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Supplemental Figure S1: Cells with similar actin organization display identical force response independently 
of the pattern adhesive area 
 

(a) Substrate displacement measured with respect to distance from the cell edge along the lines in Fig. 1b. Dotted 

lines correspond to exponential fits according to the theoretical decay for the displacements. The corresponding 

values for 𝑙𝑝 are 5.6 m (500 m2), 8.7 m (1000 m2) and 12.0 m (1500 m2). (b) Comparison of the three 

different measures for displacement decay as a function of cell size: half-maximum values from Fig. 1c, 

exponential fits from Fig. S1a, model-fits to baseline from Fig. 2c. They all show similar values and the same 

increasing trend with cell size. (c) From left to right: 1000 m2 disc, donut and hazard shaped fibronectin 

micropatterns on polyacrylamide (all patterns cover the same projected area). Individual actin-labelled cells. 

Individual vinculin staining to reveal focal adhesion localization. The contrast of the vinculin images is enhanced 

to facilitate visualization of small and thin focal adhesions.  (d) Total adhesion area measured as integrated 

vinculin signal on the 1000 m2 disc, donut and hazard shapes. Using a 1-way ANOVA test, significant difference 

is not found between the three cases. (e) Global cellular actin fibre alignment for cells spread on all fibronectin 

micropatterns. This is represented by the actin order parameter. Using a 1-way ANOVA test, no significant 

difference is found between the disc and the donut, however, the hazard pattern displays significant differences 

with both patterns. (f) Normalized quantification of the mean strain energy over time for cells on all shapes 

subjected to one light pulse of 100 ms. (g) Strain energy increase for every activated cell on the three different 

shapes. Calculation is made by subtracting the strain energy value before activation to the highest strain energy 

value obtained after light activation. Only cells plated on the hazard shaped micropattern displayed lower 

efficiency in terms of strain energy increase after photoactivation.  
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1 Overview

Our modelling approach has to combine the following elements: it has to represent the geometry of
the adhesive environment of the cell, it has to describe the active mechanical properties of the cell, in
particular the e�ect of photoactivation, and it has to predict the strain energy of the elastic substrate,
which shows a characteristic time course after photoactivation. Here we introduce a modelling
framework that meets all of these requirements. Our presentation is structured as follows. We first
introduce our mechanical model and briefly discuss potential alternatives that we also tested. We then
discuss the analytical solutions that are possible for the special assumption of isotropic contractility
on a disc pattern. These analytical solution are used to validate our numerical treatment and are
helpful to parametrize our model. Next we discuss the numerical implementation of your model, which
is needed for the general case of anisotropic contractility. This section also includes a description of
how we implement the di�erent adhesive geometries. We then discuss photoactivation, in particular
our choice of a double-sigmoid activation curve and potential alternatives. Finally we summarize our
parametrization of the model. Here we adopt a mixed strategy. One subset of the parameters is taken
from general considerations, and the complementary part is determined by numerical minimizing the
loss against experimental data. All parameter values used for the calculations are documented in
tables.

2 Mechanical model

We start with the mechanical model. Following earlier work on modelling traction forces as a function
of cell geometry [1, 2, 3, 4, 5, 6, 7, 8], we describe the cell as a thin contractile layer that adheres to
an elastic foundation (compare Fig. 2a). The force balance between the cell and the substrate reads

ˆj‡ij(x, t) = Y (x)ui(x, t) . (1)

Here ‡ij is the two-dimensional stress in the contractile layer, ui its displacement field and Y the local
area density of the spring constants. Y therefore represents the sti�ness of the foundation. Through
its position dependance, Y (x) can also represent the adhesive geometry.
For the constitutive law of the contractile layer we choose an active Kelvin-Voigt model:

‡ij ≠ ‡ij,m = (1 + ·cˆt) (⁄‘kk”ij + 2µ‘ij) (2)

with linear strain tensor ‘ij = (ˆiuj + ˆjui) /2. ‡m denotes the active motor stress, which consists
of two contributions: a constant background stress ‡bck, which raises the cellular strain energy to
its homeostatic level, and a photoactivation (PA) stress tensor ‡act (t), describing the additional
time-dependent stress during PA. ⁄ and µ denote the two-dimensional Lamé coe�cients defined by

⁄ = Echc‹c

1 ≠ ‹2
c

, µ = Echc

2 (1 + ‹c)
. (3)

Here Ec and ‹c are the three-dimensional Young’s modulus and Poisson’s ratio of the cells, respectively,
and hc is the e�ective thickness of the contractile layer, which is similar to but smaller than cell
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thickness. The e�ective viscosity of the cell will be denoted by ÷c and the resulting relaxation time
is ·c = ÷c/Ec. The limit ·c = 0 corresponds to the purely elastic case. Because elastic and viscous
elements are arranged in parallel in the Kelvin-Voigt model, the corresponding forces simply add up in
this equation.
An alternative to the active viscoelastic solid is the active viscoelastic fluid, that is an active Maxwell
model, for which we have

‡ij ≠ ‡ij,m

·c

+ (‡̇ij ≠ ‡̇ij,m) = ˆt (⁄‘kk”ij + 2µ‘ij) . (4)

·c = 0 corresponds to the purely viscous case, for which the stress derivative would vanish. Because
now elastic and viscous elements for the viscoelastic fluid are arranged in series, they appear here in a
di�erent combination than for the viscoelastic solid from Eq. 2. For this study, we considered all four
possible linear models (viscoelastic solid, elastic solid, viscoelastic fluid, viscous fluid), but only the
viscoelastic solid was able to describe our experimental data (see below).
In order to solve our model, we have to combine the force balance from Eq. 1 with the constitutive
law from Eq. 2. In general, the resulting equation can only be solved numerically. If one considers the
special case of a one-dimensional and purely elastic system (·c = 0) with constant sti�ness Y and
constant active stress ‡m, the resulting equation for the displacement field u is simply

ˆ2

xu ≠
1
l2
p

u = 0 (5)

with the newly defined force penetration length lp and the sti�ness Y related by

lp =
A

Echc

Y (1 ≠ ‹2
c
)

B
1/2

, Y = Echc

l2
p

(1 ≠ ‹2
c
) . (6)

The force penetration length can be understood as the typical length scale on which a mechanical
perturbation decays [1]. In principle this allows us to estimate Y by experimentally measuring lp.

3 Substrate strain energy

In order to predict the substrate strain energy in our model, we take into account that both the elastic
gel and the layer of adhesion molecules connecting it to the cell contribute to the foundation sti�ness
Y perceived by the cell. Because the sti�nesses of the substrate and of the adhesion layer act in series,
we write 1/Y = 1/Ys + 1/Ya. The spring constant density of the substrate is related to its Young’s
modulus Es by [2]

Ys = fiEs

he�

(7)

where he� can be estimated as
h≠1

e�
= 1

hs2fi (1 + ‹s)
+ 1

Lc

(8)
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where hs and ‹s are thickness and Poisson ratio of the substrate, respectively, and Lc is the lateral
size of the cell. The sti�ness of the adhesion layer can be estimated as Ya = ka/d2, where ka is the
molecular sti�ness of the adhesion bonds and d the distance between them.
With substrate displacement us, substrate rigidity Ys and force balance T = Y u = Ysus, we now can
write for the substrate strain energy:

Us = 1
2

⁄

A
TusdA = 1

2

⁄

A

Y 2

Ys

u2dA . (9)

This is the central quantity of interest because it is directly measured in the experiments. If the
adhesion layer is much sti�er than the elastic substrate, we have Y = Ys and the energy density is
simply Ysu2/2.

4 Analytical solution for contractile disc

To estimate the expected values for the strain energy Us described by Eq. 9 as well as the contractile
background stress of the cell, we now turn to an analytical solution of our model that has been derived
before for the case of an isotropic contractile disc of radius r0 [1, 4]. Here we restrict ourselves
completely to mechanical equilibrium and neglect viscoelastic e�ects or non-homogeneous adhesion.
The radial displacement ur for this special case yields [1]

ur (r) = ≠lp
‡0hc

⁄ + 2µ
·

I1

1
r
lp

2

I0

1
r0
lp

2
≠

2µ
⁄+2µ

lp
r0

I1

1
r0
lp

2 , (10)

with contractile stress ‡0, disc height hc and modified Bessel functions of first kind I0 and I1. The
strain energy then reduces to the integral

Us = Y 2

2Ys

⁄
2fi

0

d„
⁄ r0

0

drru2

r

= fi

Ys

·

A
Y lp‡0hc (1 ≠ ‹2

c
)

Echc

B
2

·

s r0
0

drrI1

1
r
lp

2
2

1
I0

1
r0
lp

2
≠ (1 ≠ ‹c) lp

r0
I1

1
r0
lp

22
2

= fi (‡0hc)2

2Ys

’

A
r0

lp

B

, (11)

using the definition of Y in Eq. 6 and

’ (x) = x2
·

I1 (x)2 + 2

xI0 (x) I1 (x) ≠ I0 (x)2

1
I0 (x) ≠ (1 ≠ ‹c) 1

xI1 (x)
2

2
. (12)

The total traction force exerted onto the substrate is given by

Ftot = Y
⁄

2fi

0

d„
⁄ r0

0

drr|ur|

= 2fiY lp‡0hc

⁄ + 2µ

s r0
0

drrI1( r
lp

)
I0

1
r0
lp

2
≠ (1 ≠ ‹c) lp

r0
I1

1
r0
lp

2 = 2fi‡0hc

lp
—

A
r0

lp

B

, (13)
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with
— (x) = fi

2 x
(L0(x)I1(x) ≠ L1(x)I0(x))

I0 (x) ≠ (1 ≠ ‹c) 1

xI1 (x) , (14)

in which L0 and L1 denote modified Struve functions.
We can find the two asymptotic limits of the strain energy and the total traction force by investigating
’ and — for the two limits x π 1 and x ∫ 1. For x π 1, the modified Bessel functions can be
approximated as

In (x) ≠≠æ
xπ1

1
n!

3
x

2

4n

, (15)

such that

’ (x) ≠≠æ
xπ1

x4

2 (1 + ‹c)2
+ O

1
x5

2
, (16)

— (x) ≠≠æ
xπ1

x3

3 (1 + ‹c)
+ O

1
x4

2
, (17)

and hence

Us ≠≠≠æ
r0πlp

fi (‡0hc)2

4Ys (1 + ‹c)2

A
r0

lp

B
4

, (18)

Ftot ≠≠≠æ
r0πlp

2filp‡0hc

3(1 + ‹c)

A
r0

lp

B
3

. (19)

For x ∫ 1, any modified Bessel function of the first kind can be approximated as

In ¥
exp x
Ô

2fix

C

1 ≠
4n2

≠ 12

1(8x)

A

1 ≠
4n2

≠ 32

2(8x)

A

1 ≠
4n2

≠ 52

3(8x) (1 ≠ . . . )
BBD

, (20)

i.e.

I0 ¥
exp x
Ô

2fix

5
1 + 1

8x

6
(21)

I1 ¥
exp x
Ô

2fix

5
1 ≠

3
8x

6
(22)

such that

’ (x) ¥ x
64 ≠

24

x ≠
6

x2

64 ≠
48

x + 3

x2 ≠
9

x3 + 9

4x4
≠≠æ
x∫1

x + O

1
x2

2
, (23)

— (x) ¥ x
1 ≠

7

8x

1 + 1

8x ≠ (1 ≠ ‹c) 1

x ≠
3

8x2
≠≠æ
x∫1

x + O

1
x2

2
, (24)

and hence

Us ≠≠≠æ
r0∫lp

fi (‡0hc)2

2Ys

·
r0

lp
, (25)

Ftot ≠≠≠æ
r0∫lp

2fi‡0hcr0 . (26)
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Figure 1: Analytical solution for the substrate strain energy Us and the total traction force Ftot of
a uniformly contractile disc as a function of dimensionless disc radius r0/lp. Also shown are the
two asymptotic limits for small (blue) and large (red) disc radii. For radii r0 larger than lp, a linear
approximation becomes valid in both cases.

Thus, the asymptotic behavior of the strain energy for r0 ∫ lp has the same scaling with r0 as the
total force, corresponding to a tension-dominated regime. However, for r0 π lp, the asymptotic
behavior of the strain energy and the total force have a di�erent scaling with r0, corresponding to an
elasticity-dominated regime. As we will see below, in our experiments we always will deal with the
tension-dominated regime.
In Fig. 1, we plot the substrate strain energy Us from Eq. 11 and total traction force Ftot from Eq. 13
of the isotropically contracting disc as a function of dimensionless disc radius r0/lp (black solid line).
We also plot the asymptotic limits for small radius (blue dashed line, Eq. 18) and large radius (red
dashed line, Eq. 25). Because in experiments system size will be typically much larger than lp, we
conclude that the linear scaling from the large radius limit best captures the relevant form of the
substrate strain energy and total traction force.

5 Numerical implementation

In the general case, no analytical solution is available and our mechanical model has to be solved by
means of a finite element (FE) calculation. The weak formulation of Eq. 1 is

⁄

�

‡ : 1
2

1
Òv + ÒvT

2
dx +

⁄

�

Y u · v dx = 0 , (27)

with � denoting the meshed cell area (e.g. a disc) and v a test function. We use the FE-solver FEniCS
to calculate the displacements [9]. For symmetry reasons, the Dirichlet boundary condition u = (0, 0)
applies at the midpoint x = (0, 0).
As a validation of our numerical procedures, we first simulated the contractile disc. Fig. 2 shows that
the analytical solution from Eq. 10 and the numerical solution agree very well.
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(a) (b)

(d)(c)

Figure 2: Finite Element Simulation of the isotropic contractile disc. Panel (a) demonstrates the
excellent agreement of the numerical FE-implementation with the analytical solution for u(r). Panel
(b),(c) and (d) show the displacement field u, total stress ‡ and the traction stress as obtained by
FEM, respectively.

6 Adhesive geometry

An essential element of our treatment is the representation of the adhesive geometry. This can be done
by making sti�ness Y space-dependent. For example, it has been shown recently that the arrangement
of focal adhesions, and thus adhesion geometry, a�ects the e�ective substrate sti�ness perceived by
the cell [8]. For the case of the disc pattern, we represent the e�ect of the elastic substrate as well as
the elastic contribution of the FAs via springs of constant spring sti�ness density Y throughout the
entire disc. For the hazard pattern, we only introduce springs of sti�ness density Y at those positions
of the disc at which the cell can form connections to the substrate via its FAs, which is exactly the
FN coated area (illustrated in Fig. 3). To simulate this fact, we determine the positions (x, y)Y ”=0

, at
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Figure 3: Illustration of the hazard pattern geometry. The relevant angles are described in the main
text and implemented in the FEM-simulations.

which the sti�ness density Y is non-zero, via:

(x, y)Y ”=0
=

;
x, y

----
5
Rin Æ

Ò
x2 + y2 Æ R ·

3
fi

2 ≠
–out

2 Æ arctan2 (x, y) Æ
fi

2 + –out

2
‚ ≠

fi

6 ≠
–out

2 Æ arctan2 (x, y) Æ ≠
fi

6 + –out

2
‚ ≠

5fi

6 ≠
–out

2 Æ arctan2 (x, y) Æ ≠
5fi

6 + –out

2
‚ fi ≠ –overhang Æ arctan2 (x, y) Æ fi

46
‚

5Ò
x2 + y2 Æ Rin ·

3 3
≠

w

2 Æ x1 Æ
w

2 · y1 Ø 0
4

‚

3
≠

w

2 Æ x2 Æ
w

2 · y2 Ø 0
4

‚

3
≠

w

2 Æ x3 Æ
w

2 · y3 Ø 0
446 <

,

with arm width w = 5 µm, inner radius Rin = R ≠ w and –out = fi/2. The remaining parameters are

(x1, y1) = (x, y)

(x2, y2) =
3

x · cos
32fi

3

4
≠ y · sin

32fi

3

4
, x · sin

32fi

3

4
+ y · cos

32fi

3

44

(x3, y3) =
3

x · cos
32fi

3

4
+ y · sin

32fi

3

4
, ≠x · sin

32fi

3

4
+ y · cos

32fi

3

44
,
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and
–overhang = 5fi

6 + –out

2 ≠ fi if 5fi

6 + –out

2 > fi, otherwise 0 . (28)

Eq. 28 accounts for the unsteady jump of the arctan2-function at the function values ≠fi and fi.

7 Photoactivation

As explained above, the active stress has two components, ‡m = ‡bck + ‡act (t), namely a background
stress before PA, and the active stress after PA. 1 We assume that they both pull in the same direction
because PA leads to little changes in the cytoskeleton, so the direction of pulling is not changed, but
its strength is. We can calculate the anisotropic motor stress tensor ‡m directed along an arbitrary
angle „ with respect to the x-axis via rotation of a stress tensor with its only non-zero component
being ‡xx = ‡bck + ‡act (t). Here, ‡bck is the background stress and ‡act is the time-dependent PA
stress. One has

‡m („) =
A

cos „ ≠ sin „
sin „ cos „

B A
‡bck + ‡act 0

0 0

B A
cos „ sin „

≠ sin „ cos „

B

= (‡bck + ‡act) ·

A
cos2 „ 1

2
sin (2„)

1

2
sin (2„) sin2 „

B

, (29)

Comparison with the orientation of SFs in cells plated on the two patterns lets us assume a motor
stress tensor

‡DP

m
=

A
0 0
0 ‡bck + ‡act

B

(30)

in the case of the disc pattern (DP) and

‡HP

m,�1
= (‡bck + ‡act) ·

A
1 0
0 0

B

, (31)

‡HP

m,�2
= (‡bck + ‡act) ·

Q

a cos2

1
fi
3

2
1

2
sin

1
2fi
3

2

1

2
sin

1
2fi
3

2
sin2

1
fi
3

2

R

b ,

‡HP

m,�3
= (‡bck + ‡act) ·

Q

a cos2

1
fi
3

2
≠

1

2
sin

1
2fi
3

2

≠
1

2
sin

1
2fi
3

2
sin2

1
fi
3

2

R

b ,

for the respective regions �1, �2 and �3 in the case of the hazard pattern (HP).
We consider three possible models for the time course of the PA stress component ‡act. The simplest
case is the rectangular profile

‡rec

act
(t) =

I
‡0 for t0 Æ t Æ tact

0 else , (32)
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A

B

rectangular exponential double sigmoid

Figure 4: Photoactivation stress profile ‡act and the corresponding energy response for the case of a
solid, Kelvin-Voigt and Maxwell model. (A) Photoactivation stress profiles ‡act used to reproduce the
experimentally acquired cellular energy response: rectangular, exponential and double sigmoid profile
from left to right. Di�erent curves illustrate the optimized stress profiles for the three models. (B)
Corresponding energy responses for the three di�erent stress profiles and continuum models, illustrated
on top of the experimental average. Shaded regions denote the standard deviation. A Kelvin-Voigt
model with a double sigmoid stress profile fits best to the experimental curve.

with peak activation stress ‡0, PA time point t0 and duration tact. To account for a delayed response
of the activation stress, we introduce the exponential profile

‡exp

act (t) =
Y
]

[
‡0

1
1 ≠ exp

1
≠

t≠t0
·act

22
for t0 Æ t Æ tact

‡0

1
1 ≠ exp

1
≠

tact≠t0
·act

22
exp

1
≠

t≠(t0+tact)

·rel

2
else

, (33)

with stress activation and relaxation times ·act and ·rel. The third stress profile is a double sigmoid
function [10]

‡sig

act (t) = ‡0

1 + exp
1
≠

t≠tact
·act

2 ·

Q

a1 ≠
1

1 + exp
1
≠

t≠trel
·rel

2

R

b , (34)

with the centers of the activating and relaxing sigmoid tact and trel. Here, the two time constants
and the two time centroids allow us to combine a discontinuous jump at the ascending edge of the
PA stress function and a flat stress plateau, as with the rectangular stress profile, with a damped
activation and relaxation, as with the exponential stress profile. Thus the sigmoid activation can be
considered to be the most general form of an activation profile.
These three di�erent PA-stresses now can be combined with each of the four mechanical models
introduced above to select the best model for further analysis. A purely viscous model can be excluded
right from the beginning as it would not allow to keep a steady energy state, even in the absence of a
PA-signal. In Fig. 4, we show the responses of the three other potential models, each time combined
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Fixed parameter Value

Young’s modulus of the substrate Es 4.47 kPa
Poisson’s ration of the substrate ‹s 0.5
Substrate thickness hs 50 µm
Lateral cell size Lc 50 µm
Young’s modulus of the cell Ec 10 kPa
Viscosity of the cell ÷c 100 kPa s
Poisson’s ratio of the cell ‹c 0.5
Cell layer thickness hc 1 µm

Table 1: Globally fixed cell and substrate parameters.

with one of the three potential PA-stresses after optimization against the experimental data. One
sees that the best combination is the Kelvin-Voigt model combined with the double sigmoid. The
rectangular PA-profile would introduce discontinous features in the strain energy response that are
not present in the experiments. The exponential PA-profile would give an asymmetric response. Only
the double sigmoid gives the smooth response observed experimentally. While the elastic model gives
too steep curves, the Maxwell model needs di�erent baselines before and after PA. The Kelvin-Voigt
model gives near perfect fits.

8 Parametrization

In principle, one can minimize our theoretical predictions against our experimental readout (strain
energy as a function of time) in regard to all model parameters. However, there are too many of
them to get unique solutions and therefore we fix those parameters that are well established in the
literature and only minimize for the ones that are specific to our experimental setup. Moreover the
parameters of the substrate are known anyway. In Tab. 1, we list the fixed and known parameters. For
the cell parameters, we use consensus values from the literature [1, 2, 6, 7]. In particular, cell sti�ness
is set to Ec = 10 kPa, which is a typical value for strongly adherent cells. Setting cell viscosity to
÷c = 100 kPa · s corresponds to a viscoelastic relaxation time of · = 10 s.
We next estimate the sti�nesses of substrate and adhesion layer. With Es = 4.47◊103 kPa, hs = 50 µm
and Lc ¥ 50 µm, we have for the substrate approximately Ys ¥ 3 ◊ 108 N/m

3. For the e�ective spring
constant of adhesions, a standard value is ka = 2.5 nN/µm = 2.5 pN/nm and a typical dimension is
d = 1 µm. Thus we estimate Ya ¥ ka/µm2

¥ 2 ◊ 109 N/m
3. This suggests that the adhesion layer is

the sti�er element and that the cells perceive mainly the sti�ness of the substrate.
The two parameters that are fitted to the baseline before PA are localization length lp and background
stress ‡back. These quantities represent the main characteristics of adhesion and force generation and
together determine the substrate strain stored in the elastic substrate. Tab. 2 documents our results
for the four di�erent patterns used in the main text.
For the photoactivation part, we fit five parameters: the peak value for the double sigmoid ‡0, and its

11



Fit parameter Disc 500 µm Disc 1000 µm Disc 1500 µm Hazard

Force localization length lp 2.65 µm 3.75 µm 4.62 µm 2.97 µm
Contractile background stress ‡back 2.23 kPa 3.91 kPa 5.30 kPa 3.58 kPa

Table 2: Fit results for energy baseline.

Fit parameter Disc 500 µm Disc 1000 µm Disc 1500 µm Hazard

‡0 1.2 kPa 1.8 kPa 1.8 kPa 0.8 kPa
‡max 1.2 kPa 1.7 kPa 1.7 kPa 0.7 kPa
tact 46 s 79 s 66 s 59 s
trel 291 s 416 s 343 s 335 s
·act 13 s 33 s 19 s 20 s
·rel 42 s 60 s 52 s 78 s

Table 3: Fit parameter for 100 ms PA-duration.

four time values. From this, one can calculate also the maximal stress ‡max achieved during PA. The
corresponding results are given in Tab. 3. The results for the pulses are given in Tab. 4. The resulting
strain energy curves and their interpretations are given in the main text.

9 Scaling considerations from analytical model

We now can use our analytical solution for the isotropic contractile disc in the limit of large disc size
to rationalize our findings. We first note that a typical overall cell force is Ftot = µN . We therefore
estimate for the background stress

‡back = Ftot

2fir0hc
¥ 10 kPa (35)

in very good agreement with the order of magnitude of our fit results. We also note that the background
stress sets the order of magnitude for cell elasticity, which we here fix to Ec = 10 kPa.
For the localization length, we estimate

lp =
A

Echc

Y (1 ≠ ‹2
c
)

B
1/2

¥ 1 µm (36)

again in very good agreement with the order of magnitude of our fit results.
Finally for the strain energy we estimate

Us = fi (‡0hc)2

2Ys

r0

lp
¥ 1 pJ (37)

again in very good agreement with the experimentally measured and fitted order of magnitude.
Together, these estimates show that our theory is consistent and predictive.
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PA duration 10 ms 20 ms 50 ms 100 ms 150 ms 200 ms
Fit parameter Values

Disc

‡0 0.6 kPa 1.1 kPa 1.5 kPa 1.7 kPa 1.9 kPa 1.9 kPa
‡max 0.6 kPa 1.1 kPa 1.4 kPa 1.6 kPa 1.9 kPa 1.8 kPa
tact 72 s 71 s 89 s 105 s 96 s 105 s
trel 255 s 324 s 382 s 453 s 462 s 465 s
·act 10 s 21 s 30 s 33 s 49 s 48 s
·rel 34 s 35 s 48 s 53 s 39 s 67 s

Hazard

‡0 0.9 kPa 1.0 kPa 0.9 kPa 0.9 kPa 0.9 kPa 0.9 kPa
‡max 0.3 kPa 0.5 kPa 0.7 kPa 0.8 kPa 0.9 kPa 0.8 kPa
tact 34 s 49 s 50 s 63 s 62 s 77 s
trel 130 s 186 s 267 s 278 s 350 s 275 s
·act 16 s 27 s 16 s 15 s 12 s 14 s
·rel 141 s 102 s 74 s 54 s 45 s 57 s

Table 4: Fit parameter for long opto protocol. Stresses rounded to one digit after comma.

10 E�ect of actin organization on strain energy level in the

model

Since in our model fits yield di�erent lp for hazard and disc pattern, respectively which influences
the substrate strain energy Us ≥ Y 2

≥ 1/l4

p we choose a set of dummy parameters to purely study
the influence of the adhesion geometry on the substrate strain energy. As in our example for the
isotropic contractile disc we set ‡back = 4 kPa and lp = 4 µm. This yields baseline strain energy
values of UHazard

s
= 0.29 pJ and UDisc

s
= 0.24 pJ. Since all cell parameters are identical we conclude

that the strain energy is strongly influenced by the internal stress fiber organization. The length of
the “e�ective” boundary is given by BHazard = (3

2
fi + 3)r0. Since Us is essentially proportional to

the length along which the traction acts (marked in red for the hazard) we can compute the ratio
of B and the circumference of a circle, which is the e�ective boundary for the circle pattern, and
compare it to the ratio of the two strain energy values listed above. The first ratio yields a value of
BHazard/(2fir0) = 1.23 while the ratio of the strain energy gives UHazard

s
/UDisc

s
= 1.21 such that this

very minimal consideration could explain the observed strain energy di�erence.
However, it is not possible to follow the same argumentation when it comes to strain energy response
upon photo activation. Additionally, the model alone is not su�cient to explain this observation since
model parameters where fitted such that they resemble the experimentally measured strain energy
response. Very generally, the less e�ective force generation on the hazard pattern could be the result
of either more stressed stress fibers which have less force generation capacity or simply the result of
di�ering stress fiber densities within the two conditions. Regarding the very similar baseline stress
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Figure 5

levels for hazard and disc those two explanations could be equivalent.

11 Example for python FEM-code for contractile disc

Our model was implemented in the FEM-framework FEniCS [9]. As an example of our code, here we
document the calculation for the isotropic contractile disc.⌥ ⌅

1 from dolfin import ú

2 import numpy as np
3 import sys
4 import logging
5 logging.basicConfig(level=logging.DEBUG)
6 logger = logging.getLogger("rothemain.rothe_utils")
7 logging.getLogger(’UFL’).setLevel(logging.WARNING)
8 logging.getLogger(’FFC’).setLevel(logging.WARNING)
9 set_log_active(False)

10 tol_x = DOLFIN_EPS
11 tol_y = DOLFIN_EPS
12 ’’’ Sample script for the Finite Element Simulation of an isotropic contractile disc with elastic

foundation.
13 Script was written for the 2019 version of FEniCS and run inside a Docker container build from the

2019 image quay.io/fenicsproject/stable:"version"
14

15 Copyright: Dennis Woerthmueller, Dimitri Probst
16 Last modification: August 29, 2021
17 ’’’
18 # Strain
19 def eps(v):
20 # Calculate the symmetric strain tensor.
21 return sym(grad(v))
22

23 # Stress
24 def sigma(v, lmbda, mu):
25 # Calculate the stress tensor based on constitutive relation for a linear elastic solid.
26 return 2.0 ú mu ú eps(v) + lmbda ú tr(eps(v)) ú Identity(len(v))
27

28 # Active stress tensor
29 def active(sx, sy, sxy=0.0):
30 # Define the tensor for the active stress contribution.
31 return as_tensor([[sx, sxy], [sxy, sy]])
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32

33 # Calculation of the penetration length on a thick substrate
34 def penetrationLength_thick_subs(Ec, hc):
35 # Formulas taken from: Banerjee & Marchetti (2012): Contractile stresses in cohesive cell
36 # layers on finite-thickness substrates
37 ka = 2.5e-3 # Stiffness of focal adhesion bonds [N/m]
38 L = 50e-6 # Cell length (1d), diameter (2d) [m]
39 lc0 = 1e-6 # Length of sarcomeric subunit [m]
40 hs = 50e-6 # Thickness of the substrate [m]
41 nus = 0.5 # Poisson’s ratio of the substrate
42 Es = 4.47e3 # Elastic modulus of the substrate [N/m^2]
43 heff = (1. / (hs ú 2 ú np.pi ú (1 + nus)) + 1. / L)ú ú-1
44 Ya = ka / (L ú lc0)
45 Ys = (np.pi ú Es) / heff
46 Y = (1.0 / Ya + 1.0 / Ys)ú ú(-1)
47 #print Ya, Ys
48 lp = np.sqrt(Ec ú hc / Y)
49 return lp, Ys / 1e12
50

51 # only relevant if symmetry if pattern is present and if PA is on full cell
52 def DirichletBoundary(x, on_boundary):
53 # Define the diriclet boundary condition for center of the circular cell.
54 return near(x[0], 0.0, tol_x) and near(x[1], 0.0, tol_y)
55

56 # strain energy
57 def calculateStrainEnergy(u, kN, Ys, F, V, assigner_V_to_F, mesh):
58 # calculate strain energy of the cell according to formula defined in the theory supplement.
59 ux = Function(F)
60 uy = Function(F)
61 u0 = Function(V)
62 u0.assign(u)
63 u0.vector()[:] ú= u0.vector()
64 # Split so that ux = ux**2, uy = uy**2
65 assigner_V_to_F.assign([ux, uy], u0)
66 # ux will hold |u|**2 = ux**2 + 1 * uy**2
67 ux.vector().axpy(1, uy.vector())
68 return assemble(0.5úkNú ú2/Ysúuxúdx(mesh))
69

70 # function which defines the simulation
71 def isotropic_contractile_disc():
72

73 # Import a pre-created mesh (e.g. with gmsh)
74 mesh = Mesh(’circ_1000.xml’)
75

76 # set fixed cell parameters
77 E3D = 10e3 # Elastic modulus of the cell in Pa
78 eta3D = 100e3 # Viscous modulus of the cell Pa*s
79 h = 1e-6 # cell height in m
80 sigma_back2D = 4e-03 # 2D stress N/m, conversion between 2D and 2D via sigma_2D = sigma_3D*h
81 sigma0 = 5e-03 # 2D active stress in N/m
82

83 # conversion to 2D constants for plane stress and thin layer approximation
84 Eh = E3D ú h # N / m = Pa * m
85 etah = eta3D ú h # Ns / m = Pa * m
86 nu = 0.5
87 lmbdaE = Eh ú nu / ((1 - nu) ú (1 + nu)) # in 3D given by: ((1 + nu) * (1 - 2 * nu))
88 muE = Eh / (2 ú (1 + nu))
89 lmbdaEta = etah ú nu / ((1 - nu) ú (1 + nu)) # in 3D given by: ((1 + nu) * (1 - 2 * nu))
90 muEta = etah / (2 ú (1 + nu))
91 _, Ys = penetrationLength_thick_subs(E3D, h) # Unit [m]. Here, only Ys is calculated!
92 lp = 4ú1e-6 # force penetration length in m; in our approach a fit parameter of strain energy

baseline fit
93 kN = Constant((lmbdaE + 2 ú muE) / (lp ú 1e6)ú ú2) # Spring stiffness density kN in N / m / um**2

to get u (displacement field) in um
94

95 # Define Time Stepping
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96 dt = Constant(15) # Time constant in s, definde in UFL (unified form language) which is built on
top of the python language

97 T = 1005 # Total simulation time in s, make sure that T mod dt= 0 otherwise last time step is
missing

98 lag_time = 3 ú etah / Eh # Natural time scale of the system which describes the time the cell
needs to arrive in its ’ground state’.

99 act_times = np.array([300,T+15]) + lag_time # Time points of photo activation stress
100

101 # Define function space and basis functions
102 V = VectorFunctionSpace(mesh, "CG", 2) # continuous Galerkin of degree 2 (Lagrange polynomials)
103 u = TrialFunction(V)
104 v = TestFunction(V)
105

106 # Define boundary condition
107 u0 = Constant((0.0, 0.0)) # zero displacement in symmetry center of the disc
108 bc = DirichletBC(V, u0, DirichletBoundary)
109

110 # Define variational form in Dolfin UFL syntax with a backward euler time discretization scheme
111 a = inner(sigma(u, lmbdaEta, muEta), sym(grad(v)))údx + dtúinner(sigma(u, lmbdaE, muE), sym(grad(v

)))údx + dt ú kN ú inner(u, v) ú dx
112 u = Function(V)
113 uinit = Constant((0.0, 0.0))
114 uold = interpolate(uinit, V)
115 uold.assign(u)
116

117 # Define Elements and Function Space for resulting Tensors
118 F = FunctionSpace(mesh, ’CG’, 2)
119 assigner_V_to_F = FunctionAssigner([F, F], V)
120 dFE = FiniteElement("DG", mesh.ufl_cell(), 0)
121 tFE = TensorElement(dFE)
122 W = FunctionSpace(mesh, tFE)
123 K = FunctionSpace(mesh, dFE)
124 stress = Function(W, name=’Stress’)
125 disp = Function(V, name=’Displacement’)
126

127 # Determine the save options and save resulting fields to output.xdmf to view with ParaView
128 xdmf_file= XDMFFile("simulation_result.xdmf")
129 xdmf_file.parameters["flush_output"] = True
130 xdmf_file.parameters["functions_share_mesh"] = True
131 save = True
132

133 # Initialize lists to save simulation results
134 all_times = []
135 all_energies = []
136

137 # Run simulation
138 t = 0 ú dt # start time
139 lag_counter = 0 # ounts the number of time needed for lag time
140 act_flag = False # True, if activated
141 sigma_act = 0.0 # initial photo activation stress
142

143 # in the example we use an exponetial shaped activation profile with the following free time
parameters:

144 tau_stress_act = 30 # time scale for activation
145 act_duration = 300 # duration photo activation
146 tau_stress_rel = 40 # time scale for relaxation
147

148 # main simulation loop, time evolution. Solve system for each time step.
149 while t(0.0) <= T + lag_time:
150 print(t(0.0))
151 if t(0.0) < lag_time: # count the number of time steps necessary for lag time
152 lag_counter += 1
153 if near(t(0.0), act_times[0]) and act_flag == False: # set act_flag to true if first

activation time point is reached
154 print("GOT ACTIVATED")
155 act_flag = True
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156 if act_flag == True: # calculate the active stress contribution which is != 0
157 act_time = act_times[0]
158 newT = t(0.0) - act_time # times in activation function are measure relative to activation

time point
159 if newT <= act_duration: # acitvation
160 sigma_act = sigma0 ú (1 - np.exp(-newT/ tau_stress_act))
161 else: # relaxation
162 sigma_act = sigma0 ú (1 - np.exp(-act_duration / tau_stress_act)) ú np.exp(-(newT-

act_duration)/tau_stress_rel)
163 if sigma_act < 1e-08:
164 sigma_act = 0.0
165

166 # Right side of variational form
167 L = inner(sigma(uold, lmbdaEta, muEta),sym(grad(v)))údx - \
168 dt ú inner(active(sigma_back2D+sigma_act, sigma_back2D+sigma_act), sym(grad(v))) ú dx
169

170 # Solve problem with boundary conditions bc
171 solve(a == L, u, bc)
172 uold.assign(u) # assign solution to uold to use in next iteration time step
173 total_energy = calculateStrainEnergy(u, kN, Ys, F, V, assigner_V_to_F, mesh) # Unit pJ
174

175 # store data
176 all_times.append(t(0.0))
177 all_energies.append(total_energy)
178

179 # calculate total stress/strain tensors
180 eps = sym(grad(u))
181 sig = active(sigma_back2D+sigma_act, sigma_back2D+sigma_act) + Eh/(1+nu)úeps + nuúEh/(1-nuú ú2)

útr(eps)úIdentity(2)
182 stress.assign(project(sig, W))
183 disp.assign(u)
184

185 # save tensors at each time step to xdmf-file
186 if save:
187 xdmf_file.write(disp, t(0.0))
188 xdmf_file.write(stress, t(0.0))
189 # update time step
190 t += dt
191

192 return None
193 # Main function
194 if __name__ == "__main__":
195

196 isotropic_contractile_disc() # simulate the photo activated isotropic contractile disc⌃ ⇧
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