temperature having practically the same
molecular mass and the same volume. But this seems really impossible.
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[1] To appear in “Zeitschr. fuer Physik”.
[2] (in the o.p. the symbols V, n appeared as if multiplied together)
[3] (in the o.p. the symbol psr at exponent appeared without subscript and superscript)
[4] (i.e. n! ≈ nne−n)
[5] (i.e. microstates)
[6] (Boltzmann’s constant k was denoted as χ in the o.p.)
[7] ns =

∑
r
rpsr is the corresponding number of molecules in the s-th cell.

[8] (of the entropy)
[9] (in the symbols psr, αs, βs, Es the symbol s is a superscript index, not an exponent)

[10] (The constant A turns out to be related to what in modern notation is called the chemical potential µ, A = −µ/kT )
[11] (i.e. a constant density transformation; since the number of particle is here also assumed constant, constant density implies

constant volume)
[12] (that the entropy vanishes at zero absolute temperature)
[13] (in the o.p. the sum index is denoted by σ)
[14] (this quantity if often called fugacity in modern literature)
[15] (“with σ” in the o.p.)
[16] (The numerical factor was corrected to 0.1768 in the second paper by Einstein)
[17] (This is sometimes called Gibbs’ paradox; Einstein solves it in the second paper)


