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Reconstruction of traction forces

In our analysis, we assume that focal adhesions, where force is transmitted to
the substrate, have a circular shape. For the far field, it is not essential whether
the traction forces within an adhesion are distributed evenly or vary over this
area, for example decaying towards the rim. In any case, the far field would
result in the Green’s function of the elastic halfspace, which represents a point
force in the middle of the adhesion [1]. For the near field, the solutions looks
slightly different. Therefore the main difference between different assumptions
would be the reconstruction of the forces in the middle of the focal adhesions.
To compare the effect of different assumptions, we initially consider two types
of circular adhesive patterns: the constant traction force patterns and radial
decreasing Hertz-like traction force pattern.

The analytical solution for the surface deformation created by a tangential
traction force F = (Fx, Fy)T distributed equally over a circular area with radius
a at the surface of a sufficiently thick, substrate in the linear, isotropic elastic
regime has recently been calculated in the context of traction force microscopy
[2]. Employing polar coordinates r = r(cos θ, sin θ) centered around the middle
of the circular adhesion, the surface traction profile is given by:

τ (r, θ) =

{
F
πa2 r < a

0 r ≥ a
(1)

The corresponding deformation field is given by

ux(r, θ) =
1 + ν

π2aE
[(1− ν)N1(r, θ) + νN2(r, θ))Fx − νN3(r, θ)Fy] (2)

uy(r, θ) =
1 + ν

π2aE
[−νN3(r, θ)Fx + (1− ν)N1(r, θ) + νN4(r, θ))Fy] (3)

Here the E describes the substrate stiffness (Young’s modulus) and ν the Poisson
ratio. The functions N1 to N4 have the following form in the inner region where
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Figure 1: A Plot of the surface deformation created by a constant-traction
profile with a = 8 µm, F = πa2 · 1.5 kPa, E = 6.9 kPa, ν = 0.5. B Plot
of the surface deformation created by a Hertz-like profile, same parameters as
in A C cross-section for the Hertz like profile. D Numerical relation between
between A90 and ν for the constant-traction profile E Same relation for the
Hertz-like profile. F Numerical results relation between between A95 and ν for
the constant-traction profile G Comparison of the relative standard derivation
in the definition of areas for the cell presented in Fig. 5 of our main manuscript.
H Same for the cell presented in Fig. 2 of our main manuscript.
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r < a and ξ1 = r2/a2:

N1 = 4E0(ξ1) (4)

N2 =
4 cos(2θ)

(
(r2 + a2)E0(ξ1) + (r2 − a2)K0(ξ1)

)
3r2

+ 4 sin2 θE0(ξ1) (5)

N3 =
2 sin(2θ)

(
(r2 − 2a2)E0(ξ1) + (r2 − a2)K0(ξ1)

)
3r2

(6)

N4 = 4 cos2 θE0(ξ1)−
4 cos(2θ)

(
(r2 + a2)E0(ξ1) + (r2 − a2)K0(ξ1)

)
3r2

. (7)

Here, E0 and K0 describe the complete elliptic integral of the first and second
kind, respectively. For the outer region where r > a and ξ2)a2/r2 we have

N1 =
4
(
r2E0(ξ2) + (a2 − r2)K0(ξ2)

)
ar

(8)

N2 =

(
6r2 − 2(r2 − 2a2) cos(2θ)

)
E0(ξ2) + 2(r2 − a2)(cos(2θ)− 3)K0(ξ2)

3ar
(9)

N3 =
2 sin(2θ)

(
(r2 − 2a2)E0(ξ2) + (a2 − r2)K0(ξ2)

)
3ar

(10)

N4 =

(
6r2 + 2(r2 − 2a2) cos(2θ)

)
E0(ξ2)− 2(r2 −R2)(cos(2θ) + 3)K0(ξ2)

3ar
.

(11)

The shape of the deformation field is shown in Fig. 1.
In the limit r → 0 we find that

F =
πaE

(1 + ν)(2− ν)
u(0) . (12)

This is the relation between overall force and displacement in the middle of
the focal adhesion. For the Green’s function, this displacement would diverge,
because it only describes the far field.

The surface deformation created by a tangential traction force distributed
in a Hertz-like manner over a circular area is known from contact mechanics [3].
Employing Cartesian coordinates centered around the center of the circular
adhesion, and the abbreviation r =

√
x2 + y2 the surface traction profile is

given by:

τ (x, y) =

{
3F

2πa3

√
a2 − r2 r < a

0 r ≥ a
(13)

A linear cross-section of this deformation profile is shown in Fig. 1. The corre-
sponding deformation field is given by:

ux(x, y) =
3(1 + ν)

8Ea3
((W1 +W2)Fx +W3Fy) (14)

uy(x, y) =
3(1 + ν)

8Ea3
(W3Fx + (W1 +W4)Fy) (15)
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The functions W1 to W4 have the following form in the inner region where r < a:

W1 =
1

4
4(2− ν)a2 (16)

W2 = −1

4
((4− 3ν)x2 + (4− ν)y2) (17)

W3 =
1

4
2νxy (18)

W4 = −1

4
((4− 3ν)y2 + (4− ν)x2) . (19)

For the outer region where r > a and ξ2 = a2/r2 we have:

W1 =
2− ν
π

(
(2a2 − r2) arcsin

a

r
+ ar

√
1− a2

r2

)
(20)

W2 =
ν

2π

(
r2 arcsin

a

r
+ (2a2 − r2)

a

r

√
1− a2

r2

)
x2 − y2

r2
(21)

W3 =
1

π

(
r2 arcsin

a

r
+ (2a2 − r2)

a

r

√
1− a2

r2

)
xy (22)

W4 =
ν

2π

(
r2 arcsin

a

r
+ (2a2 − r2)

a

r

√
1− a2

r2

)
y2 − x2

r2
. (23)

The shape of this deformation is also shown in Fig. 1.
In the limit r → 0, we find, that:

F =
8aE

3(1 + ν)(2− ν)
u(0) . (24)

Compared with Eq. (12), we see that both scale linear in Young’s modulus and
patch size. Also the contribution related to the Poisson ratio is equivalent. They
differ only in the constant prefactor.

In general, the deformation fields in both cases share many similarities. In

both cases the absolute value of the deformation field uabs =
√
u2x + u2y takes its

maximal value at the center of the deformation. In addition the isolines of the
uabs field enclose simple connected regions always containing the center of the
coordinate system. We define Ah to be the area where uabs(x, y) > huabs(0, 0).
While the deformation field u is dependent on five parameters E, ν, a, Fx
and Fy, only two of them a and ν will affect Ah. Because of the way we can
choose our unit scale, it can be easily seen, that a contributes quadratically
(Ah ∝ a2). A numerical analysis (Fig. 1) reveals that the relation to ν can be
estimated using a linear function. Therefore, the expression Ah = (yh+mhν)a2

describes the relationship between Ah, a and ν. The constants yh and mh can
be determined numerically by simulating the situation for an arbitrary choice
of the five parameters mentioned above. An estimation of the total force F of
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an Hertz-like or constant-traction contact based on the deformation field can be
found using Eq. (12) or (24), by finding the deformation at the a center of the
contact. The contact radius a can be calculated from the isoline-enclosed area
Ah for some value h.

The overall algorithm to determine forces Fi within each adhesion now con-
tains the following steps done individually for each adhesion search area i:

1. Interpolate the deformation field onto a regular spaced square grid for
each time step.

2. Calculate the absolute value uabs of the deformation field for each time
step.

3. Locate the center of the adhesion by making use of the fact that uabs
should reach its maximum in this location for each time step.

4. A common issue in the above estimation is the fact that the adhesion in
adjacent search areas might cause the center of the current adhesion not to
correspond to the global maximum of uabs within its search area, in which
case the largest value for uabs can be found right next to the adhesion
search area boundary. In these cases, we rely on an interpolation from the
other time-steps to select the presumed location for the area estimate.

5. Now that we have determined the center of the adhesion for each time
step and the radius a, we can determine the deformation u in the adhesion
center.

6. Calculate the area Ah within the adhesion search area where uabs lies
within 1 − h = 5 %, 10 %, 20 %, 30 % of its maximal value for each time
step.

7. For each time step and each threshold value an estimate for the adhesion
radius a can now be determined using the above mentioned area formula
a =

√
Ah/(yh +mhν) using the predetermined values for yh and mh In

general, all of this estimates should yield a similar value, as the radius of
the adhesion is expected not to change during the procedure.

8. The final estimate for the adhesion radius can now be found by finding
the mean of the estimates determined in the previous step. We explicitly
emit those time steps form the calculation, where we had to use the in-
terpolation from the other time-steps in step 4, as the estimates in these
cases are particularly unreliable.

9. Now that we have determined the deformation u in the center of each
adhesion for each time step and the radius a, we can determine the corre-
sponding force Fi using Eq. (12) or (24).

In order to determine whether adhesion sites can be better described by
Hertz-like or the constant-traction profiles, we compare the statistic variance
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Figure 2: Ratio between the predicted force for an elliptical contact and a
circular contract of equal contact area F/F0 for ν = 0.5 using Eq. (26). The
horizontal axes describes the shape factor given as defined by [4].

between the radius estimates derived from different search area estimates in
step 7. As can see (Fig 1. G and H) both approaches give a similarly consistent
image in this regard. As the constant-force approach gives a slightly better
estimate, we chose the constant traction estimate for our experimental analysis.

These two approaches assume a circular shape of the adhesion area, while
many recent studies have suggested a more elliptic shape [4]. In case of a Hertz
like contact, the surface traction profile can be modeled, if we assume that both
the direction of the force, as well as one of the semi-axes are parallel to the
x-axes:

τ (x, y) =

 3Fxex

2πab

√
1− x2

a2 −
x2

b2
x2

a2 + y2

b2 < 1

0 x2

a2 + y2

b2 ≥ 1
(25)

The deformation field for force central displacement relation at the center is
given by [5]:

F =
8
√
abE

3N(ν, a/b)(2− ν)(1 + ν)
u(0) . (26)

The function N(ν, a/b) is given by

N
(
ν,
a

b

)
=


4

π(2−ν)
√

a
b

(
K0(ma)− νK0(ma)−E0(ma)

ma

)
a < b

1 a = b

4
π(2−ν)

√
b
a

(
(1− ν)K0(mb) + νK0(mb)−E0(mb)

mb

)
a > b

(27)

with the definition ma = 1−a2/b2 and mb = 1−b2/a2. Its inverse 1/N describes
the ratio between the force predicted using Eq. (26) and the one predicted using
Eq. (24) for a circular adhesion of equal area. In Fig. 2 1/N is plotted against the
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shape factor π2

4
b
a

1
E0(ma)2

. Assuming a shape factor of 0.5 as observed by [4], we

see that the force increase is only around 4% which is likely below the accuracy
of the prediction.
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Calculation of force moments

The force monopole is the net directed force on the substrate and defined by

F =

∫
τd2x . (28)

Knowing the adhesion patches, this means that we can find the total force
monopole vector by simply summing up the force contributions of all adhesions:

F =
∑
k

Fk . (29)

Due to momentum conservation, the force monopole should be equivalent to the
force transmitted by the cantilever into the cell.

We also define the first order moment matrix M as [6]

Mij =

∫
xiτjd

2x . (30)

The coordinate frame for this integral is chosen with respect to the center of
force of the system, which is given by

xCF =

(∫
|τ |d2x

)−1 ∫
|τ |xd2x (31)

which can be calculated in any coordinate frame.
Inserting the traction profile for patches (Eq. 13 or Eq. 1) yields:

xCF =

(∑
k

|Fk|d2x

)−1
|Fk|xkd2x , (32)

Mij =
∑
k

(xk)i(Fk)jd
2x . (33)

The diagonal components of the moment matrix describe the contractility of
the system. The two off-diagonal components corresponds to a torque relative
to the center of force [6]. We define the contractile momentum by

µ = M11 +M22. (34)

This describes the net ability to dilate or contract the cell. The net torque is
defined by

M = M12 −M21. (35)

Both µ and M are independent of the orientation of the coordinate axes and
are independent of each other.

Without needle pulling, angular momentum conservation dictates that the
net torque is zero and the moment matrix symmetric. In this case, one can find
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an orientation of the axis such that M is diagonal and the eigenvalues can be
used to find the directed and isotropic contractile moment of the system. To
also consider the case of needle pulling, we define a slightly modified version of
the moment matrix, where we removed the torque contribution:

M
‖
ij =

∫
xixj

τ · x
x2

d2x . (36)

If we again insert the definition of the patches, we obtain:

M
‖
ij =

∑
k

(xk)i(xk)j
Fk · xk
x2
k

. (37)

This matrix is symmetric and thus an orthogonal eigendecomposition can be
found. The two eigenvalues describe the dipole moments and the eigenvector
corresponding to the major dipole describes the main contractile axis. This can
be proven by comparing the trace of M‖ to the contractile momentum µ, which
both yield the same value.

9



Young’s modulus of PDMS-pillars used for mi-
croneedle calibration
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Figure 3: The Young’s modulus of the PDMS pillars employed for the calibra-
tion of the microneedle was measured using an AFM indentation based method
published by Huth et al. [7]. A silica bead with 21 µm diameter was glued to an
AFM cantilever and was subsequently used to indent the PDMS sample with a
setpoint force of 700 nN at 1 µm/s. A shows an exemplary indentation curve
with a Hertz model fit. Our method employs an algorithm that calculates the
Young’s modulus for different indentation depths. The resulting curve is pre-
sented in B. The Young’s modulus is determined by finding a plateau in this
curve and finding the value with lowest fitting residuals. This value is marked in
B with a black cross. The sample was indented 16 times at each of 32 different
positions resulting in a mean value of 801.49 +/- 32.91 kPa.
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Young’s modulus of the polyacrylamide sample
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Figure 4: The Young’s modulus of a polyacrylamide (PAAm) sample that serves
as a traction force microscopy substrate needs to be known in order to calculate
traction forces from the displacement of the beads embedded in the sample.
We employed the same method to measure the Young’s modulus of our PAAm
samples as for the PDMS pillars. Indentation curves were collected at a can-
tilever speed of 1 µm/s and a setpoint force of 50 nN. A shows an exemplary
indentation curve with a Hertz model fit, while B shows the resulting Young’s
modulus versus indentation depth. The sample was indented 16 times at each
of 30 different positions resulting in a mean value of 16.49 +/- 0.55 kPa.
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Traction forces in perpendicular direction
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Figure 5: Traction force data from the cell presented in Fig. 2 of our main
manuscript. A shows the x-components of the traction force vectors. It is
very clear the these are not influenced by the shearing in y-direction, which
is why we focus our discussion on traction forces in y direction. B shows the
y-components of the traction forces for each adhesion patch. We decided to com-
bine some neighbouring patches with similar behavior for better visualization.
We combined patches 2,3 and 4 as well as 5,6 and 7.
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