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Abstract
Complex energy landscapes often arise in biological systems, e.g. for protein folding, biochemical
reactions, or intracellular transport processes. Their physical effects are frequently reflected in the
first-passage times (FPTs) arising from these energy landscapes. However, their calculation is
notoriously challenging and it is often difficult to identify the most relevant features of a given
energy landscape. Here we show how this can be achieved by coarse-graining the Fokker–Planck
equation to a master equation and decomposing its FPTs in an iterative process. We apply this
method to the electrostatic interaction between two rods of nonmuscle myosin II (NM2), which is
the main molecular motor for force generation in nonmuscle cells. Energy landscapes are
computed directly from the amino acid sequences of the three different isoforms. Our approach
allows us to identify the most relevant energy barriers for their self-assembly into NM2
minifilaments and how they change under force. In particular, we find that antiparallel
configurations are more stable than parallel ones, but also show more changes under mechanical
loading. Our work demonstrates the rich dynamics that can be expected for NM2-assemblies
under mechanical load and in general shows how one can identify the most relevant energy
barriers in complex energy landscapes.

1. Introduction

The concept of an energy landscape provides a powerful theory approach that has led to a unified
description of many complex natural phenomena in numerous different physical systems [1]. If depicted
graphically, such systems resemble mountainous landscapes with many hills and valleys. While notable
examples from chemistry and condensed matter physics include chemical kinetics [2, 3] or glass-forming
systems [4–6], in a biophysical context, energy landscapes are central for explaining a wide range of
biomolecular processes [7]. For example, they help to understand the folding and conformational dynamics
of proteins [1, 8], including single-molecule experiments [9, 10], where details of the underlying
multidimensional energy landscape can be inferred from transition paths of low-dimensional projections
[10]. They also provide perspectives on the structure and dynamics of the entire genome [11] and help us
understanding the microscopic origins of selective transport processes through membrane channels
[12–15]. Moreover, the general notion of diffusion on energy landscapes has been proven to be successful
for e.g. modeling molecular motors [16, 17], where motor-specific landscapes have been obtained from
molecular structures [18–20] or using single-molecule trajectories [21–23].

Very often, the main aspect of interest for diffusive motion in a multi-well energy landscape is the
first-passage time (FPT) [24–26], i.e. the time when a stochastic process first passes a prescribed threshold
value. FPTs tend to have a broad probability distribution, yet the average value mean first-passage time
(MFPT), often captures main physical aspects of complex systems. Moreover, FPT-distributions and more
so MFPTs do not require a complete solution of the stochastic equations and therefore tend to be more
accessible. Many biophysical systems have been successfully analyzed along these lines, including the kinetics
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of chemical reactions [27–31], enzyme catalysis [32–34], molecular search processes [35–39], signaling in
biological cells [40–44], cell adhesion [45–49], modeling of molecular motors [50, 51], self-assembly
processes [52], protein folding kinetics [53, 54], and single-molecule pulling experiments by atomic force
spectroscopy [55–61]. More broadly, first-passage theory is central to the description of diverse problems
ranging from foraging behavior of animals or bacteria [62–66], population dynamics [38, 67], and the
spread of infectious diseases [68–70], to transport in disordered media [71], or the dynamics of financial
markets and stock options [72].

While substantial advances have been achieved in the theory of first-passage processes on flat energy
landscapes for finite domains [31, 35, 73], much less is known about first-passage properties for more
general rough energy landscapes [74]. Usually such results are restricted to simple model landscapes and do
not address the complex energy landscapes typically encountered in biological systems. For instance, it was
found that the introduction of finite potential barriers may lead to a reduction in the MFPT [75] which
subsequently allows for the optimization of escape rates [76], and that intermediate barriers may accelerate
the rate of barrier crossing events [77]. Moreover, it has been shown that FPT distributions provide a link
between the dynamical properties and the topology of complex networks [78]. For one-dimensional
discrete-state dynamics these theoretical results made it possible to quantitatively infer key features of
energy landscapes from measurements of the FPT distribution. A characteristic power-law regime for the
short-time statistics of the FPT was demonstrated to reflect e.g. the number and depth of intermediate
potential minima in experiments on different length scales [79]. Furthermore, a recently discovered duality
between FPT and relaxation processes for reversible Markovian dynamics provided further insight into FPT
phenomena in rugged energy landscapes [80, 81]. Yet a more general understanding of the first-passage
properties for general rough landscapes is still missing.

In this paper, we use a specific biophysical example to demonstrate how in general the MFPT can be
calculated for highly complex and rugged one-dimensional energy landscapes by coarse-graining the
dynamics following the continuous overdamped Fokker–Planck equation into a discrete master equation.
As our case study, we use self-assembly of the molecular motor nonmuscle myosin II (NM2). Myosins
constitute a diverse superfamily of motor proteins that generate mechanical work by converting chemical
energy produced during ATP-hydrolysis into conformational changes that eventually propel actin filaments
forward [82, 83]. The myosin II subfamily is a class of non-processive molecular motor proteins that have to
work in sufficiently large ensembles to generate force. This is achieved by self-assembly into bipolar
filaments, which are present not only in muscle cells, but also in nonmuscle cells, where NM2 forms
so-called minifilaments that are composed of up to 30 NM2 molecules (each with two motor heads) with a
typical size of 300 nm [84–86]. NM2 is the main force generator in nonmuscle cells and crucial for many
essential cellular functions, including adhesion, migration, division, and mechanosensing. While NM2
traditionally has been investigated mainly using electron microscopy [87, 88], super-resolution microscopy
has made it possible to break the 200 nm resolution limit of traditional light microscopy, allowing the
investigation of NM2 minifilaments dynamics in live cells [89–93]. These live-cell imaging studies
demonstrated that besides de novo filament formation, the proliferation of NM2 minifilaments is
additionally driven by novel partitioning mechanisms like filament splitting and reveal unexpected
processes such as expansion, concatenation, long-range attraction and stacking. Adding to the notion that
NM2 minifilaments are far more dynamic than formerly appreciated, it was observed that individual NM2
monomers are characterized by high exchange rates [92] and that the three human NM2-variants (A, B, C)
co-assemble into mixed filaments with distinct characteristics [94–96]. Thus the question arises how the
energy landscapes of these assemblies look like and how the system explores its different configurations.

NM2-molecules assemble by forming parallel and antiparallel staggers of their rod-like regions. This
interaction is mainly of electrostatic origin and determined by the amino acid sequence of the respective
rods [97–101]. Earlier modeling approaches were able to predict the experimentally observed staggers as
local minima of the electrostatic interaction energy landscape, but also led to very noisy data [99–101]. A
detailed three-dimensional molecular model of the NM2 rod structure provided better data quality of the
energy landscape, but again identified the known staggers only as local minima [98]. Recently, the
identification of staggers were improved considerably by introducing the concept of MFPTs into the
modeling of NM2-staggering [97]. Modeling in addition the splaying of NM2-molecules in a rolling and
zipping motion as part of the energy landscape, the experimentally observed staggers emerged as maxima in
the MFPT (e.g. contact time) as function of the initial alignment. Thus by replacing energies by MFPTs, the
physical stability of these systems became more apparent.

Although resulting in many interesting predictions on the stability of competing staggers, the earlier
work did not identify the decisive features of the energy landscape that lead to these staggers. It also did not
consider the effect of mechanical force, that is essential for the functioning of NM2-minifilaments and that
might stabilize new configurations or completely destabilize the assembly. Here we will use systematic and
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Figure 1. NM2 structure and assembly. (a) A NM2-molecule is mainly comprised of two identical heavy chains (light and dark
green) that begin with a motor head domain at the N-terminal domain and end with the nonhelical tail at the C-terminal. In
addition, four light chains attach at the neck (blue). The rod part of the molecule consists of a 160 nm long coiled-coil region in
which the heavy chains wind around each other with a pitch of 3.5 residues per turn. The coiled-coil is stabilized by the heptad
repeat (a to g) of the amino acid sequence of each heavy chain (inset). Residues at position a and d form a hydrophobic interface
and the remaining residues are exposed to the surrounding. (b) The electrostatic interactions of the exposed residues of the
heptad repeats lead to either parallel or antiparallel staggers of the NM2-dimers. (c) Self-assembly of up to 30 NM2-molecules
forms the bipolar minifilaments with a typical size of 300 nm.

rigorous coarse-graining of the complex energy landscapes to address these important questions for the
assembly of NM2-molecules. In order to be able to conduct a comprehensive analysis of a one-dimensional
model, here we consider only straight myosin II rods and disregard the effects of bending. Our work does
not only give new and interesting results for NM2-assembly, but also demonstrates how a successful
coarse-graining procedure can be implemented for complex one-dimensional energy landscapes in general.

2. Derivation of the energy landscapes

2.1. Structural model and charge distribution of NM2-rod domains
In order to give an instructive example of a complex one-dimensional energy landscape with many potential
barriers of different height, we first introduce the case of the self-assembly of NM2-molecules into
minifilaments. As schematically depicted in figure 1(a), one NM2 monomer consists mainly of two identical
myosin II heavy chains (shown in light and dark green) that dimerize to form its rigid helical backbone.
Hereby, each heavy chain begins with a globular motor head domain at the N-terminal containing bindings
sites for actin filaments as well as for ATP-molecules. Following the head region comes a neck region in
which two regulatory light chains and two essential light chains bind (shown in blue). Then comes the
roughly 160 nm long and relatively rigid coiled-coil rod and finally the non-helical tailpiece that disrupts
the coiled-coil motif. Although the whole complex is in fact a hexamer, here we call it a NM2-molecule for
simplicity. In the coiled-coil rod domain the two heavy chains wind around each other with an axial spacing
of 0.1456 nm between adjacent residues and a pitch of 3.5 residues per turn due to interactions between
periodically placed hydrophobic residues [102, 103]. For this purpose, each NM2 heavy chain features an
amino acid sequence with a heptad repeat labeled from a to g as schematically depicted in the inset of
figure 1(a). Here, residues at positions a and d form the hydrophobic interface between two adjacent side
chains, whereas the remaining residues are hydrophilic and exposed to the solvent. The assembly of the
NM2-molecules into dimers is mediated by the electrostatic interactions of the exposed residues, whose
charge pattern leads to either parallel or antiparallel staggers, as shown in figure 1(b). The predominance of
electrostatic driving forces during the assembly process was demonstrated by in vitro experiments where an
increase in salt concentration was found to inhibit filament formation due to electrostatic screening effects
[104]. The final minifilament contains up to 30 NM2-molecules, is bipolar and around 300 nm large,
compare figure 1(c).

The derivation of the electrostatic interaction energy between two NM2-molecules relies on the
procedures recently introduced in reference [97]. First the amino acid sequence of the coiled-coil rod
domain of individual NM2-molecules, as provided by the NCBI protein database [105], is translated into a
linear chain of point-charges. We have analyzed the amino acid sequences of the three human
NM2-isoforms (denoted as NM2A, NM2B and NM2C) via the sequence-based coiled-coil prediction
software Paircoil2 [106]. By employing pairwise residue probabilities [107], Paircoil2 is able to identify the
location of coiled-coil motifs in protein amino acid sequence data. Performing this statistical analysis yields
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Figure 2. Analysis of NM2 amino acid sequences. (a) Prediction of the coiled-coil region for different NM2-isoforms obtained
with the software package Paircoil2 [106]. The dashed grey line denotes the significance level of α = 0.05 indicating that residues
from roughly 850 to 1920 are part of the coiled-coil motif. Remaining residues on the left and right correspond to the head and
to the non-helical tailpiece, respectively. (b) Charge distribution along the NM2-rod treated as a chain of linear charges.
Summation with a sliding window of 98 residues highlights the expected positively charged C-terminal tip which is followed by
five negatively charged regions along the whole rod domain.

a p-value for each individual residue of the sequence data, which in turn allows us to test the null hypothesis
whether the respective residue is not located within a coiled-coil domain. As depicted in figure 2(a), this
hypothesis is rejected for a domain ranging from roughly the 850th up to the 1920th amino acid residue for
all NM2-variants, indicating that these residues are indeed part of the coiled-coil motif of the NM2 heavy
chain. The first large non coiled-coil region indicates the motor and neck region, whereas the small region
at the end of the amino sequence represents the non-helical tailpiece (compare figure 1(a)).

After identifying the NM2 coiled-coil motif (∼1100 out of total ∼2000 amino acids) and the positions
of individual residues along the rod, we are now able to associate all required amino acids of the coiled-coil
with their corresponding charges. Amino acids at residue position a and d are hereby assigned zero net
charge as they face inwards and form the hydrophobic coiled-coil backbone (compare inset in figure 1(a)).
The remaining residue positions are either assigned a charge of ‘+2e’ for positively charged amino acids (i.e.
arginine and lysine) or ‘−2e’ for negatively charged amino acids (i.e. glutamic acid and aspartic acid).
Moreover point-like charges are arranged with an axial spacing of Δx = 0.1456 nm between adjacent
neighbors [97, 102, 103] which subsequently yields the correct dimensions for the NM2-molecule length of
approximately 160 nm. The corresponding distribution of charges along the NM2 coiled-coil rod domain is
depicted in figure 2(b) for all three different NM2-variants. For clarity, we hereby smooth the distribution
of charges via a sliding window of 98 residues [97, 99]—the preferred axial shift between interacting
molecules due to the 196 residue repeat—which allows us to identify the positive C-terminal tip assembly
critical domain (ACD), and the five regions with negative charge spaced along the rod domain. We note
that the quantitative difference between the different NM2-variants is comparatively small.

2.2. Electrostatic interaction
The + − − − − − charge pattern revealed in figure 2(b) is the physical basis of the self-assembly of
minifilaments and has been identified before by similar procedures [97–99]. In line with these previous
modeling approaches, our calculations of energy landscapes are restricted to the electrostatic interactions of
two aligned NM2-molecules which are based on the charge distribution calculated in section 2.1. For
simplicity we do not account for bending of NM2 rods that has been used before by including bending
energies to complement the electrostatic interactions [97] as it would require additional numerical
procedures and effectively renders the energy landscapes two-dimensional. We also neglect potential
contributions of the entropy of segment bending to the free energy. Because the persistence length of the
myosin II rods is 130 nm [108, 109] and dangling parts to the polymers are usually in the same order of
magnitude or less, such contributions are expected to contribute only little in our context. To calculate the
electrostatic interaction energy between two rods, we note that under physiological salt concentrations we
are in the weak coupling regime for a rod with 0.085 e per residue, a distance 0.1456 nm between residues
and a radius 1 nm [97]. Thus the appropriate treatment of electrostatics is Poisson–Boltzmann theory
[110, 111]. Our considered system is additionally characterized by small ionic strengths, allowing us to
linearize the Poisson–Boltzmann equation, yielding the Debye–Hückel equation

∇2ψ(r) = κ2ψ(r). (1)

Here ψ denotes the electrostatic potential and κ is the inverse Debye–Hückel screening length that sets the
typical length scale of the electrostatic screening.
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Figure 3. Energy landscapes of the electrostatic interaction for two NM2-molecules for variable pulling force F. Landscapes for
all three NM2 variants without external pulling in either (a) parallel or (b) antiparallel configurations and as a function of their
respective stagger s in units of the thermal energy kBT = 1/β. NM2-monomers are aligned with a lateral distance of y = 2 nm.
Experimentally known staggers (black arrows) are local minima in the energy landscapes. Application of an variable external
pulling force F > 0 pN tilts the (c) parallel and (d) antiparallel energy landscape as explicitly shown for the NM2A-dimer.

To now compute the electrostatic interaction energy of two aligned NM2 rods, each modeled as a linear
chain of charges, we always have to consider two different cases. As schematically illustrated in figure 1(b),
NM2-molecules assemble in either parallel or antiparallel fashion, and they may align with a different
stagger s. For the geometry of a single point-particle with charge q, it is possible to analytically solve
equation (1), resulting in a Yukawa-type potential [110] of the form

ψ(r) =
q

4πεε0

exp(−κr)

r
. (2)

Exploiting the linearity of the Debye–Hückel equation (1) furthermore allows us to directly compute the
total electrostatic interaction energy U(s) of two aligned NM2-rods as a function of their stagger s as

U(s) =
N∑

i=1

M∑
j=1

qiqj

4πεε0

exp(−κrij)

rij
, (3)

where we define rij ≡
√

y2 + [(i − j)Δx − s]2 as the distance between residues. Point charges are denoted
with q whereas N and M denote the total number of residues of the respective rods with i and j as their
corresponding index. The distance along the NM2 rod, i.e. the main axis, is given by x, while y denotes the
lateral spacing between two aligned NM2-molecules. In the case of an antiparallel NM2-dimer
configuration we invert one of the two charge sequences.

The resulting electrostatic interaction energy landscapes for NM2-dimers are shown in figures 3(a) and
(b) as a function of the stagger s and in units of the thermal energy kBT = 1/β for parallel and antiparallel
configurations, respectively. By calculating the interaction energy according to equation (3) we assume a
lateral spacing of y = 2 nm [87, 97]. Moreover, we do not take negative staggers into account as their
positive ACDs would not be in contact with the negative charged region, i.e. their interaction would become
highly unfavorable. The experimentally known staggers (s = 14.3 nm, s = 43.2 nm and s = 72.0 nm for
parallel alignment and s = 113 nm to s = 118 nm for antiparallel alignment) are marked in figures 3(a) and
(b) by black arrows and emerge as local minima generated by the electrostatic interaction between the
positive ACD and regions with increased net negativity along the NM2-rod. However, as noted earlier, these
minima are not very clear, which motivates our approach to use these energy landscapes to investigate the
corresponding FPT-problems.

To investigate situations in which the NM2-dimer is being pulled apart, e.g. due to contractile forces in
the actomyosin network, we study the impact of an external pulling force F on the energy landscape.
Force-mediated rearrangements may be of particular importance at the beginning stages of minifilament
assembly and during the dynamical partitioning of minifilaments [91, 112], when filaments physically split
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into a pair of two ‘daughter’ filaments. To account for the mechanical load we apply an additional constant
external pulling force F > 0 pN along the stagger main-axis coordinate in positive s-direction. As seen in
figures 3(c) and (d) for parallel and antiparallel alignment, respectively, this driving leads to a tilted
NM2-dimer energy landscape

βU(F)(s) = βU0(s) − βFs, (4)

where U0 ≡ U (0 pN)(s) denotes the electrostatic potential energy as given by equation (3) of the original
‘untilted’ NM2-dimer.

3. Mean-first passage time until detachment

In order to better identify relevant staggers during NM2-assembly, we next compute the average time that
passes until a NM2-dimer detaches from a certain initial value for the stagger. In the biologically relevant
overdamped limit, the probability density p(s, t) to find the system at some time t with a stagger s evolves
according to the Fokker–Planck equation

∂tp(s, t) = Lp(s, t), (5)

where L = −∂sA(s, t) + ∂2
s B(s, t) denotes the Fokker–Planck operator. The drift term is determined by the

external potential in the form of A = −μ∂sU(s) where μ is the mobility coefficient (i.e. inverse friction
coefficient). Moreover, the stochastic contribution of the Brownian motion is described by the diffusion
constant via the Einstein relation B = D = μ/β, where β denotes the inverse thermal energy.

We define the one-dimensional domain of interest [a, b] of the detachment process as follows. The
absorbing boundary b is set to the maximal possible stagger (or minimal overlap) between two aligned
NM2 rods, i.e., where the stagger is equal to the complete rod length such that b = 1085Δx ≈ 157.98 nm
for rods with 1085 amino acid residues. Reaching the absorbing target therefore corresponds to the
detachment of the NM2-dimer and marks the end of the process. The reflecting boundary a is placed at the
minimal stagger (or maximal overlap) with a = 0 nm, which corresponds to the complete alignment with
the maximal overlap of the complete NM2 rod length. Since the systems behavior is described by absorbing
and reflecting boundaries, our FPT-problem is characterized by mixed boundaries with a < b.

The backward Fokker–Planck framework introduces an efficient way of calculating the nth moment Tn

of the first-passage time density by employing the recurrence relation [113–115]

L†Tn = −nTn−1 (6)

with T0 = 1 and where L† = A(s0, t)∂s0 + B(s0, t)∂2
s0

denotes the backward Fokker–Planck operator. For a
diffusion process subject to the NM2 energy landscape equation (3), the MFPT (n = 1) consequently can be
obtained by solving the ordinary differential equation

L†T1(s0) = −1. (7)

In our case of mixed boundary conditions with a < b, the solution of equation (7), i.e. the MFPT T1, is
given by the well known formula [113–115]

T1(s0) =

∫ b

s0

dy

Ψ(y)

∫ y

a
dz

Ψ(z)

B(z)
, (8)

where we define

Ψ(z) ≡ exp

(∫ z

dx
A(x)

B(x)

)
= exp(−βU(z)) (9)

by inserting the drift velocity A and diffusion coefficient B as they enter the Fokker–Planck equation (5).
The final analytical expression for the MFTP time now reads

T1(s0) =
1

D

∫ b

s0

dy eβU(y)

∫ y

a
dz e−βU(z). (10)

To calculate the MFTP for landscapes of different NM2-dimer variants we numerically solve equation (10)
after inserting the corresponding electrostatic interaction energy U(s) from equation (3) for different
NM2-variants and configuration. Here the two integrals are solved numerically using the trapezoid rule
function integrate.trapezoid as implemented in the python library SciPy [116]. Throughout the
remainder of this paper, we make the diffusion coefficient dimensionless, D = 1, since we are interested in
the relative differences of the average detachment time between all NM2-variants and configurations and
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Figure 4. MFPT T1 calculated numerically from equation (10) as a function of the initial stagger position s0 in either parallel
(left) or antiparallel (right) configurations. Shown are the variants NM2A (blue, (a) and (b)), NM2B (green, (c) and (d)) and
NM2C (red, (e) and (f)). In all cases the MFPT decreases monotonically with increasing s0, however, T1 shows significant
decreases at only a few specific positions that coincide with certain potential barriers of the underlying energy landscapes. While
T1 for NM2A and NM2B are very similar, the one for NM2C is much smaller.

not in quantitative absolute values. This makes the exact values for the MFPTs arbitrary. We however keep
length dimensions in units of nm to better compare distances with the underlying biophysical system.

In figure 4 we show calculated MFPTs as a function of the initial stagger s0 for different NM2-variants in
a semi-log plot for parallel and antiparallel configurations. As expected, T1 decreases monotonically for
increasing initial staggers s0 as the overall distance to reach the absorbing target becomes smaller.
Surprisingly, however, this decrease occurs in only a few discrete drops, which seem to correspond to
specific barriers in the complex energy landscape. Moreover these drops can be very large, with downward
jumps of several orders of magnitude. Together, these results imply that the MFPTs are both robust and very
sensitive to initial stagger values, depending whether one starts in one of the plateau regions or close to an
edge. Regarding the different isoforms, we see from figure 4 that NM2A and NM2B behave very similarly,
while NM2C is much less stable, with the MFPTs being smaller by four or even six orders of magnitude for
parallel and antiparallel rods, respectively. This agrees with the fact that NM2C forms smaller minifilaments
with approximately only 14 motor proteins compared to otherwise 30 [84, 86]. We also note that the
difference between NM2A and NM2B seem to be a bit larger for the antiparallel configurations.
Interestingly, for parallel rod configuration, the four most noticeably drops of the MFPT are approximately
spaced with a 196 residue repeat (∼28.54 nm), which is well known for the charge repeat of NM2
molecules [97, 99, 100].

It is clear that starting after a prominent barrier will result in a lower MFTP. However, the
double-integral formula of the MFPT in equation (10) not only takes local information (s0) into account,
but also encodes global information of the energy landscape, because many different paths can be taken
towards the endpoint. This makes it notoriously difficult to answer the question which energy barriers are
central to the shape of the MFPT in complex landscapes as in the case of our NM2-example. Here we see
that overcoming certain potential barriers substantially decreases the MFPT T1, while others (possible even
of same height) seemingly leave the MFPT unchanged. In order to better understand this important point,
we next turn to a coarse-graining procedure that asks the question which features have to be kept when
going to larger scales.

In figure 5 we additionally report our results for all possible combinations of the three different
isoforms. While the ordering does not matter here (different from our earlier treatment that included
bending [97]), the alignment is very important. We see that the antiparallel configurations (green) typically
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Figure 5. Direct comparison between the MFPT T1 for parallel (blue) and antiparallel (green) NM2-dimer configurations for all
different variant combinations. For the majority of initial staggers the antiparallel rod configuration has larger T1 compared to
parallel alignment, suggesting that antiparallel NM2-dimers are more stable. Only at small s0 parallel NM2-rods have higher T1.
All combinations involving NM2C have much smaller values for T1.

have higher values for the MFPT T1 than the parallel ones (blue), indicating the importance of the bipolar
architecture. Only for very small staggers does the parallel configuration become more stable. Moreover we
see again that combinations involving NM2C are always much less stable than the ones involving only
NM2A and NM2B.

4. Coarse-graining to master equation

4.1. One-step master equation
Our numerical treatment of equation (10), which is based on continuous-state dynamics of an overdamped
Fokker–Planck equation, has shown a pattern in the MFPT as a function of stagger that requires an
explanation in terms of the key features of the underlying complex energy landscape. To identify these
features, we now coarse-grain the continuous-state dynamics into a set of discrete states to further analyze
the MFPT as a function of the initial stagger and learn more about the connection between energy
landscape and the shape of the MFPT. The motivation hereby is twofold. First, the existence of high energy
barriers that are significant to the thermal energy kBT (see figure 3) allows us to motivate a clear time-scale
separation such that a diffusing particle would spend the majority of its time located in valleys of the energy
landscape before eventually escaping the barrier—a situation well described by stochastic transitions on a
discrete network in terms of a Markovian jump process. Second, the MFPT until a NM2-dimer detaches
has, compared to the underlying energy landscape, a relatively simple shape suggesting that only a selected
few potential barriers and minima contribute to the overall average time needed. As seen in figure 4 the
shape of the MFPT is characterized by a of number pronounced decreases which coincide with the position
of specific potential barriers. Unfortunately this feature remains elusive for the continuous-state description
as the expression used to calculate the MFTP T1 in equation (10) poses a non-trivial transformation of the
underlying energy landscape.

Within the coarse-graining procedure we treat each local minima of the corresponding NM2 energy
landscapes as a discrete state in the network description. Being in a state is therefore equivalent to
residing in the associated local basin. By splitting the energy landscape into a number of N basins
(compare figure 6(b)), delimited by their adjacent potential maxima, the resulting Markovian network is
then described by the set Ω = {0, 1, . . . , N − 1} of N discrete states. Local minima in the energy landscape
are identified numerically using the signal.argrelmin function of the Python library SciPy [116].
The network dynamics follow the master equation

∂tpi(t) =
N−1∑
j=1

[wjipj(t) − wijpi(t)]. (11)
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Figure 6. Master equation. (a) Network of the coarse-grained Markov jump process describing the minima-to-minima
dynamics of the original continuous-state dynamics. States correspond to the identified minimas and transitions rate λi and μi

are obtained as detailed in the main text. The last state N − 1 describes the detachment of a NM2-dimer, i.e., it is absorbing.
(b) Energy landscape of the antiparallel NM2A dimer without pulling force (i.e. F = 0 pN). Highlighted are all 39 local potential
minima (green) each corresponding to a discrete state in the network description of the coarse-grained system. (c) Local energy
landscape Uj|i between adjacent states i and j which are separated by a barrier located at position x
j|i . If both barriers are high (e.g.
Bj|i and Bi|j > kBT), the systems locally equilibrates prior to the next transition and can be described using a Markov jump
process. The splitting probability φj|i denotes the probability that the next transition i → j takes place.

Here pi(t) represents the occupation probability to be in state i at time t and wij denotes the transition rate
to pass from state i to state j. Transitions only occur between directly neighboring states due to the
considered problem of stagging two neighboring rods. Therefore, the master equation (11) may be
re-written in a one-step form as

∂tpi(t) = λi−1pi−1(t) + μi+1pi+1(t) − (λi + μi)pi(t), (12)

where we define the transition rates λi = wi,i+1 and μi = wi,i−1 (transition rates between non-neighboring
states vanish). Figure 6(a) shows the corresponding reaction network. The MFPT is now identified with the
time at which the transition N − 2 → N − 1 into the absorbing state takes place. As before, the state N = 0
is reflecting.

4.2. Transition rates
Without loss of generality, we now choose the NM2A dimer in antiparallel configuration as an exemplary
case. Figure 6(b) shows the N = 39 states that we obtain numerically from the corresponding energy
landscape. For Markovian network dynamics, the exit rate ri (or inverse lifetime) of the state i, i.e., the time
that passes until the state changes, is exponentially distributed according to pexit

i (t) = ri exp(−rit) with
ri = 1/〈t〉exit

i =
∑

j∈Ni
wij (here Ni labels the neighbors of state i). The exit time distribution is independent

of the final state j, allowing us to write the (splitting) probability of the transition from state i to j (i.e., that
the next visited state will be j conditioned on that the system is in state i) as φj|i = wij/ri. Under these
considerations the transition rates are then obtained as

wij =
φj|i
〈t〉exit

i

. (13)

Quantities like the average exit time and the splitting probability entering equation (13) can be related to a
conditional FPT problem [78, 117]. Here, one seeks the first time a system reaches a specific target state
conditioned on that it has not yet reached any other (of possibly arbitrary many) target states before. Based
on this framework and using the renewal theorem [118], results for the splitting probability and the mean
exit time have been derived recently for general networks with a ‘star-like’ topology [117]. The ‘inner’ node
is thereby the starting state and all ‘outer’ nodes are target states. A line network as we consider it here is a
particular simple case of this network topology. Hereby, assuming that the full network dynamics between
two network states evolve according to a continuous space-time overdamped Markovian diffusion, the
splitting probability φj|i that starting from some state i the neighboring state visited next will be state j is
given by the explicit expression

φj|i =
1/I(1)

j|i∑
k∈Ni

1/I(1)
k|i

(14)

9
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and is normalized such that
∑

j∈Ni
φj|i = 1. The second important quantity required to obtain transition

rates is the mean exit time of state i which is obtained using the same framework via the expression

〈t〉exit
i =

∑
k

φk|iI
(2)
k|i , (15)

where the two auxiliary integrals I(1)
j|i and I(2)

j|i in equations (14) and (15) are defined [117] as

I(1)
j|i =

∫ lj|i

0
dy1 g(1)

j|i with g(1)
j|i =

1

Dj|i
eβUj|i(y1), (16)

I(2)
j|i =

∫ lj|i

0
dy1

∫ y2

0
dy2 g(2)

j|i with g(2)
j|i =

1

Dj|i
eβUj|i(y1)−βUj|i(y2). (17)

Here lj|i denotes the distance between two adjacent minima (i.e. states i and j) defined through the
underlying energy landscape and Uj|i is the local energy landscape relative to the value at state i between
states i and j as schematically depicted in figure 6. For the purpose of calculating the transitions rate
between two neighboring states we therefore identify their intervening local potentials and numerically
compute the integrals in equations (16) and (17) employing the trapezoid rule function
integrate.trapezoid as implemented in the python library SciPy [116].

4.3. Mean first-passage time
After identifying all network states and calculating the corresponding transition rates wij, and thus λi and μi

of equation (12), the Markov jump process is now fully specified. Therefore, we are able to determine the
MFPT, i.e. the average detachment time of NM2-dimers, within the coarse-grained network description of
the minima-to-minima dynamics of a diffusing Brownian particle in the original overdamped
Fokker–Planck picture. As for the continuous system, the corresponding absorbing state is hereby always
placed in the last state such that reaching it corresponds to the detachment of the NM2-molecules.

In analogy to the analytical solution of the MFPT in equation (10), which holds for a Fokker–Planck
equation for overdamped Langevin dynamics in an external potential U, for a Markov process confined
between mixed boundaries (a reflecting and b absorbing with a < b) the MFPT is given by [78, 119]

T1(i0; a, b) =
b−1∑
i=i0

i∑
n=a

λ−1
n Πn+1,i with Πi,j =

μiμi+1 . . . μj

λiλi+1 . . . λj
for i � j, (18)

where i0 is the starting state, a the reflecting state, and b the absorbing target state. In our case this MFPT
has to be calculated as a function of the initial stagger i0 and a and b are set to the first and last state,
respectively. This calculation now is much more computationally efficient than the continuum version.
Figures 7(a) and (b) show a direct comparison between the MFPT T1 computed using equation (10) (lines)
and equation (18) (symbols) for the NM2A-dimer. Clearly, the results of the two different approaches agree
very well with each other, thus validating our coarse-graining approach. The same picture emerges for the
other NM2 variants. We additionally plot the mean exit-time 〈t〉exit

i from equation (15) as bars.
Interestingly, the experimentally observed staggers (black arrows) for the parallel configuration corresponds
to large values for 〈t〉exit

i . In particular, the most prominent stagger at s = 14.3 nm corresponds to the
highest overall mean exit-time. While the mean exit-times corresponding to experimentally observed
staggers for antiparallel alignment are not notably large on a global scale, they are indeed large compared to
adjacent states. This suggests that these staggers confer some local robustness against perturbations. We
additionally note that the periodicity between small mean exit-times seems to follow the characteristic
98-residue repeat pattern already encountered earlier.

4.4. Predicting jumps
The relatively simple shape of the MFPT and the characteristic feature to decrease substantially over several
orders of magnitude by only a slight variation of the initial stagger position between two NM2-molecules in
the detachment process remained elusive in the continuous description. The discrete nature of the Markov
jump process now allows us to gain further insights in the behavior of the MFPT of the detachment process
of two aligned NM2-molecules. We first note that an exploration of the complete network topology (i.e. the
complete energy landscape) takes place if the system is initially prepared in state i0 = 0. Then is has to visit
each state at least once before reaching the absorbing target at the other end of the network chain. For this

10
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Figure 7. MFPTs T1 for the original continuum system compared to its coarse-grained counterpart. (a) and (b) Comparison
between the MFPT T1 of the continuous description equation (10) and the coarse-grained network equation (18) for (a) parallel
and (b) antiparallel NM2A-dimer configurations. Mean exit-times 〈t〉exit

i (equation (15)) are depicted as bars. Experimental
staggers (black arrows) are not located at positions of large drops and are characterized by comparatively larger mean exit-times
to their neighbors (red bars), ensuring local robustness. (c) and (d) Single MFPTs T1(i; 0, i + 1) from state i to i + 1 are denoted
as bars for the (c) parallel and (d) antiparallel cases. Largest contributions that give rise to jumps in the shape of the overall
MFPT are highlighted in green. Predictions of the large jumps obtained using the network description as detailed in the main
text are highlighted with green arrows and dotted lines and agree very well with the drops in the full solution.

case equation (18) is explicitly given by

T1(0; 0, b) =
b−1∑
i=0

i∑
n=0

λ−1
n Πn+1,i = λ−1

0︸︷︷︸
i=0

+ λ−1
0 Π1,1 + λ−1

1︸ ︷︷ ︸
i=1

+ λ−1
0 Π1,2 + λ−1

1 Π2,2 + λ−1
2︸ ︷︷ ︸

i=2

+ · · ·+ λ−1
0 Π1,b−1 + λ−1

1 Π2,b−1 + · · ·+ λ−1
b−2Πb−1,b−1 + λ−1

b−1︸ ︷︷ ︸
i=b−1

. (19)

For a process that starts at a transient initial state m with 0 < m < b, i.e. away from the reflecting state, the
lower bound of the first sum in equation (19) has to be changed from i = 0 to i = m. Explicitly writing out
the double sum in this way shows that terms of the outer sum (summation over i) correspond to single
MFPTs T1(i; 0, i + 1) from state i to i + 1 while keeping the reflective state unaltered in state 0. That is,
irrespective of where the systems starts, it is always allowed to visit state ‘0’ again. For illustration, consider
the single MFPT T1(2; 0, 3) for the transition 2 → 3, i.e. the case i = 2 above. The last contribution, λ−1

2 , is
the time needed for the direct path from state 2 to 3. Depending on the transitions rates (e.g. when
μ2 > λ2) the system might however also transition backwards to state 1 or even 0 before finally reaching the
absorbing target in state 3 for the first time. These additional paths are accounted for by the corresponding
inverse rates and the weighting factor Π2,2 as defined in equation (18). Consequently, we may express the
MFPT as a sum over all individual single MFPTs as

T1(0; 0, b) =
b−1∑
i=0

T1(i; 0, i + 1) = T1(0; 0, 1) + T1(1; 0, 2) + · · ·+ T1(b − 1; 0, b), (20)

where the systems starts initially in state 0. In the same way as before, if one starts in a state 0 < m < b the
summation starts from i = m.

A decomposition into single MFPTs now makes it possible to distinguish between larger and smaller
contributions to the full MFPT. Single MFPTs from state i to state i + 1 (leaving the reflecting state 0
unchanged) are shown in figures 7(c) and (d) for the network description of the NM2-dimer system for
antiparallel and parallel configuration, respectively. It becomes immediately evident that the single MFPTs
are highly irregular and vary over several orders of magnitude depending on the initial state i0. Based on
this coarse-grained description we are now able to identify the largest contributions towards the average
detachment time of the NM2 dimer (marked in green). This implies that if we were to initially prepare the
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Figure 8. MFPT T1 as a function of the initial staggering s0 between two aligned NM2-molecules for variable pulling forces F
ranging from F = 1 pN (blue) to F = 15 pN (teal) in steps of one. Depicted are the MFPTs for the NM2A variant in (a) parallel
and (b) antiparallel configurations. While the shape for parallel configuration does not change much, the antiparallel dimer
shows qualitative changes as sudden changes in T1 vanish by increasing the pulling forces, at positions highlighted by the black
arrows.

system in state m > i
, where i
 denotes the state with the largest single MFPT T1(i; 0, i + 1), we would
expect a substantial decrease in the time needed until the NM2-dimer detaches as all contributions (and
therefore the largest too) of single MFPTs for states < m drop out, i.e., the sum in equation (20) starts at
i = m. Analogously, the next and all further drops in the MFPT can be identified using the same principle,
namely finding the next largest single MFPT and choosing the initial state accordingly. In figures 7(c) and
(d) we show that indeed our procedure of identifying the relevant minima and barriers (green bars) predicts
the observed drops in the full solutions (green arrows and dotted lines), both for parallel (c) and
antiparallel (d) configurations. Thus our main question has now been answered, namely which energy
barriers lead to the large drops in the MFPTs.

5. Mean first-passage time under mechanical load

Finally we address the question how the MFPT changes if we ‘tilt’ the energy landscape by an additional
pulling force as motivated in section 2.2. More precisely, in our biophysical example of the NM2 assembly
landscape, we now study how the average time until NM2-dimer detachment behaves under a variable
mechanical load that is applied along the dimer main axis.

To compute the MFPT for the driven system we insert the tilted energy landscape equation (4) into
equation (10). Resulting MFPTs of antiparallel and parallel alignments are depicted in figure 8 for different
pulling forces F. As one would expect, the application of the pulling force results in faster MFPTs to reach
the absorbing border, i.e., faster detachment of aligned NM2-molecules. Interestingly, the MFPT for the
parallel NM2-dimer mostly keeps its qualitative shape unchanged. This means that the set of important
potential barrier that lead to large decreases in the MPFT remains the same even under the presence of
external pulling. In contrast, shapes of the MFPT for antiparallel orientation undergo more pronounced
changes under the influence of external pulling forces. On one hand, overcoming previously identified
significant potential barriers at e.g. ≈ 72 nm or ≈98 nm (black arrows) now does not result in a large
decrease of the MFPT anymore. On the other hand, overcoming new potential barriers at e.g. ≈87 nm
or ≈117 nm now results in a large decrease of the MFPT. We suggest that this apparent difference between
antiparallel and parallel alignment might have biophysical consequences during NM2 minifilament
assembly and filament splitting during partition events under mechanical load.

6. Conclusions

Here we have studied the MFPT for rough, complex one-dimensional energy landscapes. As a biophysical
relevant example we considered the self-assembly process of the three different isoforms A, B and C of
NM2. We theoretically studied the average time until two aligned NM2-molecules (i.e. the nucleation point
for minifilament assembly) detach with and without an additional pulling force as a FPT problem on
complex energy landscapes derived from the amino acid sequences of different NM2-variants. We
demonstrated how the MFPT of highly complex and rugged one-dimensional landscapes can be obtained
by coarse-graining the underlying continuous dynamics described by the Fokker–Planck equation into a
discrete-state continuous-time Markov jump process, that is a master equation. Our numerical procedure
not only gives perfect agreement between the two descriptions, it also allowed us to decompose the MFPT
into its different contributions and from there to identify the relevant barriers that lead to the sudden drops
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in lifetime. Overall, our work shows how one can better understand the relevant features of a complex
energy landscape by systematically studying the corresponding MFPTs.

Because here we restrict ourselves to the one-dimensional case of straight rods, our MFPT-treatment
does not predict the experimentally observed staggers as well as did our earlier treatment that included the
bending energy of the rods splaying away from the main axis due to electrostatic repulsion [97].
Nevertheless our specific results for NM2 also seem to be very important to better understand the
biophysics of NM2-minifilaments and in particular shed new light on the role of physical force for their
assembly and stability. In detail, we found that the experimentally known staggers are in regions of high
stability (away from the jumps), that they exhibit large local exit times, that dimers involving NM2C are
much less stable (shorter lifetimes) than the ones involving NM2A and NM2B, that the difference between
NM2A and NM2B is larger for the antiparallel configurations, that antiparallel configurations are more
stable without force, but also show larger changes under pulling force. In the future, it would be very
interesting to extend this approach to the energy landscapes including bending as well as to go beyond
dimers and to also consider high-order assemblies. This, however, would require to treat high-dimensional
energy landscapes which constitutes formidable numerical and mathematical challenges.
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