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Competing pathways for the invagination of
clathrin-coated membranes

Felix Frey †ab and Ulrich S. Schwarz *ab

Clathrin-mediated endocytosis is the major pathway by which eukaryotic cells take up extracellular

material, but it is still elusive which physical pathways are being taken during membrane invagination.

From a continuum point of view, it can be driven by increases in coat stiffness, preferred curvature or

line tension. Here we develop a comprehensive theoretical framework that can be solved analytically

and that predicts the consequences of these different scenarios. We find that for the case of increasing

stiffness or preferred curvature, curvature will be acquired gradually with growth, while for increasing

line tension, the lattice must have grown to a certain size before a flat-to-curved transition can occur.

At low membrane tension, the critical value for coat stiffness is 30 kBT, for preferred curvature it is

200 nm, and for line tension it is 6 pN. For high membrane tension, critical coat stiffness is 150 kBT and

critical preferred curvature is 70 nm. In the mixed case when a coat with finite rigidity but increasing line

tension is considered, a cup-to-sphere transition can occur for a line tension of 6 pN. The flat-to-curved

and the cup-to-sphere transitions driven by line tension are both suppressed by high membrane tension.

1 Introduction

Clathrin-mediated endocytosis (CME) is the major pathway for
bringing extracellular material into eukaryotic cells.1 In CME
clathrin triskelia form triple-coordinated lattices at the cyto-
plasmic side of the plasma membrane that drive inward vesicle
budding. The process is initiated by adapter proteins like AP-2
that assemble at the cell membrane and trigger condensation
of the clathrin triskelia.2 Because clathrin triskelia have a built-
in curvature and recruit additional proteins with an effect on
membrane curvature, the membrane then tends to bend. After
a clathrin-coated pit has formed, scission is effected by dyna-
min and a clathrin-coated vesicle is formed.3,4 Despite many
years of extensive study of CME, however, the exact physical
nature of the invagination process is still elusive.5–7

Two paradigmatic models have been proposed to conceptualize
the potential pathways of CME.8 In the constant curvature model
(CCM), the clathrin coat grows with a constant curvature presum-
ably determined by the puckering angle of the clathrin triskelion.9

Indeed in vitro assembly of pure clathrin lattices10 and clathrin-
coated vesicles11 seem to suggest such a fixed preferred curvature,
with a typical radius around 50 nm. In the constant area model
(CAM), the clathrin coat first grows flat as a hexagonal lattice

before it starts to bend.12 Such a sequence of events suggests a
larger role for cellular factors and indeed has recently been
demonstrated in cell experiments.13 It is further strengthened by
the recent suggestion that flat clathrin lattices are less regular and
more plastic than formerly appreciated.14,15 A flat-to-curved
transition implies that the projected radius decreases by a factor
of up to 2, as observed experimentally.13,15 The notion of plastic
clathrin lattices is further strengthened by the recent finding
that different cell types form flat or curved clathrin structures
depending on small changes in the clathrin heavy chain amino
acid sequence in the central hub region above the membrane.16

This suggests that in general, cells can dynamically control
spontaneous curvature, e.g. by mixing these different variants
or by other changes in the same region, in particular by binding
of additional proteins that affect curvature.

While for both CCM and CAM experimental evidence has
been reported,11–13,15,17 no simple theoretical model exists that
allowed one to explore different pathways in one unifying
framework. In order to address the question which invagination
pathways might exist and which physical factors might favor
one over the other, here we describe the invagination energetics
using a membrane Hamiltonian that includes the main relevant
contributions from both clathrin coat and plasma membrane.
Our approach is conceptually similar to theoretical studies of
the formation of curved membrane patches,18 but addresses the
specific questions relevant in the context of CME.

We start from the common assumption that the main energy
source driving the growth process is polymerization of the
clathrin coat.11 Curvature generation is driven mainly by the
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preferred curvature of the clathrin triskelia, which we include
as preferred (or spontaneous) curvature into our membrane
Hamiltonian.19 Because it has been found experimentally that
the density of clathrin lattices increases during the flat-to-
curved transition,20 we consider the possibility that an increase
in coat bending rigidity can drive formation of curvature (Fig. 1a).
Alternatively, we consider the possibility that the preferred cur-
vature of clathrin triskelia can increase,21 controlled by e.g.
changes in the clathrin triskelia or binding of additional proteins,
most likely in the central hub region (Fig. 1b). As a third option,
we consider the possibility that an increase in line tension drives
invagination (Fig. 1c), a mechanism which has been suggested
before for vesicle formation after phase separation of membrane
domains.22 The line tension could originate e.g. from unbound
clathrin binding sites at the edge of the clathrin coat, from
additional proteins that preferentially bind at the edge of the
clathrin coat or by lipid segregation in the membrane. We
consider this scenario without and with coat rigidity. While the
first two mechanisms (increase in coat stiffness or spontaneous
curvature) couple to the bulk of the coat, the last two (increase in
line tension without and with coat rigidity) couple to its rim.

In contrast to earlier work along these lines, we do not
restrict vesicle radius to a fixed value,11 as suggested by the
CCM, but allow for a variable radius (Fig. 1d). Conveniently all

four scenarios can be formulated in the same variables and
therefore directly compared against each other. As we will show
below, our theory can be formulated in analytical form and
therefore is very transparent. Because here we choose a continuum
approach, we do not explicitly model the exact coordination in the
clathrin lattice, but implicitly assume that once energetics forces
the lattice to bend, coordination will adapt correspondingly. This
agrees with the recent suggestion that clathrin lattices are not as
regular as assumed earlier.14,15

We use our theoretical framework to explore different path-
ways through the invagination process. For the rigidity-driven
case, we find that coat rigidities around 30 kBT are required for
vesicle formation at low membrane tensions. In this case
curvature occurs along with growth, i.e. similar to the CCM.
For high membrane tensions this value has to increases to
around 150 kBT for vesicle formation during coat growth, since a
constant stiffness would lead to stalled growth. For the preferred
curvature-driven case, we find that coat radii of only around
200 nm are required for vesicle formation at low membrane
tensions. In this case curvature occurs again with growth. For
high membrane tensions the preferred radius has to decrease to
around 70 nm for vesicle formation during coat growth. For
invagination driven by line tension, around 6 pN are required for
vesicle formation at low membrane tension with and without
coat rigidity. In the case without coat rigidity we find a flat-to-
curved transition of the coat, i.e. the coat has first grown flat to a
certain size before curvature is acquired. The invagination
occurs similar to the CAM, where clathrin coats do not grow
anymore during the transition. In the case with finite coat
rigidity we find a cup-to-sphere transition of the coat, i.e. the
coat first grows curved to a certain size before it invaginates
completely. For high membrane tension both transitions are
suppressed.

2 Model

In order to model the assembly and invagination of clathrin
coats, we consider the elastic energies of both coat and
membrane. The driving force for growth is the polymerization
energy of the clathrin coat, but the driving force for acquisition of
curvature is less clear. We consider clathrin coats as circular
protein domains closely coupled to the plasma membrane, with a
similar energetics like lipid domains or rafts that are embedded
in the plasma membrane.22 The total energy is described by a
generalization of the Helfrich bending Hamiltonian23

H ¼
ð
coat

�mþ 2kc H �H0ð Þ2
� �

dAþ
ð
mem

2kH2 þ s
� �

dA

þ zE: (1)

The first integral extends over the coat area and contains the
polymerization energy density of the clathrin coat m and its
stiffness kc. H is the mean curvature and H0 the preferred (or
spontaneous) curvature that clathrin triskelia impose onto the
membrane. As kc or H0 increases, the system would be forced to
bend because it has to pay more energy for bending away from
the preferred curvature H0 (Fig. 1a and b).

Fig. 1 Three physical mechanisms that can drive the invagination of
clathrin coats. (a) Increasing clathrin coat density would increase the cost
of bending away from the preferred curvature of the clathrin coat and thus
force the lattice to bend. (b) Changing the internal structure of clathrin
triskelia could change their preferred curvature and thus would increase
the tendency of the lattice to bend. (c) Increasing line tension due to
e.g. recruitment of specific factors to the edges of the clathrin coat would
increase the cost of assembling flat clathrin coats. Since the overall energy
could decrease by bending, an increasing line tension would force the
lattice to bend. (d) All three cases can be modeled in a continuum theory
with the same set of geometrical parameters. The clathrin-coated vesicles
are characterized by area A, edge length E, radius R and invagination angle
y. The radius r of the area-equivalent flat patch is a convenient coordinate
for coat growth.
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The second integral extends over the membrane area and
contains its bending rigidity k and membrane tension s.
We assume that the membrane by itself tends to be flat
(no preferred curvature). Membrane tension is known to be
a central regulator of curvature in CME.13,24 The last term
introduces a line tension z that is conjugated to the edge
length E. The main effect of a line tension is to reduce the
length of the rim. With conserved area, this should lead to
bending (Fig. 1c), as known from vesicle budding.11,22,25

In eqn (1), the second integral over the membrane runs over
a larger area than the first one over the coat, because it also has
to include the free membrane that is not covered by the clathrin
coat. However, by solving the shape equations for the free
membrane, it has been shown recently that the energy of the
free membrane only contributes up to 20% to the total energy
of the membrane for axisymmetric membrane deformations
around spherical particles.26 In order to arrive at an analytical
theory, in the following we neglect this part of the energy. Then
the two integrals in eqn (1) run over the same area. In the
following, we assume that the clathrin patch adopts the shape of a
spherical cap, as found in particle-based computer simulations of
membrane patches with spontaneous curvature.18 With the
spherical cap assumption, all the relevant energy contributions
can be written in analytical form.

As shown in Fig. 1d, a spherical cap is characterized by
radius of curvature R and opening angle y. From this the area
follows as A = 2pR2(1 � cosy) and the edge length as E = 2pR siny.
The surface energy from eqn (1) now reads

E = �mA + 2kc(H � H0)2A + 2kH2A + sDA + zE. (2)

The mean curvature is given by H = 1/R and the preferred curvature
of the clathrin coat is H0 = 1/R0, where R0 is the preferred radius of
the clathrin coat that is determined by the internal structure of the
clathrin lattice. The membrane excess area DA can be calculated
from the area difference between the spherical cap area and the
corresponding (projected) flat circular area:

DA ¼ A� pR2 sin2 y ¼ A� pA sin2 y
2pð1� cos yÞ

¼ A 1� 1� cos2 y
2ð1� cos yÞ

� �
¼ A

2
ð1� cos yÞ:

(3)

Because the area A is the most important control parameter
in our context, we choose to consider E as a function of A and
y rather than as a function of R and y. We therefore write

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð2pð1� cos yÞÞ

p
and E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pAð1þ cos yÞ

p
. With these

results and definitions, eqn (2) now reads

E ¼ � mAþ 4pkcð1� cos yÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

2pR0
2ð1� cos yÞ

s !2

þ 4pkð1� cos yÞ þ sA
2
ð1� cos yÞ þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pAð1þ cos yÞ

p
:

(4)

The polymerization energy in eqn (4) drives the assembly of
clathrin coats and both the bending and tension energies of the

membrane favor the assembly of flat clathrin coats. In contrast,
the main effect of coat rigidity, preferred curvature and line
tension is to drive the invagination process. Thus our model-
ling approach immediately suggests several distinct pathways
that can generate curvature.

In order to derive analytical solutions for this model, in the
following we treat these competing pathways one after the
other. First we investigate the case where the bending rigidity of
the coat drives the invagination process. Here we assume a constant
value for the preferred curvature and neglect the line tension.
Second we consider the case where the preferred curvature drives
the bending of the coat. Here we assume a constant value for the
coat rigidity and again neglect the line tension. Third we investigate
the case that the line tension drives the invagination in the absence
of any coat rigidity or preferred curvature. Fourth we again consider
the case that the line tension drives the invagination, but now with
finite values for both coat rigidity and preferred curvature. Apart
from this fourth case we do not treat more possible mixtures of the
three fundamental physical pathways for invagination as this would
clutter our theoretical analysis.

The parameter values that are used throughout this work are
summarized in Table 1. For coat rigidity the upper value has
been reported in the literature and here is taken as upper limit
in the first case and as the parameter value in the second case.
In the fourth case an intermediate value is taken. For preferred
vesicle radius the lower value is taken as the parameter value in
the first case and as the lower limit in the second case. In the
fourth case the upper value is taken as the parameter value. For
line tension the lower value has been reported in the literature
and here is taken as lower limit.

There is experimental evidence that the density of clathrin
triskelia increases during the transition from the flat to the
curved state.20 In addition, it was recently shown that flat clathrin
lattices can be switched to a curved state by small changes in the
clathrin heavy chain amino acid sequence in the central hub,16

suggesting that changes to spontaneous curvature can also occur
dynamically. Thus, the clathrin coat rigidity, the preferred curva-
ture and the line tension are expected to change either upon
increasing the clathrin density within the coat or by changing the
internal state of clathrin triskelia. Therefore in the following we
consider the coat rigidity kc, the preferred radius R0 and the line
tension l not as constants but as dynamic parameters. Assuming
that the clathrin coat equilibrates fast during coat formation, the
system will relax to the state of global minimal energy in the
absence of any energy barriers. With these assumptions, we can
predict how the invagination develops with growth of the clathrin
coat based on the energetics presented by eqn (4).

Table 1 Model parameters

Parameter Used value Ref.

Polymer energy density m 0.11 mJ m�2 11
Bending rigidity membrane k 25 kBT 27
Membrane tension s 10�5–10�4 N m�1 28
Line tension z 5.2 � 10�2–10 pN 11
Bending rigidity coat kc 0–300 kBT 29
Preferred pit radius R0 50–500 nm 11

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
1 

O
ct

ob
er

 2
02

0.
 D

ow
nl

oa
de

d 
by

 R
up

re
ch

t-
K

ar
ls

 U
ni

ve
rs

ita
t H

ei
de

lb
er

g 
on

 1
0/

27
/2

02
0 

9:
50

:5
8 

A
M

. 
View Article Online

https://doi.org/10.1039/D0SM01375G


Soft Matter This journal is©The Royal Society of Chemistry 2020

3 Results
3.1 Variable coat rigidity

We first investigate the effect of coat stiffening as a potential
mechanism to drive the invagination. To simplify the description
and make the mechanism as transparent as possible, we keep the
preferred curvature constant and neglect the line tension in this
section, that is we set R0 = 50 nm and z = 0 in eqn (4). We treat the
coat rigidity as a dynamic variable which can increase in time
kc = kc(t). However, we do not consider the dynamics of this
change explicitly, since it is experimentally unknown.

We calculate the shape of clathrin coats determined by the
minimum energy. In the model the coat shape is given by coat
area A and invagination angle y. We assume that the timescale
of coat adaptation and invagination (dynamics in y) will be
small compared to the timescale of coat growth (dynamics in
A). This assumption is motivated by the observation that the
growth process takes several tens of seconds, whereas the
clathrin exchange kinetics measured by fluorescence recovery
after photobleaching is seconds, suggesting that the coat might
adapt quite fast.2 We conclude that in our model the coat
assumes quasi instantaneously its minimal energy configu-
ration in y during the growth process.

In order to visualize the coat energy and to get an impres-
sion of how the invagination process proceeds, we plot the coat
energy (given by eqn (4)) as a function of y for two different coat
rigidities in Fig. 2a. We find that depending on the coat rigidity
either the curved state (marked by the arrow above the green
curve) or the spherical state (marked by the arrow above the
orange curve) defines the energy minimum. To determine if the
curved or spherical state define the energy minimum we first
determine the derivative of eqn (4) with respect to y

@E

@y
¼ sin y

s
2
Aþ 4p kc 1� R

R0

� �
þ k

� �	 

¼! 0: (5)

First we note that eqn (5) can become zero either if the term in
the brackets becomes zero or if y = p. For y - 0 the expression
stays finite, since r = yR stays finite for A 4 0. By using the expression

of the spherical cap radius R, we can deduce from eqn (5) a quadratic
equation for the radius r of a flat disc with the same area A = pr2

r2 � 4kc

R0s sin
y
2

rþ 8 kþ kcð Þ
s

¼ 0; (6)

which we can either solve for the invagination angle

y ¼ 2 arcsin
4kcr

R0 sr2 þ 8 kþ kcð Þð Þ

� �
; (7)

or for the radius

r ¼ 2kc

R0s sin
y
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kc

R0s sin
y
2

0
B@

1
CA

2

�8 kþ kcð Þ
s

vuuuut : (8)

Next, we calculate the second derivative of eqn (4)

@2E

@y2
¼ cos y

s
2
Aþ 4p kþ kcð Þ

� �
þ kc
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pAð1� cos yÞ

p
; (9)

implying a minimum for yr p/2 and a minimum or maximum
for y 4 p/2. We now calculate the angle as a function of radius

for which the type of the extremum changes, @2E
�
@y2¼! 0,

which leads to the equation

a cos yþ b sin
y
2
¼ 0; (10)

with a = sr2 + 8(k + kc) and b = 4kcr/R0. From eqn (6) we find
a = b/sin(y/2), relating the parameter values for which the
extremum exists. Using this result on eqn (10) we get

b
cos y

sin
y
2

þ sin
y
2

0
B@

1
CA ¼ 0: (11)

Since eqn (11) can be solved only for y = p, the type of the
extremum cannot change and eqn (8) defines the radius at
which an invaginated state becomes an energy minimum.

Fig. 2 Energies and invagination pathways for clathrin coats with variable coat rigidity kc, R0 = 50 nm and s = 10�5 N m�1. (a) The energy of clathrin coats
with size r = 200 nm. For kc = 25 kBT (green) the energy minimum is given for a curved state (green arrow), whereas for kc = 50 kBT (orange) the spherical
state becomes the energy minimum (orange arrow). (b) y as a function of the radius r of the area-equivalent flat patch. For the smaller rigidity the coat
only curves (green) while the coat becomes spherical for the larger rigidity (orange). (c) y as a function of kc for two different values of r. Only for the larger
radius the coat invaginates completely.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
1 

O
ct

ob
er

 2
02

0.
 D

ow
nl

oa
de

d 
by

 R
up

re
ch

t-
K

ar
ls

 U
ni

ve
rs

ita
t H

ei
de

lb
er

g 
on

 1
0/

27
/2

02
0 

9:
50

:5
8 

A
M

. 
View Article Online

https://doi.org/10.1039/D0SM01375G


This journal is©The Royal Society of Chemistry 2020 Soft Matter

In Fig. 2b and c we show y determined by eqn (7) as a
function of the radius r of the area-equivalent flat patch
(A = pr2, cf. Fig. 1d) and coat rigidity kc, respectively. In the
following, we use r as a convenient coordinate for growth. As
expected, we find that the pathway of invagination is deter-
mined by the coat size and the coat rigidity. Importantly, the
transition to the spherical state (orange) occurs continuously
for an increasing coat size or coat rigidity.

To understand to which size clathrin coats grow we deter-
mine the derivative of eqn (4) with respect to A:

@E

@A
¼ �mþ s

2
ð1� cos yÞ þ 2kc

R0
2

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pR0

2ð1� cos yÞ
A

s0
@

1
A¼! 0:

(12)

The solution is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R0

2ð1� cos yÞ
p

1� mR0
2

2kc
þ sR0

2

4kc
ð1� cos yÞ

: (13)

The second derivative

@2E

@A2
¼ kc

R0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pR0

2ð1� cos yÞ
q

A�
3
2; (14)

is always positive, thus eqn (13) defines an energy minimum.
We now use the expression for the invagination angle, defined
by eqn (7), in eqn (13) to determine the size to which clathrin
coats will grow

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

2

4
� c2

s
� c1

2

0
@

1
A

1=2

; (15)

where c1 = 16(k + kc)/s and c2 = 64(k + kc)2/s2 + 128kc
2(k + kc)/

(s2(mR0
2 � 2kc)) o 0.

The shape of clathrin coated structures is strongly deter-
mined by size, coat rigidity and membrane tension. Fig. 3
shows the state diagrams as a function of the coat radius r of
the area-equivalent flat patch and coat rigidity kc for three

different values of membrane tension s. Because in this section
we assume a finite and relatively large spontaneous curvature,
the membrane will always be curved to a certain degree. We
classify coats as flat for which the invagination angle is smaller
than y o 0.2p and as curved otherwise. Flat regions in the state
diagrams are shown in white. Orange regions indicate the
parameter space in which the spherical state is energetically
favorable based on eqn (8) with y = p. Green regions indicate
the parameter space in which the curved state is energetically
favorable, using y = 0.2p as dividing value in eqn (8). Finally the
blue regions indicate the space in which clathrin coats will not
grow anymore since they have reached their energy minimum
determined by eqn (15).

Fig. 3a shows that for low membrane tension, clathrin coats
get more and more curved as they grow and finally end up as
spherical coats for large and intermediate coat rigidity. This is the
typical growth behaviour in the CCM. For small coat rigidities
clathrin coats get curved but do not transform to spherical coats.
For increasing membrane tension, shown in Fig. 3b and c, the
region in which spherical coats can form is reduced. Moreover,
now the orange and green region are separated by the blue
region, which indicates that although clathrin coats start to
curve, they stop to grow before they reach the spherical shape.
Only by increasing the coat rigidity one could drive a transition
from the curved state to the spherical state.

3.2 Variable preferred curvature

Next we consider the effect of increasing preferred curvature of the
clathrin coat as a potential mechanism to drive the invagination.
To simplify the description and make the mechanism as trans-
parent as possible, we now keep the coat rigidity constant
and again neglect the line tension in this section, that is we set
kc = 300 kBT and z = 0 in eqn (4). We treat the preferred radius of
the clathrin coat as a dynamic variable, which can increase in time
R0 = R0(t). However, we do not consider the dynamics of this
change explicitly, since it is experimentally unknown.

In Fig. 4a the energy of the coat (given by eqn (4)) is shown as
a function of y. Similar to before the clathrin coat only forms a

Fig. 3 State diagrams for invagination driven by variable coat rigidity. (a–c) State diagrams of clathrin coats as a function of the coat radius r of the area-
equivalent flat patch and coat rigidity kc for three different values of membrane tension s. The orange region indicates the parameter space where the
spherical state is energetically favorable. In the green region the minimum energy state is curved (yZ 0.2p) and in the white region the minimum energy
state is flat (y o 0.2p). In the blue region clathrin coats do not grow.
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sphere when the preferred curvature is large enough (marked
by the arrow above the orange curve). Otherwise the coat will
stay curved (marked by the arrow above the green curve). In
Fig. 4b and c the invagination angle y, determined by eqn (7), is
shown as a function of the coat radius r of the area-equivalent
flat patch and preferred radius. Again the transition to the
curved state occurs continuously.

The equations, which we derived in the last section, also
hold true in the case of constant coat rigidity but varying preferred
curvature. Therefore, we use these equations to investigate shape as
a function of the coat radius r of the area-equivalent flat patch,
preferred radius and membrane tension in Fig. 5. As before, the
orange region indicates the parameter space where the spherical
state is energetically favorable based on eqn (8) with y = p. Similarly,
the green region indicates the parameter space where the curved
state is energetically favorable, where we use y = 0.2p in eqn (8). In
the white region flat clathrin coats are expected and in the blue
region clathrin coats will not grow anymore since they have reached
their energy minimum determined by eqn (15).

Comparing Fig. 5 to Fig. 3 we find qualitatively very similar
results. For low membrane tension clathrin coats get more and

more curved as they grow, i.e. we find the typical growth behaviour
of the CCM (Fig. 5a). For increasing membrane tension (Fig. 5b
and c), the orange and green region are separated by the blue
region, which indicates that although clathrin coats start to curve
they stop to grow before they reach the spherical shape. Only by
increasing the preferred curvature one could drive a transition
from the curved state to the spherical state. We note that our
results agree with similar results that have been recently reported
for membrane on which a preferred curvature is locally induced.30

3.3 Variable line tension without coat rigidity

We next investigate the effect of line tension as a potential
mechanism to drive the invagination. For this purpose we treat
the line tension as a dynamic variable z = z(t). Since experimental
details are unknown, however, we do not consider the dynamics
explicitly. To simplify the description we neglect coat stiffening
and preferred curvature of the clathrin coat in this section, that is
we set kc = 0 and H0 = 0 in eqn (4). The coat energy then reads

E ¼ �mAþ 4pkð1� cos yÞ þ s
2
Að1� cos yÞ þ zE: (16)

Fig. 4 Energies and invagination pathways for clathrin coats with variable preferred curvature H0 = 1/R0, kc = 300 kBT and s = 10�5 N m�1. (a) The energy
of clathrin coats with size r = 200 nm. For R0 = 160 nm (green) the energy minimum is given for a curved state (green arrow), whereas for R0 = 80 nm
(orange) the spherical state becomes the energy minimum (orange arrow). (b) y as a function of the radius r of the area-equivalent flat patch. For the
smaller value of the preferred curvature the coat only curves (green), while the coat becomes spherical for the larger value of the preferred curvature
(orange). (c) y as a function of R0 for two different values of r. Only for the larger radius the coat invaginates completely.

Fig. 5 State diagrams for invagination driven by variable spontaneous curvature. (a–c) State diagrams of clathrin coats as a function of the coat radius r
of the area-equivalent flat patch and coat preferred radius R0 for three different values of membrane tension s. The orange region indicates the
parameter space where the spherical state is energetically favorable. In the green region the minimum energy state is curved (y Z 0.2p) and in the white
region the minimum energy state is flat (y o 0.2p). In the blue region clathrin coats do not grow.
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Fig. 6a shows the energy of eqn (16) as function of y. For a line
tension of 4 pN the spherical state is the energy minimum,
however, separated from the flat state by an energy barrier such
that the coat stays flat (marked by the arrow above the blue curve).
For a line tension of 7 pN the energy barrier vanishes and the coat
becomes spherical (marked by the arrow above the orange curve).

Next, we compare the energy of the flat coat to the spherical
coat. By going to the double limit of a flat disc y - 0, R - N

and r = Ry finite, we find the disc energy

Ed = �mpr2 + z2pr, (17)

with the disc area A = pr2. For the sphere, on the other hand,
where y - p, R = const. and the same area A, the energy equals

Es = �mpr2 + 8pk + spr2. (18)

Next, we calculate the radius r for which the sphere becomes
energetically favorable, Ed � Es = 0, thus

r2 � 2
z
s
rþ 8

k
s
¼ 0: (19)

Solving this equation for r we get

r ¼ z
s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
s

� �2

�8k
s

s
: (20)

This equation implies that a flat-to-curved transition can only
occur if the line tension is sufficiently large.

We now determine the energy extrema of eqn (16)

@E

@y
¼ s

2
A sin yþ 4pk sin y� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAð1� cos yÞ

2

r
¼! 0: (21)

Solving this equation we find an energy extremum for

y ¼ 2 sec�1
8kpþ sA

z
ffiffiffiffiffiffiffi
pA
p

� �
: (22)

The extremum vanishes for a �
ffiffiffi
2
p

, i.e. the line tension z and
the coat area A determine whether the extremum vanishes or

not. We calculate the size for which the extremum vanishes, i.e.
y = 0

r2 � z
s
rþ 8

k
s
¼ 0: (23)

Solving this equation for r we get

r ¼ z
2s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2s

� �2

�8k
s

s
: (24)

By calculating the second derivative of eqn (16) we determine
the type of extremum that is given by eqn (22),

@2E

@y2

����
y¼y�
¼ 1

2

pAz2

Asþ 8pk
� As� 8pk

� �
: (25)

Clearly, this equation becomes negative for small and large
values of A, implying a maximum, i.e. an energy barrier.
However, for intermediate values of A the equation can be
larger than zero, implying a minimum in the energy landscape.
Therefore, we determine the radius for which the type of the

extremum changes @2EðAÞ
�
@y2
��
y¼y�¼

!
0. Since we find eqn (24)

again, the energy maximum would only switch to an energy
minimum when the energy extremum vanishes completely.
Therefore, either the flat state is an energy minimum, or the
spherical state is an energy minimum, however, separated by
an energy barrier from the flat state (determined by eqn (20)),
or the spherical state is an energy minimum without energy
barrier (determined by eqn (24)). Thus, the invagination of
clathrin coats is either frustrated by a nucleation barrier or
driven by spinodal decomposition, in agreement with recently
reported results for a disk-to-vesicle transition of a membrane
with line tension.18

Fig. 6b and c show the invagination angle (given by eqn (22))
as a function of the coat radius r of the area-equivalent flat patch
and z for two values of coat size and line tension, respectively.
For the smaller values of line tension and coat size, respectively,

Fig. 6 Energies and invagination pathways for clathrin coats with variable line tension, no coat rigidity or preferred curvature, s = 10�5 N m�1. (a) The
energy of clathrin coats with size r = 200 nm and with a line tension of z = 4 pN (blue) and z = 7 pN (orange), respectively. For the lower value of the line
tension the spherical state is the energy minimum. However, the coat is flat (blue arrow) because the flat state is separated from the spherical state by an
energy barrier. For the larger value of line tension the energy barrier vanishes and the spherical state becomes the energy minimum (orange arrow).
(b) y as a function of the radius r of the area-equivalent flat patch. For the smaller value of line tension the coat stays flat and does not curve (blue), while
the coat becomes spherical for the larger value of line tension (orange). (c) y as a function of z for two different values of r. Only for the larger radius the
coat invaginates completely, whereas it stays flat otherwise.
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the coats stay flat (blue). However, for the larger values of line
tension and coat size the coat invaginates (orange). Importantly,
in this case the transition from the flat coat to the spherical coat
occurs discontinuously.

To complete the description we determine to which sizes
clathrin coats grow, that is we determine the derivative of
eqn (16) with respect to A:

@E

@A
¼ �mþ s

2
ð1� cos yÞ þ z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1þ cos yÞ

p 1ffiffiffiffi
A
p : (26)

Since the second derivative of eqn (16) is negative everywhere

@2E

@A2
¼ �z

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1þ cos yÞ

p 1ffiffiffiffiffiffi
A3
p ; (27)

the solution of eqn (26) defines an energy maximum given by

r ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cos yÞ

p
2m� sð1� cos yÞ: (28)

For a flat clathrin coat this simplifies to r = z/m, which defines
an initial energy barrier. After passing this barrier and the point
where the coat energy crosses through zero (Ed = 0), defined
through eqn (17), we have

r ¼ 2z
m
; (29)

therefore flat coats can grow indefinitely, since the energy is
only decreasing from that radius onwards.

In this section the shape of the clathrin coats is determined
by coat size, line tension and membrane tension. Fig. 7 shows
the state diagrams of clathrin coats as a function of the coat
radius r of the area-equivalent flat patch and line tension for
three values of membrane tension. Fig. 7a for low membrane
tension shows that there exists an orange region of parameter
space in which the spherical state is energetically favorable, as
determined by eqn (24). In particular, we see that the line
tension z needs to be above the value of 6 pN for the spherical
solution to be stable. While in the blue region the clathrin coats
are growing flat, in the white region the membrane stays bare
since the initial barrier, determined by eqn (29), is too large.

Increasing the membrane tension as shown in Fig. 7b and c
abolishes the region in which spherical coats are stable. Over-
all, Fig. 7 shows that clathrin coats can invaginate driven by an
increasing line tension, but only when membrane tension is
low. We note that this model variant is in agreement with a
CAM, where the clathrin coat invaginates without further coat
growth.

3.4 Variable line tension with finite coat rigidity

Because the case of variable line tension without coat rigidity
and preferred curvature studied in the last section is instructive
but not realistic, we finally explore a combination of the
mechanisms from before, that is we now discuss the case of a
variable line tension z = z(t) with finite values for both coat
rigidity and preferred curvature.

In this case we treat the full eqn (4) and set kc = 50 kBT and
R0 = 500 nm, since we are interested in an intermediate
situation that is not dominated by the rigidity of the clathrin
coat. Fig. 8a shows the coat energy (given by eqn (4)) as function
of y for 300 nm and two different values of z. As expected, we
now have a combination of the two mechanisms from before:
for the smaller line tension we find that the global energy
minimum is the spherical state, however, separated from the
local energy minimum of a curved state by an energy barrier
(marked by the arrow above the green curve). Because of this
energy barrier the coat is expected to be curved. For the larger
value of the line tension the intermediate energy barrier
vanishes such that the coat is expected to be spherical (marked
by the arrow above the orange curve). We note that a similar
cup-to-vesicle transition has been recently described for a fluid
membrane with preferred curvature and line tension.18

We now determine the energy extrema of eqn (4)

@E

@y
¼ sin y

s
2
Aþ 4p kc 1� R

R0

� �
þ k

� �	

� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA

2ð1þ cos yÞ

s )
¼! 0:

(30)

Fig. 7 State diagrams for invagination driven by variable line tension at vanishing coat rigidity. (a–c) State diagrams of clathrin coats as a function of the
coat radius r of the area-equivalent flat patch and line tension z for three different values of membrane tension s. The orange region indicates the
parameter space where the spherical state is energetically favorable. In the blue region the minimum energy state is flat and coated, and in the white
region the membrane is flat yet bare.
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Eqn (30) can be simplified to

p
2
sin y 1� b

a
1

sinðy=2Þ �
g
a

1

cosðy=2Þ

	 

¼! 0; (31)

with a = sr2 + 8(kc + k) b = 4kcr/R0 and g = zr. Expanding eqn (31)
around y = 0 and y = p shows that eqn (31) o0 for both y- 0 and
y - p. Thus, eqn (31) can have two or one solutions, implying
that a curved state is the energy minimum, or no solution
implying that the spherical state is the energy minimum.

Since eqn (31) cannot be solved analytically, we solve it
numerically. Fig. 8b shows y as a function of the coat radius r
of the area-equivalent flat patch, computed from eqn (31),
corresponding to the minimal energy coat configuration. For
the lower value of the line tension (green), we find that the coat
is either flat (y o 0.2p) or curved (y 4 0.2p). For the higher
value of the line tension we also find a transition to the
spherical state (orange). As expected, this transition is first
continuous and then discontinuous since both the coat rigidity
and the line tension drive the invagination. Fig. 8c shows y as a

function of z, computed from eqn (31). We find the same
behaviour as in Fig. 8b: For the smaller value of r the coat
stays flat or curved for all values of z, while it becomes spherical
for the larger r at a certain z.

To complete the description we next compute the size to
which coats grow by determining the derivative of eqn (4) with
respect to A:

@E

@A
¼ �mþ s

2
ð1� cos yÞ þ z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1þ cos yÞ

p 1ffiffiffiffi
A
p þ 2kc

R0
2

1� R0

R

� �
:

(32)

By using the solution computed from eqn (31) on eqn (32), we
can determine if a coat still grows (when eqn (32) is negative) or
if the growth is stalled (when eqn (32) is positive).

In this section we explore how the invagination pathway of
clathrin coats with constant rigidity is dictated by coat size, line
tension and membrane tension. Fig. 9 shows the state dia-
grams of clathrin coats as a function of the coat radius r of the
area-equivalent flat patch and z for three values of membrane

Fig. 8 Energies and invagination pathways for clathrin coats with variable line tension, kc = 50 kBT, R0 = 500 nm and s = 10�5 N m�1. (a) The energy of
clathrin coats with size of r = 300 nm and with a line tension of z = 5 pN (green) and z = 7 pN (orange). For the lower value of line tension the curved state
is the energy minimum (green arrow), while for the larger value of line tension the spherical state becomes the energy minimum (orange arrow). (b) y as a
function of the radius r of the area-equivalent flat patch. For the smaller value of line tension the coat stays curved (green), while the coat becomes
spherical for the larger value of line tension (orange). (c) y as a function of z for two different values of r. Only for the larger radius the coat invaginates
completely.

Fig. 9 State diagrams for invagination driven by variable line tension at finite coat rigidity. (a–c) State diagrams of clathrin coats as a function of the coat
radius r of the area-equivalent flat patch and line tension z for three different values of membrane tension s. The orange region indicates the parameter
space where the spherical state is energetically favorable. In the green region the coat is curved, while it stays flat in the blue region. In the white region
the coat growth is stalled.
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tension. Fig. 9a for low membrane tension shows that the
clathrin coat can be flat (blue region), curved (green region) or
spherical (orange region), determined by eqn (31) and dependent
on the combination of coat size and line tension. Moreover, the
growth of clathrin coats is stalled (white region), determined by
eqn (32). In addition, to the case without constant coat rigidity
(cf. Fig. 7a) now also curved clathrin coats occur (green region).
Therefore, clathrin coats first curve continuously before the transi-
tion to the spherical state occurs discontinuously.

By increasing the membrane tension as shown in Fig. 9b and
c only flat and stalled clathrin coats occur and the transition to the
spherical state is frustrated. To conclude, when considering the
invagination pathway of clathrin coats that exhibit a variable line
tension and a constant coat rigidity, we find that clathrin coats first
curve steadily before a cup-to-sphere transition18 occurs and the
coats leap to the completely invaginated spherical state.

4 Discussion

Although it becomes increasingly clear that clathrin lattices can
first assemble flat before they start to curve,12,13,15,17 it is still
elusive how the flat-to-curved transition works on a microscopic
level and which factors determine which physical route is taken
in detail. Light microscopy still lacks the spatial resolution to
elucidate the dynamics of clathrin lattice reorganization and
electron microscopy techniques lack the information on the
time domain of clathrin coat rearrangements.3 Thus, in this
work we theoretically investigate the assembly and invagination of
clathrin coats on the plasma membrane driven the competing
physical mechansims of an increase in coat stiffness, preferred
curvature and line tension.

Rather than providing a microscopic description of coat
organization, e.g. by particle based computer simulations,31–33

we take a continuum approach based on energetics and treat
the clathrin coat as a protein domain closely coupled to the
plasma membrane. We investigate four scenarios where coat
invagination is driven by an increase in coat rigidity, preferred
curvature or line tension. Our theory is completely analytical
and reveals a rich landscape of possible invagination scenarios.
While we find for coat stiffening and increasing preferred curvature
that curvature occurs along with growth, for line tension the lattice
must have grown to a certain size before curvature can be generated.
In the case of a finite coat rigidity but increasing line tension, the
coat first grows curved to a certain size before it completely
invaginates. In addition, the line tension has to increase gradually
in order to drive both the flat-to-curved transition and the cup-to-
sphere transition. Very importantly, all of these processes depend
strongly on membrane tension. For high membrane tensions, the
flat-to-curved and the cup-to-sphere transitions are completely
suppressed.

Our results on the influence of membrane tension on
CME and in particular the flat-to-curved transition agree with
experimental13,24,34 and theoretical results35,36 obtained earlier.
Importantly, all mechanisms discussed here are compatible
with the notion that the clathrin coat is initially flexible and
plastic.14,15,22 This initial state of the clathrin coat might

resemble a liquid gel or fluid in which lattice reorganization is
still possible.22,37 Only as soon as the clathrin coated membrane
starts to invaginate, the coat solidifies and the preferred curva-
ture of the coat is fixed, effectively acting as a plastic ratchet.38

In extension to earlier work, our results predict that a flat-to-
curved transition can occur as a consequence of increasing line
tension, whereas for increasing preferred curvature or coat rigidity,
curvature would increase gradually along with growth.36 The
notion that a flat-to-curved transition can occur as a result of an
increasing line tension or preferred curvature of the clathrin coat
was already discussed in the work of Lipowsky22 and Gompper and
coworkers.21 The latter work explains the formation of invaginated
clathrin lattices as an example of a two-component fluid in which a
crystalline membrane patch, embedded in the plasma membrane,
buds. In contrast to,21 we here also considered the case where the
bending energy of the coat increases due to an increase of the
bending rigidity rather than an increase of preferred curvature.
Moreover, we present an analytical theory that does not require
computer simulations.

The size of clathrin cages assembled in vitro is smaller than
the size of clathrin coats assembled on a membrane.2,10 In
other words the preferred curvature of clathrin triskelia without
membranes differs from that of clathrin triskelia in clathrin
coats assembled at the membrane. The origin of this striking
difference is still unknown. It is likely that not only does the
membrane constitute a larger resistance to clathrin bending,
but also that the preferred curvature of clathrin triskelia is only
set by their interplay with adaptor proteins and with other
clathrin triskelia in the clathrin lattice.39 For simplicity, here we
have assumed well-defined values for the preferred curvature,
similar to the approach taken when considering curved membrane
patches.18 As more experimental details are revealed on the
clathrin system, the preferred curvature might has to be written
as a function of the other system variables.

For the clathrin coats a constant polymerization energy m
was assumed (cf. Table 1).11 However, one could speculate that
clathrin coats that can grow denser exhibit an increasing binding
energy and therefore also polymerization energy could be variable.
This effect would not change the invagination pathway, however, it
would change the size when the growth of a clathrin coat is
energetically unfavorable, and hence stalled. Eqn (15), (29) and (32)
predict that by increasing m the region for which one finds stalled
growth would decrease. In addition, one could also speculate that
the clathrin binding energy changes with the invagination angle. In
order to adequately address such a mechanism, however, more
insight is required from the experimental side, so that this question
can only be dealt with in future work.

Because we focus on local mechanisms to bend the membrane,
we do not consider the potential mechanism of membrane bending
by actin polymerizing in the cytoplasm.40 Although present also in
animal cells, this mechanism is much more relevant in cells like
yeast, which have a large turgor pressure. In the future, these two
research directions should be combined into a comprehensive
framework.

To conclude, our approach provides a simple description of
the shape changes of assembling clathrin coats based on a
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transparent and analytically solvable continuum model. We lay
out the three main physical pathways which can be driven by
changes to the coat organization during growth. In the future,
our model can be extended into the time domain using the
assumption of overdamped dynamics. Here however time-
resolved experimental data (e.g. on invagination angle and
radius of curvature) would be very helpful as guide through
the rich assembly landscape that becomes evident already in
our simple continuum approach.
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40 S. Dmitrieff and F. Nédélec, PLoS Comput. Biol., 2015,
11, e1004538.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
1 

O
ct

ob
er

 2
02

0.
 D

ow
nl

oa
de

d 
by

 R
up

re
ch

t-
K

ar
ls

 U
ni

ve
rs

ita
t H

ei
de

lb
er

g 
on

 1
0/

27
/2

02
0 

9:
50

:5
8 

A
M

. 
View Article Online

https://doi.org/10.1039/D0SM01375G



