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Abstract

Essential cellular processes such as cell adhesion, migration and division strongly depend

on mechanical forces. The standard method to measure cell forces is traction force micros-

copy (TFM) on soft elastic substrates with embedded marker beads. While in 2D TFM one

only reconstructs tangential forces, in 2.5D TFM one also considers normal forces. Here we

present a systematic comparison between two fundamentally different approaches to 2.5D

TFM, which in particular require different methods to deal with noise in the displacement

data. In the direct method, one calculates strain and stress tensors directly from the dis-

placement data, which in principle requires a divergence correction. In the inverse method,

one minimizes the difference between estimated and measured displacements, which

requires some kind of regularization. By calculating the required Green’s functions in Fourier

space from Boussinesq-Cerruti potential functions, we first derive a new variant of 2.5D Fou-

rier Transform Traction Cytometry (FTTC). To simulate realistic traction patterns, we make

use of an analytical solution for Hertz-like adhesion patches. We find that FTTC works best

if only tangential forces are reconstructed, that 2.5D FTTC is more precise for small noise,

but that the performance of the direct method approaches the one of 2.5D FTTC for larger

noise, before both fail for very large noise. Moreover we find that a divergence correction is

not really needed for the direct method and that it profits more from increased resolution

than the inverse method.

Introduction

Mechanical forces are important for a wide range of essential cellular processes such as cell

adhesion, migration and division [1]. The new field of mechanobiology has evolved around

the role of forces in biological systems [2]. However, in general forces cannot be observed

directly, but have to be measured by their effect to create deformation and flow. The key idea

to measure cell forces therefore is to use a calibrated material as a measurement devise. The

simplest approach is to replace the glass or plastic substrates commonly used for cell culture by

soft elastic substrates and to measure their deformations by tracking embedded marker beads.

This method is known as traction force microscopy (TFM) and is widely used in cell biology

and biophysics [3–8]. Depending on whether one aims at reconstructing only tangential or

also normal forces, one speaks of 2D TFM or 2.5D TFM, respectively [8]. If one goes beyond
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planar substrates and reconstructs cell forces applied to a fibrous marix surrounding the cell,

then one speaks of 3D TFM [7–10]. Recently the concept of measuring cell forces on the sur-

face of calibrated material has been extended beyond planar substrates by using elastic beads

deformed by cell traction [11–13].

Recalling the concepts of continuum mechanics, in principle it is straight-forward to calcu-

late cell traction from displacement data. Given the three-dimensional displacement field, one

can first calculate the strain tensor, which is its derivative. Using the constitutive law of the

material, it can be converted into a stress tensor. For linear isotropic material, this is simply a

linear transformation. Finally the surface traction follows as contraction of the stress tensor

with the surface normal. This workflow is known as the direct (or forward) method (DM). It

has been pioneered for 2.5D TFM [14–16], but also has been applied to 3D TFM [17, 18] and

to elastic beads with embedded markers that are deformed by the traction forces in cell aggre-

gates [11]. The DM is especially suited to deal with large deformations and non-linear material

laws, but it also can be used in the linear regime, which is typically used for 2D or 2.5D TFM

on soft elastic substrates. However, its use is not very common in this field, for two main rea-

sons. First the DM requires a 3D image volume in order to be able to reconstruct the full stress

tensor, which is challenging given the anisotropic point spread functions of standard micro-

scopes and the time required to acquire image stacks. Planar substrates are more compatible

with imaging in 2D focal planes rather than 3D image volumes. Secondly, it is a numerical

challenge to calculate the required derivatives in the presence of the unavoidable experimental

noise, especially when microscope resolution is low.

Rather than using the direct method, on soft elastic substrates it is common practice to use

the inverse method that was conceived by the pioneers of 2D TFM [19, 20]. In order to avoid

derivatives, one does not explicitly calculate strain or stress tensors, but stays on the level of

displacement fields. By minimizing the difference between the measured displacement field

and a displacement field calculated from an estimated traction field, one arrives at the best esti-

mate given the experimental data. Because elasticity theory leads to an ill-posed inverse prob-

lem due to its long-ranged deformation fields, one usually deals with the noise problem by

invoking some regularization procedure, e.g. zero-order Tikhonov regularization [4, 8, 20, 21].

In order to choose the correct value of the regularization parameter, different schemes have

been suggested, including the L-curve criterion or generalized cross-validation [22, 23]. The

need for explicit regularization can be avoided by using TFM-schemes that effectively filter

the deformation data, like image smoothing [24, 25] or the Finite Element Method (FEM)

[17, 18, 26].

While the inverse method avoids the calculation of derivatives, it requires to repeatedly cal-

culate deformation from estimated traction (direct problem). This can be implemented with

different methods, but the two most common ones are Green’s functions (GFs) and FEM. GFs

can be used only for linear elasticity, but offer several advantages. First, the GF for thick elastic

substrates is well known (Boussinesq solution) [27] and also the GF for a finite thickness sub-

strate has been derived [28]. Second, for flat cells on planar substrates it is sufficient to know

the displacements in a two-dimensional plane close to the gel surface. This reduces the Green’s

function from a 3x3 to a 2x2 matrix. And third, one can use fast Fourier methods to convert

the convolution of GF and traction into a product. Due to its speed, Fourier Transform Trac-

tion Cytometry (FTTC) [24] therefore has become the method of choice for high resolution

measurements. Moreover regularization can be formulated in Fourier space and therefore

many schemes can be applied to deal with the noise issue [23, 29, 30]. Together, these advances

make the inverse method very attractive for measuring cell traction on soft elastic substrates. If

cell forces in the third dimension are also of interest (2.5D TFM), one often switches to imple-

mentations that use FEM to solve the direct problem [31]. Alternatively, an analytical scheme
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has been proposed for 2.5D FTTC before, which however is rather complicated because it has

been derived for substrates with finite thickness [28].

In summary, TFM has become a very diverse field with a mix of different approaches, each

of which have their advantages and disadvantages in a certain context. Very rarely however are

these different methods directly compared against each other. A notable exception is a recent

work that compares FEM-based implementations of the direct and inverse methods for 3D

TFM [17, 18]. Here we aim at a similar comparison, but for 2.5D TFM and with GF-based

methods. Rather than simulating experimental setups, we use simple test cases and simulations

with displacement noise to provide a comprehensive comparison of the mathematical proper-

ties of direct versus inverse methods for 2.5D TFM.

In addition to this interest in fundamental questions of TFM, our work is also motivated by

different recent experimental developments. First, the DM seems to be an attractive choice for

non-planar geometries like elastic beads, for which it is very challenging to calculate appropri-

ate GFs [11]. We expect that this line of research will become more important in the future

with the promise of additive manufacturing to print 3D elastic material that is compatible with

cell culture and deforms under cell traction [32–35]. Such systems might by approached best

with FEM-approaches, but in some cases (like elastic beads) GF-based inverse methods are

possible [12, 36]. Here we use this recent development as a motivation to compare direct and

inverse methods in the traditional setup of 2.5D TFM for planar substrates.

Second, new microscopy methods have been used to achieve better image resolution for

2.5D TFM, including Stimulated Emission Depletion (STED) microscopy [37], Structured

Illumination Microscopy (SIM) [26, 38], astigmatic SIM [39] and fluctuation-based TFM [40].

The displacement data resulting from these experimental advances is often analyzed with one

of the different TFM-methods, but a systematic comparison between different methods is usu-

ally not performed. In this context, it is interesting to know how direct and inverse methods

compare in regard to improvements in sampling density. Here we use this recent development

as a motivation to also study the effect of varying sampling distance.

Our work is structured as follows. We first provide an in-depth introduction to direct and

inverse methods for 2.5D TFM. We use Boussinesq-Cerruti potential functions to derive a

novel and very efficient version of the inverse method 2.5D FTTC. For the 2.5D DM, we dis-

cuss different schemes for numerically calculating the required derivatives and introduce a

divergence correction motivated by similar schemes from hydrodynamics. We define several

simple test cases for force reconstruction based on analytical solutions for Hertz-like adhesion

patches. To test the robustness of our different methods, we simulate different levels of dis-

placement noise, which is a common method to lump noise that might originate from optical

microscopy or gel preparation into one parameter. In addition, we investigate the effect of

varying sampling distance. Our results show that 2.5D FTTC usually performs better than the

2.5D DM, but that the performance of the DM approaches the one of FTTC for larger noise,

before both fail at very large noise. We also find that the divergence correction for the DM is

not needed and that DM profits more from increased sampling density.

Theory and methods

Inverse versus direct methods

The standard workflow of a TFM analysis for planar elastic substrates is outlined in Fig 1A.

Deformations are usually determined by comparing the situation in which the cell has fully

adhered to the substrate with a reference situation in which the substrate is relaxed and the

cells exert no forces, e.g. by removing or relaxing the cell. The state of the substrate can also be

observed at multiple time steps to observe the temporal evolution of the cell-to-substrate
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adhesion [41]. Deformations in the substrate are commonly monitored with the help of fluo-

rescent marker beads, whose change in position can be observed in the microscope. The bead

displacement is obtained using common tracking and correlation techniques [3, 4, 42]. Next,

traction force routines are employed to estimate the traction force vector field from the dis-

placement vector field. Here we compare two methods as shown in Fig 1B. The traditional

approach introduced by the pioneers of 2D TFM is the inverse method (top), which minimizes

the difference between the experimental and estimated displacement fields. The direct method

(bottom) cannot be used in a purely 2D setup, but requires 3D image data. In this method,

traction is calculated directly from the displacement field by differentiation and (linear) trans-

formation between strain and stress. For both methods, elements of elasticity theory are

required.

Elasticity theory

Traction forces are forces acting on the boundary of elastic solids. They are quantified by a

three-component vector field τ, which is defined for all points at a surface and describes the

area density of the force. Its component normal to the surface describes the pressure balance

between the solid and its surroundings. In contrast, the tangential components describe shear

forces.

Fig 1. General overview of traction force microscopy. (A) By determining with image processing the movement of marker beads in the substrate due

to cell forces, a deformation field is obtained. Traction force microscopy (TFM) estimates the cellular traction field from the displacement data. (B)

Here we discuss two fundamentally different methods for TFM. The inverse method estimates a force distribution that results in an optimal match for

the global displacement field. In Fourier Transform Traction Cytometry (FTTC) one makes use of fast Fourier transforms. A regularization scheme is

introduced to address the fact that the inverse problem is ill-posed. In the direct method, point-wise computational methods are used to determine the

stress tensor locally. A divergence correction can be applied to ensure that the physical force balance @i σij = 0 is satisfied.

https://doi.org/10.1371/journal.pone.0262773.g001

PLOS ONE Comparison of direct and inverse methods for 2.5D traction force microscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0262773 January 20, 2022 4 / 25

https://doi.org/10.1371/journal.pone.0262773.g001
https://doi.org/10.1371/journal.pone.0262773


The stress tensor σ describes the force per area acting on any (real or fictitious) surface of

the system. It is defined by the relation:

τS ¼ σnS : ð1Þ

Here, the left hand side represents the surface force density for a given surface S. The vector

nS is the unit normal vector of S. In the case of a solid which is delimited by a planar surface at

the z = 0 plane and whose outwards normal is defined in negative z-direction, the traction

stress reads:

τ ¼ � ðs13; s23; s33Þjz¼0 : ð2Þ

This means that by determining the stress tensor in a region close to the surface, the surface

traction is known.

The different entries to the stress tensor are not independent physical quantities, because

they have to obey force and torque balances. The stresses lead to material movement that is

described by the deformation gradient tensor F, which is the Jacobian of the coordinate trans-

formation between deformed and undeformed configurations. Alternatively the movement

can be described by the deformation field u, which is related to the deformation gradient ten-

sor by

Fij ¼ dij þ
∂ui

∂xj
: ð3Þ

Note that the derivatives must be taken with respect to the coordinates of the reference con-

figuration (Lagrange frame).

Stresses within the material and changes in its configuration are related by a constitutive

equation σ = σ(F), which is specific to the material in question (material law). For relatively

stiff homogeneous and isotropic materials, a linear approximation can be used that is given by

sij ¼
E

2ð1þ nÞ
Fij þ Fji þ

2nðtrðFÞ � 1Þ � 2

1 � 2n
dij

� �

ð4Þ

or in terms of the displacement field

sij ¼
E

2ð1þ nÞ

∂ui

∂xj
þ
∂ui

∂xj
þ

2n

1 � 2n
ðruÞdij

 !

: ð5Þ

The material constants E and ν are known as the Young’s modulus and the Poisson’s ratio,

respectively, and describe the stiffness and compressibility of the material. Note that the differ-

ence between the coordinates of the reference configuration (Lagrange frame) and the coordi-

nates describing positions in the Euclidean space (Euler frame) are neglected in this linear

approximation.

Whether a substrate is considered stiff or soft is determined by the relation between the typ-

ical traction force amplitude and the Young’s modulus. The dimensionless deformation gradi-

ent will typically be in the same magnitude as the ratio σij/E. We must consider the substrate to

be soft if we expect the magnitude of the traction forces to be much larger than the substrates

Young’s modulus. Then the linear approximation as given here does not necessarily apply any-

more and might has to be replaced by a more complicated (non-linear) mapping. Typical sub-

strate materials used for TFM are polyacrylamide (PAA) or polydimethlysiloxane (PDMS),

that can be created for a wide range of stiffnesses. For TFM-experiments, a typical value is 10

kpa, which according to the above considerations is a rather stiff substrates assuming typical

PLOS ONE Comparison of direct and inverse methods for 2.5D traction force microscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0262773 January 20, 2022 5 / 25

https://doi.org/10.1371/journal.pone.0262773


traction stresses in the range of 1 kpa. Therefore the linear relation is typically satisfied. Both

types of substrates are usually considered to be close to incompressible, with a Poisson ratio

close to 1/2. It should be noted that incompressibility impliesru = 0 in the linear case

assumed in Eq (5). This counteracts the apparent divergence for ν! 1/2 that would otherwise

occur in the last term of Eq (5).

Assuming small deformations and a linear material law, the traction forces can be related to

deformations directly using a convolution relation:

uðx; y; zÞ ¼
Z

S
Gðx � x0; y � y0; zÞ � τðx0; y0Þdx0 dy0; ð6Þ

where the coordinate system is chosen in such a way that the traction stresses are exerted on

the z = 0 plane and the substrate is confined to the z> 0 halfspace. The GF G is known analyti-

cally for an elastic halfspace (Boussinesq solution) [27]:

2pE
1þ n

Gðx; y; zÞ ¼

2ð1 � nÞr þ z
rðr þ zÞ

þ
ð2rðnr þ zÞ þ z2Þx2

r3ðr þ zÞ2
ð2rðnr þ zÞ þ z2Þxy

r3ðr þ zÞ2
xz
r3
�
ð1 � 2nÞx
rðr þ zÞ

ð2rðnr þ zÞ þ z2Þxy
r3ðr þ zÞ2

2ð1 � nÞr þ z
rðr þ zÞ

þ
ð2rðnr þ zÞ þ z2Þy2

r3ðr þ zÞ2
yz
r3
�
ð1 � 2nÞy
rðr þ zÞ

ð1 � 2nÞx
rðr þ zÞ

þ
xz
r3

ð1 � 2nÞy
rðr þ zÞ

þ
yz
r3

2ð1 � nÞ

r
þ

z2

r3

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

; ð7Þ

where we used r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Cases where the substrate is not sufficiently thick and inter-

actions at the bottom surface of a finite-thickness substrate can not be neglected have also

been studied [28]. In these cases the convolution relation is still valid, but a different GF has to

be used. Note that the 1/r-dependence of this GF is the reason why the inverse problem is ill-

posed.

2.5D Fourier Transform Traction Cytometry (FTTC)

FTTC is the most widely used inverse method and uses the fact that the convolution integral

from Eq (6) becomes a product in Fourier space and that fast Fourier transforms allow one to

quickly switch between real and Fourier space [24, 29, 37, 43]. To use it, the displacement field

u(x) must first be interpolated onto a regular, rectangular grid covering the whole image,

either on the surface or in a fixed depth z = h within the substrate. We will designate the values

at the sample points xij by uij in the following. Then the traction force τ(x, y) is described by a

set of plane waves f̂ mnðx; yÞ

τðx; yÞ ¼
XNx

m¼0

XNy

n¼0

τ̂mnf̂ mnðx; yÞ ; f̂ mnðxÞ ¼
1

NxNy
eikmn �x : ð8Þ

The wave vectors kmn are chosen in accordance with the sampling grid. This choice ensures

that the expansion coefficients τ̂mn are in fact the 2D discrete Fourier transform of the traction

sampled at the xij. Due to the Fourier convolution theorem, Eq (6) reduces to

ûmn ¼
~GððkmnÞx; ðkmnÞy; hÞ � τ̂mn; ð9Þ
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where ûmn and uij are also related by a 2D discrete Fourier transform. The term ~Gðkx; ky; zÞ
describes the function obtained from applying a continuous Fourier transform in the two tan-

gential directions on the real space GF.

For 2D FTTC, one uses only the planar part at z = 0 [4, 21, 23, 24]:

~G2Dðkx; kyÞ ¼
1

mk3

ð1 � nÞk2
x þ nk

2
y � nkxky

� nkxky ð1 � nÞk2
y þ nk

2
x

0

@

1

A: ð10Þ

Here we used k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x þ k2

y

q
and μ = E/2(1 + ν). Note that this result differs in an important

minus sign in the off-diagonal elements from the one given in the original publication on

FTTC [24].

2.5D FTTC was first introduced by [28] for thin substrates using a rather lengthy expression

to derive a stress-strain relation. Here, we assume a thick substrate and present a more straight

forward calculation to derive a closed form solution for the GF in Fourier spaces, that is consis-

tent with the 2D formula presented in (10) and effectively gives the same results as the proce-

dure given earlier in the context of a finite thickness halfspace [28].

The general problem of finding the deformation field in an infinite halfspace with surface

traction as boundary condition and no internal forces follows from Eq 5 as

@

@xj

@ui

@xj
þ
@uj

@xi
þ

2n

1 � 2n
ruð Þdij

 !

¼ 0; � sizjz¼0 ¼ ti: ð11Þ

The GF in real space is known as described by Eq 6 with the Boussinesq equation [27]. By

making use of the convolution theorem, Eq 6 can be reduced into the simple product expres-

sion

~uiðkx; ky; zÞ ¼
X3

j¼1

~G ijðkx; ky; zÞ~qjðkx; kyÞ: ð12Þ

Here a tilde above the quantities represents the Fourier transform along the x and y axis.

Unfortunately, finding an analytical expression for ~G ij directly from transforming the real

space Boussinesq solution would require us to solve a complex integral expression. Instead of

doing so, we will derive the relation between ~τ and ~u directly from the boundary problem

stated in Eq 11. We can then extract the analytical expression for ~G ij by comparing this relation

to Eq 12. In general, our procedure follows the same steps as described in Ref [27] to derive the

real space GF in the first place.

We start by introducing a set of harmonic potential functions that solve the boundary value

problem stated by:

r2Pi ¼ 0 ; @
3

zPijz¼0 ¼ � ti : ð13Þ

These Boussinesq-Cerruti potential functions have been described e.g. in Refs. [44, 45]. A

solution of Eq (11) is now given by

ui ¼
X3

j¼1

uðjÞi ; ð14Þ
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together with the x-tangential contributions

2muðxÞx ¼ 2n@
2

xPx þ 2@
2

zPx � z@2

x@zPx

2muðxÞy ¼ 2n@x@yPx � z@x@y@zPx

2muðxÞz ¼ ð1 � 2nÞ@x@zPx � z@x@
2

zPx;

ð15Þ

the y-tangential contributions

2muðyÞx ¼ 2n@x@yPy � z@x@y@zPy

2muðyÞy ¼ 2n@
2

yPy þ 2@
2

zPy � z@2

y@zPy

2muðyÞz ¼ ð1 � 2nÞ@y@zPy � z@y@
2

zPy

ð16Þ

and the normal (z) contributions

2muðzÞx ¼ � ð1 � 2nÞ@x@zPz � z@x@
2

zPz

2muðzÞy ¼ � ð1 � 2nÞ@y@zPz � z@y@
2

zPz

2muðzÞz ¼ 2ð1 � nÞ@
2

zPz � z@3

zPz:

ð17Þ

By applying the mentioned two-dimensional Fourier transform to Eq (13), the different

modes decouple and we obtain the following initial value problem:

@
2

z
~Piðkx; ky; zÞ � ðk2

x þ k2
yÞ

~Piðkx; ky; zÞ ¼ 0 ; @
3

z
~Pijz¼0 ¼ � ~t i : ð18Þ

Because the differential equation is linear, it can easily be solved and we find for the Fourier

transform of the potential functions:

~Piðkx; ky; zÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x þ k2

y

q 3
e�

ffiffiffiffiffiffiffiffi
k2
xþk

2
y

p
z~t iðkx; kyÞ: ð19Þ

In the next step, we apply the Fourier transform onto Eqs (14) to (17) and obtain:

~ui ¼
X3

j¼1

~uðjÞi ; ð20Þ

together with the x-tangential contributions

2m~uðxÞx ¼ � 2nk2
xPx þ 2@

2

zPx þ k2
xz@zPx

2m~uðxÞy ¼ � 2nkxkyPx þ kxkyz@zPx

2m~uðxÞz ¼ ikxð1 � 2nÞ@zPx � ikxz@
2

zPx;

ð21Þ

the y-tangential contributions

2m~uðyÞx ¼ � 2nkxkyPy � z@zPy

2m~uðyÞy ¼ � 2nk2
yPy þ 2@

2

zPy þ k2
yz@zPy

2m~uðyÞz ¼ ikxð1 � 2nÞ@zPy � ikxz@
2

zPy

ð22Þ
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and the normal (z) contributions

2m~uðzÞx ¼ � ð1 � 2nÞikx@zPz � ikxz@
2

zPz

2m~uðzÞy ¼ � ð1 � 2nÞiky@zPz � ikyz@
2

zPz

2m~uðzÞz ¼ 2ð1 � nÞ@
2

zPz � z@3

zPz:

ð23Þ

We can now insert Eq (19) into these equations. This results in a simple product expression

relating ~τ to ~u. By comparing the result to Eq (12) we can extract the following Greens func-

tion in Fourier space:

~Gðkx; ky; zÞ ¼

e� kz

2mk3

2k2 � ð2nþ kzÞk2
x � ð2nþ kzÞkxky ð1 � 2n � kzÞikkx

� ð2nþ kzÞkxky 2k2 � ð2nþ kzÞk2
y ð1 � 2n � kzÞikky

� ð1 � 2nþ kzÞikkx � ð1 � 2nþ kzÞikky 2ð1 � nÞk2 þ k3z

0

B
B
B
B
B
@

1

C
C
C
C
C
A

:

ð24Þ

The analytical form of the GF given here allows us to perform 2.5D FTTC in a very efficient

manner. We also checked both by analytically taking the limit of an infinitely thick substrate

and by numerical comparison that our method agrees with the one described earlier in the

context of a finite thickness elastic halfspace [28].

Inverse problem and regularization

In principle, a suitable traction field can be found simply by calculating the inverse of

~GððkmnÞx; ðkmnÞy; hÞ and applying the resulting matrix to ûmn to get the traction field τ̂mn. How-

ever, such a procedure ignores the important fact that the inverse problem of elasticity is ill-

posed because elastic effects are long-ranged, meaning that local changes in traction will have

non-negligible effects on the displacement even over large distances. This is a problem because

the input data for the displacement field will be always subject to experimental noise due to

limitations in resolution or inhomogeneities in the medium [4]. A naive inversion will try to

reproduce all the fine details of the input field by changing global properties of the force field;

this ill-posed nature of the inverse problem will be reflected by a large condition number of the

inverse matrix. This problem can be addressed either by filtering the displacement data, e.g. by

image smoothing [24, 25], or by introducing a regularization scheme [21].

Because here we focus on the mathematical aspects of TFM, which should be kept sepa-

rately from issues of image processing, we refrain from smoothing procedures and use a 0th

order Tikhonov regularization, which has been found earlier to be very appropriate for the

kind of TFM-procedures discussed here [29]. With our regularization approach, Eq (6) leads

to

τðx; yÞ ¼ argmin
s

Z

S
Gðx � x0; y � y0; zÞ � sðx0; y0Þdx0dy0 � uðx; yÞ

�
�
�
�

�
�
�
�

2

2

þl
2 sðx; yÞk k

2

2
: ð25Þ

Eq (9) now leads to

τ̂mn ¼ ð
~Gy ~G þ l2IÞ� 1 ~Gy

� �
ûmn≕Ĝ#

l;mnûmn: ð26Þ
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Here the superscript † designates the Hermitian conjugate. In addition, ~GððkmnÞx; ðkmnÞy; hÞ

has been denoted simply by ~G for visual clarity.

The regularization parameter λ must be chosen with care [23, 30]. If the value is chosen too

large, this will result in a loss of accuracy and resolution in the resulting force map. If it is cho-

sen too small, the result will be dominated by noise [22]. Here we use a generalized cross vali-

dation technique (GCV) [46] for finding a regularization parameter efficiently. The estimation

function is defined by

GðlÞ ¼
k~Gτ̂l � ûk2

2

ðtrð1 � ~G ~G#ÞÞ
2

ð27Þ

and always has a minimum for a strictly positive value of λ, at which an optimal regularization

can be found. It can easily be calculated for a large number of values using the singular value

decomposition of ~G which is known. Using the determined value for λ, an estimate for the

deformation field can be calculated.

Direct method and divergence correction

The direct method for TFM uses the constitutive equation to calculate the local stress tensor of

the material from the displacement derivatives or the deformation gradient tensor (compare

Fig 1B). The surface traction can be determined from the stress tensor using Eqs (1) and (2).

Here we apply this method to the same setup as commonly used with the inverse method. How-

ever, the direct method is fundamentally a 3D method and the deformation must be known not

only in a single plane, but in a volume below the surface, in order to obtain the full stress tensor.

In contrast to the inverse method based on GFs, the direct method can more easily be extended

to non-planar surfaces (going beyond Eq (2)) and non-linear material (going beyond (4)).

The strains @ui/@xj and the components Fij of the deformation gradient tensor must be

obtained numerically. To do so, the displacement field u is first sampled on a regularly spaced

3D grid. Then both quantities can be easily obtained using a finite difference scheme. Frank

et al [15, 47] determine the derivative by fitting a 1st order polynomial

uðxÞ ¼ axþ byþ cz þ d ð28Þ

to a local region in the resulting traction profile. The components of a, b and c contain the

strains @ui/@xj directly. We refer to this technique as the 3x3x3 patch method as a 3 by 3 by 3

data point support is used to estimate the deformation field gradient. We investigate how well

this approach performs in comparison to other approximation techniques. The most simple

alternative is a simple two-point finite difference method (only the equation for z-derivatives

is stated):

@ui

@z

�
�
�
�
klm

�
ui;kl mþ1ð Þ � ui;kl m� 1ð Þ

2Dx
:

ð29Þ

Increasing the number of sampling points contributing to the derivatives as done in Eq (28)

should in theory decrease the uncertainty of the result, but will decrease resolution. Another

alternative to this constitutes a four-point scheme:

@ui

@z

�
�
�
�
klm

�
� ui;klðmþ2Þ þ 8ui;klðmþ1Þ � 8ui;klðm� 1Þ þ ui;klðm� 2Þ

12Dx
: ð30Þ
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In all three cases special non-symmetric expressions are used close to the boundary that

make use of the same number of support points, but avoid contributions outside the observed

area. All methods for numerical derivatives are dependent on the sampling distance defined by

the sampling lattice. A smaller sampling distance should reduce the systematic error, but on

the other hand the statistical error on the deformation gradient is proportional to the ratio

between the statistical error of the displacement field and the spacing and therefore will

increase for smaller sampling distance.

While the inverse method always gives a valid displacement field because it is calculated

from a force distribution as a direct problem, the direct method calculates a displacement field

that might not be valid as it violates force and torque balances. In a static system, the force bal-

ance leads to the Cauchy momentum equation [45] (here stated in the form used in linear elas-

ticity):

∂sij

∂xj
¼ 0 : ð31Þ

In other words the stress tensor must be divergence-free (solenoid). This property is not

restricted to a specific geometry of the system. It describes a fundamental property resulting

from the fact that the stress tensor represents local force densities that must be in balance for a

static situation free of external forces. The coordinate of the initial deformation fields where

the corresponding stress tensor field satisfies Eq (31) are called compatible [45]. The impor-

tance of this condition has been pointed out before in the context of monolayer stress micros-

copy [48] and 3D TFM [17].

While the physical deformation field u(T) is always compatible, the measured deformation

field u(C) is not, as it contains errors attributed to noise and thus the obtained stress tensor

may not satisfy Eq (31). If we describe σij(u) to be the stress tensor obtained from a deforma-

tion field u, we easily see by

@sijðuðCÞÞ
@xj

¼
@ðsijðuðCÞÞ � sijðuðTÞÞÞ

@xj
þ
@sij u Tð Þð Þ

@xj

|{z}
¼0

ð32Þ

that only the noise part of the deformation field will contribute to the divergence of the

obtained stress tensor σij(u(C)). This means that we can use this divergence to determine what

ratio of the input data is attributed to noise. The divergence of the calculated stress tensor

σij(u(C)) can be calculated on a local basis by using a symmetric two-point form.

Instead of the tensor based formulation Eq (31), the compatibility equation can also be rep-

resented as a condition for each column of the stress tensor:

r � a ¼ 0; r � b ¼ 0; r � c ¼ 0; ð33Þ

where we defined a ¼ ê1σ, b ¼ ê2σ and c ¼ ê3σ. This observation immediately generates a

relation to hydrodynamics, because a similar situation can be found for hydrodynamic

descriptions of incompressible fluids, where the mass conservation equation reduces to

r � v ¼ 0 ð34Þ

for a flow field v. This property has been exploited by various studies and using a variety of

techniques to remove potential noise from v [49–51]. Because of the relation between the stress

tensor and the surface traction Eq (1), removing the noise contributions from σij for the full

substrate might also yield a better result for the surface traction, similar to regularization for
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the inverse method. An efficient method for performing this kind of divergence correction on

a flow profile has been described by Wang et al. [52] and this method can be generalized to

any divergence-free vector field. A short description of their technique is given in the S1

Appendix. This technique makes use of the particular structure of the problem to result in an

algorithm that applies matrix operations only on one coordinate at the same time, which

strongly reduces computational complexity as well as avoids complex operations like matrix

inversion.

The noise removal technique now consists of an iterative process. We start with the initial

condition σ(0) ≔ σexp and i≔ 0 and iterate the following steps:

1. Split the stress tensor into column vectors: (aexp, bexp, cexp) = σ(i−1)

2. Find ac, bc and cc that satisfy Eq (33) using the mentioned procedure for vector fields using

aexp, bexp and cexp as input.

3. Reassemble the vector fields into a new tensor w = w(i) ≔ (aexp, bexp, cexp).

4. Obtain a symmetric approximation for the stress tensor σ(i) = 1/2(w + wT).

In each iteration, the divergence of the resulting stress tensor σ(i) is reduced. We tested this

reduction for a number of different inputs, including a white noise input, and found that a

fixed iteration of 20 cycles was sufficient to remove the noise of the input (compare S1

Appendix).

Results

Design of simulated traction patterns

Because here we aim at testing different traction force reconstruction methods, we design trac-

tion patterns that are useful for the task at hand and for which we can calculate the deforma-

tions analytically. We then add displacement noise to these solutions and finally reconstruct

the traction and compare with the original pattern. This process is illustrated in Fig 2 for an

example that includes the two most important features known from adherent cells, namely

tangential traction at focal adhesions and the normal push by the nucleus (which due to

Fig 2. Workflow for reconstruction for cell-like traction pattern. (A) As an introductory example, we include the two most important features of

adherent cells, namely focal adhesions with mainly tangential traction and the normal push of the nucleus into the substrate. The plots in the upper row

show the tangential components, while the lower row contains the normal component. (B) From this given traction field one can then calculate the

analytical solution for the deformation field. (C) Noise is added to simulate experimental data (here σN/< kuk> = 0.2). (D) For this low noise level,

2.5D FTTC works very well. (E) The direct method gives similar results for the tangential tractions, but performs less well for normal traction. Details

on the simulation parameters for this profile can be found in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0262773.g002
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momentum conservation has to be balanced by counteracting normal forces at the focal adhe-

sions). We discuss the properties of the different reconstructions in the subsequent section.

For the analytically tractable patterns, we choose linear combinations of Hertz-like patches:

τPatch ¼
3

2pa3
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � ðx � x0Þ
2
� ðy � y0Þ

2

q

Yða2 � ðx � x0Þ
2
� ðy � y0Þ

2
Þ; ð35Þ

where the force transmitted by the patches is represented by Q, the adhesion size a and the

positions x0 and y0 are parameters that can be chosen freely, and Θ is the Heaviside function.

We call these traction profiles Hertz-like because they match the profiles in the Hertz and Cer-

rutti contact problems. The traction fields for this problem have been extensively studied for

materials that obey linear elasticity [53]. Based on an approach suggested by [54], we derive

the full 3D solution for Eq (35) in the S1 Appendix.

The analytical solution is then sampled on an lattice grid with cuboid unit cells, where the

distance between sampling points in x and y direction is equal. The distance in z-direction is

usually chosen larger to reflect the anisotropy of the point spread function of traditional optical

microscopes. In the next step, Gaussian noise is added to the displacements. For each data

point in the grid sampled deformation field a random number is added. This number is drawn

from a Gaussian distribution with mean μ = 0 and standard deviation σ being fixed for all sam-

pling points and chosen with respect to the amplitude of deformation averaged over the whole

field, which we designate as< kuk>. In the following, we give the magnitude of the noise in

σ/< kuk>. It has been show before that the noise distribution does indeed have a Gaussian

shape [55]. The perturbed fields now form the input for the actual TFM-analysis. The deter-

mined traction profile τrecon can then be compared to the initial analytical profile τ. Studies

that describe new methods to improve the image processing part of TFM often include a

simulation of the bead distribution, sometimes also assuming a specific point spread function

[18, 56, 57]. However, noise can also arise from different sources, e.g. inhomogeneities in the

gel or the bead distributions. Because here we do not aim at simulating experimental setups,

but focus on the mathematical properties of different TFM-procedures, we simply simulate

displacement noise [21, 23, 29]. Every TFM-method will eventually fail at very high noise lev-

els, but here we ask if direct or inverse methods perform better for low or high noise levels. For

each dataset used, we list the full set of parameters, including the sample point spacing, the

material parameters and the parameters of the Hertz-like patches superposition to generate

the profile in the S1 Appendix.

Performance of direct method

We first optimize the direct method by assessing the performances of the numerical derivatives

and the importance of a divergence correction. Towards this aim, we choose traction profiles

that emphasize the normal component. This is not the standard case in TFM, but in this way,

we can best test the performance of the different approximations for derivatives that are

required for the direct method. Moreover, this choice demonstrates our ability to deal with

three dimensions. Fig 3 shows the two simple Hertzian traction patterns investigated below

together with the cell-like profile presented in Fig 2. The first profile corresponds to a simple

Hertz contact, which means that it is a force monopole pushing into the substrate. This setup

could be recreated experimentally using a spherical indenter that presses into the substrate.

Note that in contrast to FTTC, the direct method works in real space and also can reconstruct

force monopoles. The second profile mimics a situation in which pushing and pulling tractions

are exerted in different regions in a ring-like pattern. For example, this resembles the way can-

cer cells invade tissue with invadopodia or funghi invade plants.
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To quantitatively compare the different methods of determining the deformation gradient

as well as the effects of our divergence correction scheme, we calculate different quantities of

interest. First we calculate the force monopole components Fx, Fy, Fz defined by

Fi ¼

Z

S
tiðx; yÞdx dy ð36Þ

which describe the total force transmitted between the sample and the substrate in our field of

view. Numerically, the integration is performed using the Simpson formula [58]. These quanti-

ties serve as indicators on numerical inaccuracies that add up. If they differ from their pre-

dicted value, they will therefore indicate asymmetric and systematic errors in the analysis. The

amplitude of the tangential components Fx and Fy should be zero for all our normal indenta-

tion profiles, as no tangential force is transmitted. Due to symmetry, we expect the Fy compo-

nent to show the same behavior as the Fx component. The Fz component should vanish for the

dipolar patterns. If Fz was different from the expected value, this may indicate a systematic

error due to the non-symmetric way of taking the derivative at the surface.

Fig 3. Two different Hertzian traction profiles used for normal analysis with the direct method. (A) Indenter monopole with Fz = 10Â μN. (B) Ring

dipole with Fz = 0 μN. The upper row present a heat map of the normal traction τz at the substrate surface. There is no tangential traction in these cases.

The lower row present the change of the normal traction along a lower-left to upper-right diagonal section. The results of the analysis corresponding to

these profiles are presented in Fig 4. The other simulation parameters for these profiles can be found in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0262773.g003
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Next we calculate the total L2-difference between the TFM results and the reference defined as

dL2 ¼ kτ
recon � τtruek

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

S
j τreconðx; yÞ � τtrueðx; yÞj2dx dy

r

: ð37Þ

This quantity measures how well the reconstructed field matches the analytical solution.

Again, the integration is performed using the Simpson formula. In contrast to the monopole,

this value will not only capture systematic aberration offset, but also general noise and gives a

measure for the uncertainty of the results. A high dL2 indicates that the reconstruction contains

a high amount of noise artifacts.

Fig 4 shows the performance of the different variants of the direct method as assessed

through these metrics. First we observe that as expected, the variance in the monopoles and

the distance metrics increase with increasing noise levels such that σN/< kuk> = 1 has to be

considered to be large noise. At much higher noise levels, all methods will fail. For the DM

investigated here, we find that using a four-point (4P) form instead of a simple two-point (2P)

form does not improve the result, but causes a significantly higher level of overall noise, likely

due to overfitting. In contrast, using the 3x3x3 patch fit significantly improves the noise sup-

pression, both in the full field as well as the background. However, it will result in an underesti-

mate for the force monopole z-component Fz in case of the indenter profile (A). This is likely

due to the fact that uz/z will be underestimated due to the non-symmetric derivative. Applying

the divergence correction algorithm does improve the result in this case and also offers a

Fig 4. Quantitative comparison between different variants of the direct method. The plots use the Hertzian traction

profiles introduced in Figs 2 and 3. A normalization factor< kuk> used to compare noise levels for different

amplitudes is calculated by taking the mean of the amplitudes of the deformation field. In the upper line, we plot the

variation in the predicted total force in x direction as a function of the standard deviation of Gaussian noise added to

the input data. The line indicates the mean and the colored area indicates the standard deviation. In the mid row the

same is done for the total traction in z-direction. In the lower row, we plot the total difference in norm, where the

variation between the different samples is shown to be negligible. The different colors designate the different ways of

calculating the deformation gradients as well as whether the divergence correction scheme (DCS) is used. Fy is not

shown due to its similarity to Fx.

https://doi.org/10.1371/journal.pone.0262773.g004
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slightly better noise reconstruction. However, an opposite effect is found for Fz for profiles (B)

and (C), where the noise removal introduces a systematic offset in the normal traction compo-

nent, as well as for FN, where it also increases the aberration in the force monopole normal

components. Notably the difference in norm describes a straight line with negligible variance

between the samples. This comes from the fact that for all methods, the deformation gradient

and therefore also the resulting stress have a linear relation to the input deformation field. This

implies a linear relation in the variance due to noise. This proportionality is then shared by the

dL2 parameter. Although the divergence correction ensures that formally force and torque bal-

ance are satisfied, it does not improve the performance of the DM.

Comparison of direct method and FTTC

Now that we have optimized the direct method, we next compare it to the inverse method,

namely with FTTC-calculations both in 2.5D (2.5D FTTC) as well as with calculations in

which contributions in the normal dimension are not considered, as described by Eq (10) (2D

FTTC). Because we now compare with FTTC, we work with the standard choice for TFM on

planar substrates, namely a collection of circular adhesion sites with mainly tangential trac-

tions, as commonly observed for contractile cell types which adhere to flat substrates through

focal adhesions.

While Fig 2 showed traction reconstructions with different methods for the cell-like pattern

for small noise (σN/< kuk> = 0.2), in Fig 5 we now show such reconstructions for variable

Fig 5. Reconstruction for cell-like traction pattern for different noise levels and reconstruction methods. The images show the reconstruction for

no (upper row), large (σN/< kuk> = 1, mid row) and very large (σN/< kuk> = 2, lower row) Gaussian noise added to the analytical solution for the

displacement before reconstruction with the different methods as indicated. The simulation parameters are identical to the ones used in Fig 2 and

details can be found in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0262773.g005
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noise levels (σN/< kuk> = 0, 1 and 2 from top to bottom). For simplicity, here we only show

the components in the xy-plane. A visual inspection suggests that FTTC reconstructs the shape

of the deformation profile most faithfully for low noise levels. For high noise levels, it predicts

a too high level of force. For very high noise levels, the adhesion sites can be more easily identi-

fied by the DM compared to FTTC. The DM and in particular the DM using divergence cor-

rection seem to predict a traction strength amplitude that is largely independent of noise. On

the other hand, the divergence correction scheme produces some artifacts, independent of the

noise level. This suggests that the divergence removal algorithm converts local noise into a

more distributed signal that is not directly related to the physical force generators.

In order to make these qualitative assessments more objective, we next evaluated a series

of established metrics for the three different traction profiles shown in the upper two rows of

Fig 6. As before, the analytical solutions are known and it is easy to add Gaussian noise to the

resulting deformation fields. The analysis results in a traction field described by a discrete sam-

ple vector τrecon
j for each site sampling point j, that can be compared to its theoretical equivalent

τtrue
j predicted from the analytical solution. We estimate the accuracy of the different recon-

structions using the following five metrics [23, 29]:

• The deviation of traction magnitude at adhesions (DTMA) is given by:

DTMA ¼
1

NP

X

i

meanjðiÞ

�
�
�
�τrecon

jðiÞ

�
�
�
�

2

�

�
�
�
�τtrue

jðiÞ

�
�
�
�

2

� �

meanjðiÞ

�
�
�
�τtrue

jðiÞ

�
�
�
�

2

� � : ð38Þ

Here Np is the number of adhesion patches and the index i iterates over the individual

patches. For each patch, the mean is taken over all sampling points j(i) belonging to the

given patch. The DTMA determines how well the average magnitude of the patches is pre-

dicted. A good reconstruction would yield an DTMA close to zero, while a positive or nega-

tive value would indicate an over- or underestimation, respectively.

• The deviation of traction magnitude at adhesions restricted to the two tangential dimensions

(tDTMA) is given by:

tDTMA ¼
1

NP

X

i

meanjðiÞ n2ðτ
recon
jðiÞ Þ � n2ðτ

true
jðiÞ Þ

� �

meanjðiÞ n2ðτ
true
jðiÞ Þ

� � : ð39Þ

Here Np is the number of adhesion patches and the index i iterates over the individual

patches and n2ðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
x þ t

2
y

q
. For each patch, the mean is taken over all sampling points j

(i) belonging to the given patch. The tDTMA determines how well the average magnitude of

the patches is predicted. In contrast to DTMA, we do only take into account the two tangential

components. This focuses on situations in which the effect on the normal component behaves

differently from the tangential one. A good reconstruction would yield an tDTMA close to zero,

while a positive or negative value would indicate an over- or underestimation, respectively.

• The signal to noise ratio (SNR) is defined by:

SNR ¼

1

Np

X

i
meanjðiÞ kτ

recon
j k

2

� �

stdkðkτ
recon
k k2Þ

:
ð40Þ
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Fig 6. Quantitative comparison of direct and inverse methods. Performance of different force reconstruction

techniques as a function of noise for different force profiles. The point profiles tested are shown in the top two row: In

the first row, the heat map indicates the amplitude of the the tangential traction, while the white arrows indicate their

direction. In the second row, the heat map indicates the normal traction. Below are different metrics shown, describing

the quality of the reconstruction at different locations. The plots in one column all correspond to the same force

profile. Details on the simulation parameters for all three profiles can be found in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0262773.g006
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Here i, j(i) and k are defined as above. The signal to noise ratio describes how well the adhe-

sion sites are realized in comparison to background noise. The value should be significantly

larger them 1 to indicate a good separation between traction sites and noise.

• The deviation of traction magnitude in the background (DTMB) is given by:

DTMB ¼
meankðkτ

recon
k k2Þ

1

Np

X

i
meanjðiÞ kτ

true
j k2

� � :
ð41Þ

Here k runs over all sampling points not belonging to any patch. i and j(i) again iterate over

the patches and their sampling points respectively. The DTMB describes the level of back-

ground noise in the reconstruction. Ideally it takes a value close to zero indicating a low level

of artifacts in the background.

• The deviation of traction maximum at adhesions (DMA) is defined by:

DMA ¼
1

NP

X

i

maxjðiÞ

�
�
�
�τrecon
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�
�
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�
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�

2

� � : ð42Þ

Again i and j(i) are defined as above. The DMA is similar to the DTMA, but rather them

using the average traction over the whole adhesion site, the peak traction is taken into

account. This emphasizes the reconstruction of the correct amplitude in core area over the

correct profile close to the boundary. Like with the DTMA a good reconstruction would

yield a DMA close to 0, while a positive or negative value would indicate an over- or under-

estimation, respectively.

Fig 6 shows the performance of the three different methods as a function of increasing

noise level and for different traction patterns as shown in the top row. For all metrics except

the SNR, the optimal value is shown as black horizontal line. In general, we see that all meth-

ods fail at very high noise levels. We find that FTTC is better than the DM in predicting the

correct strength of the adhesions at low noise levels as seen in the DTMA, tDTMA and

DMA results. However, the situation is reversed for higher noise, as the regularization is not

sufficent to prevent overfitting above a certain noise level. While the application of the diver-

gence correction scheme does reduce the SNR result, it improves the results for DTMB and

DMA, by bringing them closer to zero, particular for high noise levels. A beneficial effect of

the divergence removal is to reduce the difference between the DTMA and tDTMA scores,

meaning that the algorithm does predict the orientation of the force vector more correctly.

In contrast, the FTTC algorithm shows significantly better values for the DTMB metric,

which means that it is more effective in preventing artifacts in the outside of adhesion sites.

Surprisingly, the signal to noise ratio is lower in the case of FTTC compared to the direct

method. This can be attributed to the fact that FTTC works in Fourier space and errors in

the reconstruction effect the whole field of view, not only the area close to the adhesion sites.

We conclude that both methods perform similarly well, that the divergence correction as

used here is in fact a disadvantage, that FTTC works best for small noise and that for larger

noise the direct method becomes comparable and gives a clearer visualisation due to the

higher SNR.
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Effect of sampling density

We finally study the effect of variation in sampling density, which experimentally is related to

marker bead density and the resolution of the optical microscope. Because in practise displace-

ment noise is expected to change with sampling distance and because we now focus on the

effect of sampling density, in Fig 7 we show the results for vanishing displacement noise. As

expected, overall all metrics become worse with increasing sampling distance. Interestingly,

however, the performance of FTTC seems to be more robust, while the DM quickly decreases

in performance. This implies that a decrease in sampling distance (that is an increase in sam-

pling density) will be much more beneficial for the DM. We note that for FTTC, the SNR and

(for 2.5D FTTC) also DTMB can even slightly improve with decreasing sampling density. This

surprising (but weak) effect might be related to the fact that for the Fourier method, increasing

sampling distance amounts to stronger filtering of the data, thus focusing on the overall adhe-

sion pattern. We also checked that the same trends persist for variation of sampling distance at

finite noise (S1 Appendix). We noticed that for FTTC the SNR now significantly improves for

a decrease in sampling density. This confirms that noise and sample point density are in fact

correlated, because an increase in sampling density also increases the number of nodes that

contribute noise towards the calculation. FTTC and DM are affected differently by an increase

in sampling density in the presents of noise. For the DM the increase of the numbers of nodes

improves the accuracy of the numerical gradients. For FTTC, the quality of reconstruction at

the sampling points does not significantly improve when increasing the resolution, but the

increase of the number of nodes increases the negative effect of noise on the result.

Fig 7. Effects of variation in sample density. Plots A to E show how the different metrics are affected when using a different distance of the sampling

points when setting up the input data without adding any noise. The profile first shown in Fig 2 is used. The default sample point spacing in x and y for

this profile is 0.4 μm and here is varied up and down. The z-component is scaled proportionally. Since there is no noise, in general FTTC performs

much better. The direct method shows a consistent improvement for decreasing sampling point distance. Details on the simulation parameters can be

found in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0262773.g007
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Discussion

Motivated by the observation that different TFM-methods are often advanced in specific con-

texts, but rarely compared to each other, here we have conducted an in-depth comparison of

inverse and direct methods in the framework of 2.5D TFM. Recently such a comparison has

been conducted using FEM-approaches for 3D TFM [17, 18], but here we focus on 2.5D TFM

as the traditional setup for high-resolution experiments. For the inverse method, we have used

the commonly used method, namely the Fourier method FTTC, which is very fast and reliable

when combined with a regularization scheme, for which here we have chosen zero-order

Tikhonov regularization with generalized cross-validation for identification of the regulariza-

tion parameter λ. Although we here work with the setup of a flat elastic substrate, which usu-

ally is treated with 2D TFM, in order to account for the 3D-nature of the direct method, we

included the third dimension by considering also normal forces (2.5D TFM). For this purpose,

we have implemented a version of 2.5D FTTC based on newly derived GFs with normal com-

ponents. With these advances for 2.5D FTTC, the two methods can be directly compared to

each other.

For each performance test, we have first designed traction patterns that are representative

for experiments, suitable for the task at hand and analytically tractable. Motivated by the obser-

vation that experimental noise is Gaussian-distributed in experiments [55], we have added

Gaussian noise to the displacements and then performed the reconstructions with different

methods. In the future, this procedure could be complemented by a stronger focus on the

actual image generation occurring in TFM-experiments, in particular by using specific image

processing algorithms and point spread functions [18, 56, 57].

We have evaluated our reconstructions using commonly used metrics [23, 29]. This meth-

odology then was used in three ways. We first optimized the direct method, then compared it

with FTTC, and finally studied the effect of sampling distance. For the direct method, we

found that the 3x3x3 patch calculation of the derivatives is indeed the best solution and that

the standard divergence correction from hydrodynamics works, but does not necessarily

improve our solutions and in fact worsens the visual appearance of the traction pattern.

Assuming a perfect elastic material, divergence is generated only by noise, which is known to

be essentially Gaussian in experimental TFM data. This means that it is uncorrelated between

different dimensions. Divergence removal however couples the different dimensions and

therefore does not counteract the process that generated the divergence. We conclude that

although required from the viewpoint of elasticity theory, divergence removal is not really

needed for the TFM procedures used here.

Our main result is the demonstration that the direct method for TFM can be used to reli-

ably predict the traction field at the surface of a flat elastic substrates and in fact performs com-

paratively well to the best inverse method, that is FTTC, at least for large noise, when FTTC

worsens more quickly. The direct method also offers an interesting alternative to costly FEM-

simulations, in situations where FTTC cannot be applied. The 3x3x3 patch method that has

proven to be a reliable method for deformation gradient calculation can in fact be easily

adapted for curved surfaces. Although FTTC is expected to remain the standard method for

2D TFM, we believe that the direct method is a valuable alternative even in this case, e.g.

because it can also reconstruct monopolar traction patterns. For 2.5D TFM we believe that the

choice between the direct and inverse methods should depend on context, but that in princi-

ple, both might work well.

In the future, the direct method might become more important due to several experimental

developments. Recent advances in microfabrication and additive manufactoring will lead to

completely new geometries and setups [32–35], for which the analytical solutions required for
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methods like FTTC will not be possible anymore, except for simple geometries like elastic

beads [12, 36]. Inverse methods implemented in FEM-environments are the method of choice

in this case, but because they are computational costly, the DM is a attractive alternative.

Moreover image quality for TFM quickly improves, e.g. due to super-resolution microscopy

[26, 37–40], and this might play in favor of the direct method, which without displacement

noise becomes better with smaller sampling distance.

Supporting information

S1 Appendix. Supplementary calculations related to the Hertz-like force profile, details of

the divergence correction algorithm and parameters used for the simulated profiles.

(PDF)
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