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Chapter 1

The central equation

We consider dynamical systems of dimension d which are described by ODEs.
This implies that we use continuous time. (One alternative would be differ-
ent equations with discrete time.) Calling ~x the state vector of the system
we consider the equation

d~x
dt = ~f(~x)

with a vector-valued function ~f which can be non-linear. In case of a linear
function ~f the equation simplifies to

~̇x = A · ~x

with a matrix A and the system shows exponential behavior.

Examples

1. Overdamped particle η · ẋ+ k ·x = 0

η is the viscosity of the surrounding
medium. Solving for ẋ shows that
the equation is already in the general
form:

ẋ = −k
η
·x.

The system is one-dimensional and
linear. Because of this, no oscillations
occur.
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6 CHAPTER 1. THE CENTRAL EQUATION

2. Harmonic oscillator ~̈x+ ω2
0~x = 0

This looks superficially like an one-dimensional system. But the fol-
lowing trick eliminates the second derivative and shows the linear but
two-dimensional character of the harmonic oscillator:
Choose x1 = x and x2 = v = ẋ with the velocity v. Then, the equation
written in the general form is

~̇x =
(
ẋ1
ẋ2

)
=
(

0 1
−ω2

0 0

)
· ~x.

3. Pendulum ẍ+ g
l sin(x) = 0

Using the same trick as for the har-
monic oscillator, we get ẋ1 = x2
and ẋ2 = −g

l sin(x1), hence a non-
linear, two-dimensional system. Only
for small angles x (⇒ sin(x) ≈ x) we
end up with a harmonic oscillator.

4. Driven harmonic oscillator mẍ+ k ·x = F · cos(ωt)
The equation of the driven harmonic oscillator explicitly depends on
time t. But rewriting the equation using x1 = x, x2 = ẋ and intro-
ducing a third variable x3 = t leads to the relations ẋ1 = x2, ẋ2 =
1
m (−kx1 + F · cos(ωx3)) , ẋ3 = 1. The system is non-linear with
d = 3.

5. Electric curcuit R · I + Q
C = V0
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Using Kirchhoff’s law and the relation I = Q̇ we get the ODE of an
overdamped particle:

Q̇ = V0
R
− 1
RC
·Q.

Remember this is a linear, one-dimensional system. If we put in a
solenoid the dependence of Q̈ will lead to d = 2 and oscillations can
occur.
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Chapter 2

Flow on a line

In this chapter, we are looking at one-dimensional systems. Therefore, the
central equation becomes ẋ = f(x) with an arbitrary function f .

The first example we want to discuss is non-linear: ẋ = sin(x). The separa-
tion of variables leads to

dx
sin(x) = csc(x)dx = dt

which can be integrated with the result

t = ln
(csc(x0) + cot(x0)

csc(x) + cot(x)

)
.

Even in this simple non-linear example, the behavior of the system is not
easy to understand from this solution. But graphical analysis shows the
most important properties.

Plotting a phase portrait (left figure), stable and unstable fixed points can
be determined. In 1d, the systems dynamics corresponds to flow on the line.
The corresponding trajectories are shown in the right figure.
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10 CHAPTER 2. FLOW ON A LINE

For a stable fixed point a little change in x drives the system back, whereas
for an unstable fixed point it causes a flow away from the fixed point.

Choosing different starting points x∗ the time-dependence of the acceleration
computes as follows: for starting points |x∗−π| ≤ π

2 the acceleration directly
decreases. But if x∗ = π ± ∆x with π

2 < ∆x <= π the acceleration first
increases and decreases after the deflection point.

The graphical analysis can be performed for the earlier examples as well:

• Overdamped particle

ẋ = −x
x∗ = 0 , stable fixed point

• Electrical curcuit

x∗ 6= 0
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The applied method works for any graph.

In an one-dimensional system, there are three possibilities in total the system
can behave:

1. staying at a fixed point

2. flowing to a stable fixed point

3. flowing to infinity

There is also a mathematical method to analyze fixed points. It is called
linear stability analysis. Firstly, one determines the fixed points by solving
ẋ = f(x) = 0 for x. Take x∗ to be a fixed point. Then, the deviation η from
this fixed point is given by η = x− x∗.

The derivative η̇ can be written in dependence of the sum x∗ + η.

η̇ = ẋ = f(x) = f(x∗ + η)

The first order Taylor expansion η̇ = f(x∗)
=0

+ f ′(x∗) · η + O(η2) leads to a

first order ODE
η̇ = f ′(x∗) · η

which can be integrated to a time-dependent deviation

η(t) = η0 · exp(f ′(x∗) · t)

with the starting deviation η0 at t = 0. Introducing the relaxation time
t0 = | 1

f ′(x∗) | this yields

η(t) = η0 · exp
(
sign(f ′(x∗)) · t/t0

)
.
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Thus, f ′(x∗) hints towards the characteristics of a fixed point x∗.

Conclusion

If f ′(x∗) < 0: stable fixed point, exponential decay
f ′(x∗) > 0: unstable fixed point, blow-up
f ′(x∗) = 0: further investigations are needed

Examples

In both cases ẋ = ±x3 the character of the fixed point is not clear from f ′.

For ẋ = x2 the system has a half-stable point at x = 0. If ẋ is constant, the
result is a line of fixed points.

Uniqueness theorem

If f(x) and f ′(x) are continuous on an open interval around x0, then a
solution exists and is unique.
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This leads to the impossibility of oscillations in an one-dimensional system.
Instead, everything is overdamped. Consider a potential V . In 1d, we can
write

ẋ = f(x) = −dV (x)
dx .

Hence, the time derivative of V yields
dV
dt = dV

dx
dx
dt = −

(dV
dx

)2
≤ 0.

So, the energy of the system can never increase. It always decreases during
flow.

Examples

1. Overdamped particle

2. Mexican hat

The Mexican hat is an example of a bistable system.

The figures show the following relation for d = 1:

minimum in V : stable fixed point
maximum in V : unstable fixed point



14 CHAPTER 2. FLOW ON A LINE



Chapter 3

Bifurcations in 1d

As we have seen in chapter 2, flow can easily be understood in d = 1. How-
ever, up to now we did not consider any parameter which in principal could
change the flow structure. A sudden change in the character of the solu-
tion is called bifurcation. Physical examples for this are phase transitions,
mechanical instabilities, laser thresholds, population thresholds etc.

There are exactly three types of bifurcations in d = 1. Mathematically it
can be shown that each type can be described by one general form using
the bifurcation parameter r. The general properties are summarized in the
following table.

Saddle-node bifurcation ẋ = r + x2 fixed points can appear or disappear
depending on r

Transcritical bifurcation ẋ = rx− x2 fixed points always exist for all r
but they can exchange stability

Pitchfork bifurcation ẋ = rx± x3 fixed points appear or disappear
as a symmetrical pair

3.1 Saddle-node bifurcation

Consider ẋ = r + x2 with the bifurcation parameter r. The roots are given
by x∗ = ±

√
r. For various r the system behaves differently.

15



16 CHAPTER 3. BIFURCATIONS IN 1D

This allows to analyze the influence of r on the flow behavior in a bifurcation
diagram.

Since the branches appear suddenly for x∗ ≤ 0 the saddle-node bifurcation
is also called out of the blue sky bifurcation.
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This corresponds to a phase transition of second order like the magnetization
of an Ising magnet.

But why does ẋ = r + x2 describe all saddle-node bifurcations? We assume
ẋ to be a function of x and the parameter r.

Expanding ẋ = f(x, r) around x = x∗ and r = rc leads to

ẋ ≈ f(x∗, rc)+∂f

∂x
|(x∗,rc) · (x−x∗)+

∂f

∂r
|(x∗,rc) · (r−rc)+

1
2
∂2f

∂x2 |(x∗,rc) · (x−x∗)2.

Considering f(x∗, rc) = 0 and ∂f
∂x |(x∗,r∗) = 0 the general form computes as

ẋ = a(r − rc) + b(x− x∗)2 .

Example: Stability of adhesion cluster under constant force
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We consider an adhesion cluster with bonds (receptor-ligand pairs) that can
be either open or closed. If N(t) represents the time-dependent number of
closed bonds and Nt the total number of bonds, the number of open bonds
is given as Nt − N . Two rates koff, kon are used to describe the systems
dynamics. In contrast to kon, koff depends on the acting force F . It can be
written as koff = k0 · exp( F

F0 ·N ) = k0 · exp( fN ). Furthermore using γ = kon
k0

and the dimensionless force f = F
F0

, the time-dependent number of bonds is
given by

dN
dt = kon · (Nt −N)− koff ·N

= kon · (Nt −N)− k0 · exp( fN ) ·N.

⇒ Ṅ = dN
dτ = −N · exp( fN ) + γ · (Nt −N)

in dimensionless time τ = k0 · t. The graphical analysis shows the different
cases for f < fc and f > fc. The fixed points are given by N · exp( fN ) =
γ · (Nt −N).

Below, the bifurcation point fc is calculated using two equations.

Nc · exp( fc
Nc

) = γ · (Nt −Nc) (3.1.1)

Nc · exp( fc
Nc

)
(

1− fc
Nc

)
= γ ·Nc (3.1.2)

γ = fc
Nc
· exp( fc

Nc
) (3.1.3)
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Equation (1) represents the fixed points. Dividing (2) by (1) results in(
1− fc

Nc

)
= − Nc

Nt −Nc
⇒ fc = NtNc

Nt −Nc
⇒ fc

Nc
= fc
Nt

+ 1

Using this, γ can be written as

γ = fc
Nt
· exp( fc

Nt
+1) ⇒ fc

Nt
· exp( fc

Nt
) = γ

e ⇒ fc = Nt · plog
(
γ

e

)

. In the last step, the function plog is used, defined by x · exp(x) = Q ⇒
x = plog(Q).

3.2 Transcritical bifurcation

The general form of a transcritical bifurcation ẋ = r ·x − x2 leads to the
fixed point x∗ = 0 which exists for an arbitrary bifurcation parameter r and
also represents the bifurcation point rc = 0. The second fixed point x∗ = r
is stable for r > 0 and unstable for r < 0. Depending on the application,
not every fixed point is reasonable, e.g. when the population size is always
positive.

A good example for a transcritical bifurcation is a laser. The rate of the
photons in the laser ṅ(t) is determined by the difference between gain and
loss. Since the photons stimulate the atoms, the gain is proportional to
both the number of photons in the laser n(t) and the number of excited
atoms N(t). The gain coefficient is positive: G > 0. The loss of photons is
determined by the rate constant k > 0.

ṅ(t) = gain− loss
= G ·n ·N − k ·n

Introducing the maximal possible number of excited atoms N0, the number
of excited atoms can be written as N(t) = N0 − α ·n(t). Hence, the rate ṅ
computes as

ṅ(t) = (GN0 − k) ·n−G ·α ·n2.



20 CHAPTER 3. BIFURCATIONS IN 1D

Thus, the fixed points are n∗1 = 0 and n∗2 = GN0−k
αG . Since n describes a

particle number, demanding n∗2 > 0 is reasonable and leads to N0 >
k
G .

The fixed points stability analysis is done by evaluating

g′N (n∗) = dṅ
dn(n∗) = (GN0 − k)− 2Gαn∗.

g′n(n∗1) = GN0 − k =
{
< 0, for N0 <

k
G , stable fixed point

> 0, for N0 >
k
G , unstable fixed point

g′n(n∗2) = k −GN0 < 0, since N0 >
k
G , stable fixed point

Obviously, N0 = k
G is a bifurcation point.
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3.3 Pitchfork bifurcation

As the general form reads ẋ = rx± x3 two different types exist: the super-
critical and the subcritical pitchfork bifurcation.

3.3.1 Supercritical pitchfork bifurcation

Considering firstly f(x, r) = ẋ = rx−x3, the fixed points compute as x∗1 = 0
and x∗2/3 = ±

√
r if r > 0. The stability analysis yields

f ′x(x, r) = r − 3x2.

f ′x(x∗1) = r =
{
< 0, for r < 0, stable fixed point
> 0, for r > 0, unstable fixed point

f ′x(x∗2/3) = −2r, stable fixed point since x∗2/3 only exist for r > 0
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3.3.2 Subcritical pitchfork bifurcation

Now, f(x, r) = ẋ = rx + x3. The fixed points are similar: x∗1 = 0 and
x∗2/3 = ±

√
−r if r < 0. In this case, the properties are:

f ′x(x, r) = r + 3x2.

f ′x(x∗1) = r =
{
< 0, for r < 0, stable fixed point
> 0, for r > 0, unstable fixed point

f ′x(x∗2/3) = −2r, unstable fixed point since x∗2/3 only exist for r < 0

So, the two types of pitchfork bifurcation differ in the second and third fixed
point which are symmetrical in both cases. By now, the system is unstable.
But it can be stabilized by using high order terms.

3.4 Influence of high order terms

In order to stabilize pitchfork bifurcations, a fifth order term is used. For
instance, consider the following equation:

ẋ = rx+ x3 − x5.
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The fixed points are

x∗1 = 0

x∗2/3 = ±

√
1 +
√

1 + 4r
2 , exists for 1 + 4r > 0

x∗4/5 = ±

√
1−
√

1 + 4r
2 , exists for − 1 < 4r < 0

The existing fixed points in dependence of the bifurcation parameter r are
shown in the next figure.

The bifurcation diagram is particularly interesting because there are differ-
ent bifurcation types visible. The surrounding of r = 0 is characterized by
a subcritical pitchfork bifurcation, whereas the transition of the unstable to
the stable branch at r∗c describes a saddle-node bifurcation.

As well, a hysteresis effect is possible in this configuration. Starting at
r > r∗c , x = 0 and increasing r up to r > 0 leads to an unstable condition.
A small perturbation results in a transition to a stable branch at same r.
Decreasing r again, the system remains on the stable branch. This shows
that the system does not come back to the original fixed point.
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3.5 Summary of 1d bifurcations

The general form is f(x, r) = ẋ and behaves as shown in the following table:

normal form f(x∗) f ′x(x∗, rc) f ′r(x∗, rc) f ′′xx(x∗, rc) f ′′xr(x∗, rc) f ′′′xxx(x∗, rc)

saddle-node ẋ = r + x2 0 0 6= 0 6= 0
bifurcation

transcritical ẋ = rx− x2 0 0 0 6= 0 6= 0
bifurcation

pitchfork ẋ = rx± x3 0 0 0 0 0 6= 0
bifurcation

Example: Overdamped bead on a rotating hoop

The hoop is rotating around the axis with an angular velocity ω. The acting
forces are the gravitational force FG, the centrifugal force FC and a friction
force FR which describes the system in a fluid. They are projected on the
φ-plane.
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FG = m · g → mg · sin(φ)
FC = m · ρ ·ω2 → mρω2 · cos(φ)
FR = −ḃ̇φ

Using ρ = r · sin(φ), the total acting force yields

F = m · rφ̈ = −b · φ̇−mg · sin(φ) +mrω2 · sin(φ) cos(φ).

In order to receive a first order equation, the term m · rφ̈ shall be neglected.
The time τ = t

T with the timescale T is introduced. In a second step, the
equation is reformulated dimensionless by dividing by the gravitational force
FG.

(
mτ

T 2

)2 d2φ

dτ2 = − b
T

dφ
dτ −mg · sin(φ) +mrω2 · sin(φ) cos(φ)(

τ

gT 2

)2 d2φ

dτ2 = − b

Tmg

dφ
dτ − sin(φ) + rω2

g
· sin(φ) cos(φ)

How to define T so that ε2 :=
(

τ
gT 2

)2
is negligible?

Choosing the prefactor of the friction force − b
Tmg to be of order 1, T is

defined to be T = b
mg . With this, ε is negligible if ε = τ

gT 2 = m2gτ
g2 � 1, so

if the inertia is much smaller than the friction.

Set ε = 0 from now on and introduce γ := τω2

g . The equation computes as

dφ
dτ = sin(φ) (γ · cos(φ)− 1) .

The applied procedure has reduced the number of parameters from five to
two: ε and γ. But setting ε = 0 transforms the equation to dimension one.
So, only one initial condition can be considered. Thus, the behavior of the
system ”at the very beginning” is neglected. After that, the system behaves
as if it was of the order of 1.

The fixed points result from sin(φ) = 0 and cos(φ)− 1
γ = 0. Therefore, the

number of fixed points depends on γ:
For |γ| > 1 there are only the fixed points due to sin(φ) = 0. For the
bifurcation point |γ| = 1, one additional fixed point exists for each period
of φ and for |γ| < 1, there are actually two.
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Chapter 4

Flow on a circle

So far, we considered linear systems ẋ = f(x) and visualized their dynamics
as flow on a line. Now, we are taking into account periodic behavior using
the differential equation θ̇ = f(θ). Then, f(θ+2π) = f(θ). This corresponds
to a vector field on the circle.

The simplest case is a constant velocity θ̇ = f(θ) = const = ω leading to an
oscillation with period T = 2π

ω but without amplitude, θ(t) = ω · t+ ω0.

Ths simplest non-trivial case is θ̇ = ω − a · sin(θ). It has various applica-
tions in different branches of science: e.g. Josephson junctions, electronics,
biological oscillations, mechanics, etc.

a is a bifurcation parameter (a > 0). Depending on its relation to ω, the
following phase portraits (lhs) and corresponding flow diagrams (rhs) exist.
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What is the oscillation period T?

T =
∫

dt =
∫ 2π

0

dt
dθdθ =

∫ 2π

0

1
dθ
dt

dθ =
∫ 2π

0

1
ω − a · sin(θ)dθ = 2π√

ω2 − a2

Obviously, the oscillation period depends on a.
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a = 0 ⇒ T = 2π
ω

a→ ω ⇒ T = 2π√
(ω − a)(ω + a)

= 2π√
2ω
√
ω − a

The scaling is generic for a saddle-node bifurcation.

A Taylor expansion around the critical value θ∗ = π
2 by introducing Φ =

θ − θ∗

Φ̇ = ω − a · sin
(

Φ + π

2

)
= ω − a · cos(Φ)

≈ ω − a+ 1
2a ·Φ

2

results in the normal form of saddle-node bifurcations:

x :=
(
a

2

)1/2
Φ

r := ω − a

⇒
(2
a

)1/2
ẋ = r + x2.
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Most of the time will be spent close to θ∗.

T =
∫

dt =
∫ ∞
−∞

dt
dxdx =

(2
a

)1/2 ∫
dr 1
r + x2 =

(2
a

)1/2 π√
r

=
( 2
ω

)1/2 π√
ω − a

This is the same result as above. Therefore, extending the integration
boundaries to infinity is indeed not a problem.

Examples

1. Driven overdamped pendulum bθ̇ +mgL sin(θ) = Γ

Dividing by mgL leads to the dimen-
sionless equation

b

mgL︸ ︷︷ ︸
=τ0

θ̇ + sin(θ) = Γ
mgL

=: γ.

The bifurcation parameter γ is the quotient of the applied torque Γ
to the maximum gravitational torque. Having also introduced the
dimensionless time τ0 = t

τ the system is described by the equation

θ̇ = dθ
dτ = γ − sin(θ).

At γ = 1 the pendulum stops its motion. For γ < 1 the external
torque is too weak to drive the pendulum around.

2. Firefly synchronization

Identify θ = 0 with the emission of the flash.
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Without external stimulus, each fire-
fly has θ̇ = ω. Now, consider a peri-
odic stimulus with phase Ξ which sat-
isfies

Ξ̇ = Ω. (4.0.1)

The basic model to simulate the fire-
fly’s reaction to the stimulus is given
by

θ̇ = ω +A · sin(Ξ− θ) (4.0.2)

with the resetting or coupling strength
A.

The last equation can be expressed using the phase difference Φ =
Ξ−θ. Substracting (4.0.2) from (4.0.1) leads to Φ = Ω−ω−A · sin(Φ).
Defining furthermore µ := Ω−ω

A and τ = A · t the final equation reads

Φ̇ = dΦ
dτ = µ− sin(Φ)

.

This leads to the following phase space diagrams:

For µ = 0, there is a perfect synchrony at Φ = 0. If µ > 1 (or µ < −1)
there aren’t any stable fixed points. So, there is no synchrony but a
phase drift. The oscillation occurs with T = 2π√

(Ω−ω)2−A2 .
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The interval −1 < µ < 1 is called
the range of entrainment. There is
synchrony at the stable fixed point
but with a phaselag. The stimulus
entrains the oscillation with a fre-
quency Ω if ω − A < Ω < ω + A.
This is called phase locking.
In our example, now all fireflies
flash in synchrony, but with a pos-
sible lag to the external stimulus
(e.g. a flash light).



Chapter 5

Flow in linear 2d systems

5.1 General remarks

In 2d, the varity of dynamical behavior is much larger than in 1d.

As a first step, we look at linear systems in two dimensions. Then, a complete
classification is possible and starts from

ẋ = A · ~x =
(
a b
c d

)(
x1
x2

)
.

In general, if ~x1(t) and ~x2(t) are solutions of the equation, so is c1 · ~x1+c2 · ~x2.
In addition, ~x = 0 is always a solution.

Graphical analysis can be done by drawing and analyzing the ”phase plane”
(x1, x2).

Examples

1. Harmonic oscillator: mẍ+ kx = 0

Defining the frequency ω0 =
√

k
m and choosing x1 = x, x2 = ẋ = v as

done in section 1 the matrix is A =
(

0 1
−ω2

0 0

)
.

33
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Why are the trajectories ellipses?

ẋ

v̇
= v

−ω2
0 ·x

⇒ −ω2
0 ·x dx = v dv

⇒ −ω2
0 ·x2 − v2 = const

This corresponds to energy conserva-
tion:

1
2kx

2 + 1
2mv

2 = const.

2. A linear 2d system without oscillation:
(
ẋ
ẏ

)
=
(
a 0
0 −1

)(
x
y

)

For the given matrix A =
(
a 0
0 −1

)
, the two equations are uncoupled.

They can be separately solved using an exponential ansatz.

ẋ = a ·x x(t) = x0 · exp(a · t)
ẏ = −y y(t) = y0 · exp(−t)

The phase portraits differ depending on a.
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5.2 Phase plane flow for linear systems

Consider the linear case

~̇x = A · ~x =
(
a b
c d

)
~x.

Our analysis is based on the two eigenvalues λ1, λ2 of A =
(
a b
c d

)
. They

are calculated using the characteristic equation A ·~v = λ ·~v.

0 != det
(
a− λ b
c d− λ

)
= λ2 − τλ−∆

= (λ− λ1)(λ− λ2)

⇒ λ1/2 = τ ±
√
τ2 − 4∆
2

with τ = a+ d = tr A = λ1 + λ2 and ∆ = ad− cb = det A = λ1λ2.

In general, the eigenvalues are complex numbers depending on the trace
τ and the determinant ∆ of A. If the eigenvalues are different λ1 6= λ2,
the eigenvectors ~v1/2 are linearly independent. Hence, the characteristics of
A determines the phase plane flow as shown below. The time-dependent
eigenvectors can be calculated using ~x1/2(t) = exp(λ1/2 · t) ·~v1/2.

We now completely enumerate all possible cases.

1. Real eigenvalues
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2. Complex eigenvalues

If the discriminant is smaller than zero, τ2 − 4 ·∆ < 0, the eigen-
values are complex. Defining ω = 1

2
√
−(τ2 − 4 ·∆), the eigenvalues

read λ1/2 = τ
2 ± iω. The general solution can be decomposed in the

directions of the eigenvalues.

~x(t) = (c1 ~v1 exp(iωt) + c2 ~v2 exp(−iωt)) · exp(αt)

Now, there are oscillations in the system. If α < 0 the amplitude
is decaying. In contrast, if α > 0 it is exploding. Only if α = 0
the amplitude is constant. In this case, the eigenvalues are purely
imaginary. It is the boundary between stability and instability.
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3. Equal eigenvalues

The eigenvalues are equal if the discriminant is zero τ2 − 4 ·∆ = 0.
Then, the eigenvectors exhibit the same velocity. They can either
be different or the same. In both cases, stable and unstable phase
portraits exist. As an example, the stable ones are plotted.
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λ1 = λ2, v1 = v2, degenerate
node

4. At least one eigenvalue is zero
In this case, the phase portrait is a line or plane of fixed points.

Summary in one scheme

Saddles, nodes and spirals are the major types of fixed points.



Chapter 6

Flow in non-linear 2d
systems

Non-linear systems show a much larger variety of flow behavior.

~̇x =
(
f1(x)
f2(x)

)

Example

Recipe for phase space analysis:

1. Identify nullclines: lines with ẋ = 0 or ẏ = 0

2. Identify fixed points: intersections of nullclines

3. Linear stability analysis around fixed points

39
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Example ẋ = x + exp(−y), ẏ = −y

The phase portrait shows four different regions varying in the sign of ẋ and
ẏ. At (-1,0), there is a saddle. Having drawn the nullclines it is easy to
compute the remaining flow behavior.

Linear stability analysis:

At a fixed point (x∗, y∗), we look at small deviations u = x−x∗ and v = y−y∗
using Cartesian coordinates. The derivatives are approximated in a Taylor
expansion up to first order.

u̇ = x = f1(x∗ + u, y∗ + v)

= f1(x∗, y∗) + ∂f1
∂x
·u+ ∂f1

∂y
· v +O(u2, v2, . . . )

v̇ = y = f2(x∗ + u, y∗ + v)

= f2(x∗, y∗) + ∂f2
∂x
·u+ ∂f2

∂y
· v +O(u2, v2, . . . )

Approximated up to first order, this can also be written as matrix equation.(
u̇
v̇

)
=
(
∂xf1 ∂yf1
∂xf2 ∂yf2

)
︸ ︷︷ ︸

=A

(
u
v

)

A is the Jacobian at the fixed point. Calculating the eigenvalues of A, linear
stability analysis can be performed. This works well for saddles, nodes and
spirals. But it does not always work for borderline cases such as centers,
stars, lines and planes of fixed points or degenerate nodes as shown in the
following example.

Example: Rabbits and sheep

Consider the Lotka-Volterra model for two competing species x, y. The vari-
ables x and y name the population size of rabbits and sheep, respectively.
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The rabbit population exhibits a faster logistic growth than the sheep pop-
ulation. As the sheep compete for grass with the rabbits, the growth rate of
the rabbits ẋ decreases if more sheep exist while the sheep suffer only little
under more rabbits.

ẋ = x(3− x− 2y)
ẏ = y(2− y − x)

The Jacobian computes as A =
(

3− 2x− 2y −2x
−y 2− 2y − x

)
. The character

of the four fixed points is different.

fixed point (0, 0) (0, 2) (3, 0) (1, 1)

A

(
3 0
0 2

) (
−1 0
−2 −2

) (
−3 −6
0 −1

) (
−1 −2
−1 −1

)

τ 5 -3 -4 -2

∆ 6 2 4 -1

λ1 3 -1 -2
√

2− 1

λ2 2 -2 -2 −(
√

2− 1)

classification unstable node stable node stable node saddle
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Example: Pathological example

ẋ = −y + ax(x2 + y2)
ẏ = x+ ay(x2 + y2)

Obviously, (x∗, y∗) = (0, 0) is a fixed point. In order to calculate the Jaco-
bian, only the linear terms have to be considered.

A =
(

0 −1
1 0

)
⇒ τ = 0; ∆ = 1; λ1/2 = ±i

In linear approximation, the fixed point is a center.

But this is not true for the non-linear case. To analyze this in more detail,
we switch to polar coordinates x = r · cos θ, y = r · sin θ and derive the
equation of motion for r

r2 = x2 + y2

r · ṙ = x · ẋ+ y · ẏ = x(−y + axr2) + y(x+ ayr2) = a · r4

⇒ ṙ = a · r3

and θ:

θ = arctan
(
y

x

)
⇒ θ̇ = 1

1 +
( y
x

)2 · xẏ − ẋyx2 = · · · = 1.

Hence, the angular velocity θ̇ is constant. a is the important parameter. The
situation is similar to flow on a circle, yet the radius as dynamic variable
can either explode or decay.

a > 0 a < 0 a = 0

A center occurs only for a = 0. But linear stability analysis predicted this
for all values of a. Instead, the typical case is a spiral.
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We next have a brief look at two different types of special situations: conser-
vative (e.g. earth orbiting around the sun) and reversible systems (systems
with time-reversal). These cases are sufficiently restrictive such that general
rules follow that make calculations easier.

1. Conservative systems
In a conservative system, the acting force F can be derived for a po-
tential V . For example, in 1d we have:

m · ẍ = F (x) = −dV
dx .

Multiplying with the velocity ẋ leads to

m

2
d
dt(ẋ

2) = −dV
dt

⇒ d
dt(

1
2mẋ

2 + V︸ ︷︷ ︸
=E

) = 0.

There exists a quantity E which is constant along trajectories (but not
in an open set in ~x). This corresponds to energy conservation.
Theorem: In a conservative system, an attractive fixed point cannot
exist.
Proof: In such a case, there would be a bassin of attraction and thus
E could not be constant in a nontrivial way.
Example: Mexican hat V (x) = −1

2x
2 + 1

4x
4

The second derivative is ẍ = x − x3. Three fixed points exist: (0,0),
(1,0) and (-1,0). Applying a simple trick ẋ = y and ẏ = x − x3 the
phase portrait can be drawn.



44 CHAPTER 6. FLOW IN NON-LINEAR 2D SYSTEMS

Example: Hamiltonian system H(q, p)

It is q̇ = ∂H
∂p and ṗ = −∂H

∂q . From this, energy conservation simply
follows:

Ḣ = ∂pH · ṗ+ ∂qH · q̇ = 0.

We know from the theorem that there are no attractive fixed points
in the system. Instead, a typical fixed point is a center and thus often
oscillations occur in the system.

2. Reversible systems

Time reversal symmetry is more general than energy conservation.
Reversible, non-conservative systems occur e.g. fluid flow, laser, su-
perconductors, etc.

Mechanical systems without damping are invariant under t → −t.
Consider in 1d, m · ẍ = F (x), thus the force is time-independent. This
is time-independent because of the second derivative. We introduce
the velocity

v = ẋ ⇒ v̇ = 1
m
F (x).

Both (x(t), v(t)) and
(x(−t),−v(−t)) are solutions
of the system in this framework.
In general, there is a twin for each
trajectory Note the similarity to
centers, which have trajectories
that have merged at the ends.

Examples:

(a) ẋ = y − y3 ẏ = −x− y2

The system is invariant under t→
−t and y → −y. There are three
fixed points: two saddles and a
center.
There is mirror symmetry around
the x-axis in regard to the flow
lines (but not the flow vectors).

(b) ẋ = −2 cos(x)− cos(y) ẏ = −2 cos(y)− cos(x)
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The system is invariant under t→
−t, x→ −x and y → −y.
Four fixed points exist (x∗, y∗) =(
±π

2 ,±
π
2
)
: two saddles, one sta-

ble node and one unstable node.
Since the stable node is an attrac-
tive fixed point, this is not a con-
servative system.
Now, there is mirror symmetry
around the bisector.

Numerical integration of ODE’s

Several numerical integration methods for ODE’s exist, differing in their
accuracy. They are based on a Taylor expansion up to a certain order. In
the following, we have a closer look at three different methods.

1. Euler method:
The time t is discretized. Starting at tn, the next step is computed
multiplying the velocity at tn with the time step ∆t. This corresponds
to a first order Taylor expansion

xn+1 = xn + f(xn)∆t+ O(∆t2).

Since this accuracy is not very good, higher order methods are often
applied.

2. Runge-Kutta methods:
The Runge-Kutta methods combine several Euler-style steps. A sec-
ond order accuracy is achieved by using the mid-point velocity of the
integration step.

k1 = f(xn)∆t, k2 = f

(
xn + k1

2

)
∆t

⇒ xn+1 = xn + k2 + O(∆t3)

We see that two function evaluations are needed. In an analogous
manner, we maintain fourth order accuracy:

k1 = f(xn)∆t, k2 = f

(
xn + k1

2

)
∆t,

k3 = f

(
xn + k2

2

)
∆t, k4 = f

(
xn + k3

2

)
∆t,
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⇒ xn+1 = xn + 1
6 (k1 + 2k2 + 2k3 + k4) + O(∆t5)

Obviously, this requires four function evaluations. It is the a very good
choice if the number of evaluations is not essential. To realize this, one
standard choice is Matlab ODE 45 (see also on the web page).

3. Störmer-Verlet methods: (”leaping frog”)
Störmer-Verlet methods are especially suited for Hamiltonian systems,
e.g. molecular dynamics. The simplest version is:

ẍ = f(x) ⇒ f(xn) = xn+1 + xn−1 − 2xn
∆t2

xn+1 = 2xn − xn−1 + f(xn)∆t2

We now rewrite this as 2d system. We define the velocity v = ẋ
and discretize the function f(x) = v̇. For each integration step, the
position is updated for a free time step and the velocity half a time
step. The resulting equations are:

vn+1/2 = v1 + ∆t
2 f(xn)

xn+1 = xn + vn+1/2∆t

vn+1 = vn+1/2 + ∆t
2 f(xn+1)

This procedure is called leaping frog because we have staggered jumps.



Chapter 7

Oscillations in 2d

In contrast to linear systems, non-linear ones allow for limit cycles. These
are isolated closed trajectories in the phase plane. They cannot exist in
linear systems because with x(t) also cx(t) is a trajectory, thus closed orbits
cannot exist in isolation.

Poincare-Bendixson theorem:
If R is a closed, bounded subset of the plane without any fixed point, and
if there is a trajectory that is confined in R, then R contains a closed orbit.

The second condition is satisfied if a trapping region R exists. To prove that
a stable limit cycle exists, we have to show that a trapping region exists
without a fixed point inside. The Poincare-Bendixson theorem also implies
that there is no chaos in two dimensions; in three dimensions and higher,
the Poincare-Bendixson theorem does not apply and the trajectory could
wander around in a constrained space without settling into a closed orbit.

Examples:

1. ṙ = r(1− r2), θ̇ = 1

47
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In Cartesian coordinates:

ẋ = (1− x2 − y2)x− y
ẏ = (1− x2 − y2)y − x.

2. ṙ = r(1− r2) + µr cos(θ), θ̇ = 1
In this more complicated example, for which values of µ ≥ 0 does a
stable limit cycle exist?
The trapping region can be determined for the given example by con-
structing minimum and maximum radius rmin, rmax and demanding
an increasing and decreasing flow, respectively.

rmin : ṙ ≥ r(1− r2)− µr > 0 ⇒ rmin <
√

1− µ
rmax : ṙ ≤ r(1− r2) + µr < 0 ⇒ rmax >

√
1 + µ

Since
√

1 + µ is always real for µ ≥ 0, the only restriction for the
trapping region comes from rmin: 0 ≤ µ < 1. Due to the Poincaré-
Bendixson theorem, we have a stable limit cycle for these values of
µ.

3. Biological example:
Biochemical oscillations are very common in biology, but the first ones
were directly observed rather late, namely the periodic conversion of
sugar to alcohol in yeast in 1964. This is a specific example for a class
of oscillators called the substrate-depletion oscillator. In 1968, Selkov
suggested a simple 2d mathematical model for it.
Because it is so central to evolution, sugar metabolism is extremly
efficient:

C6H12O6︸ ︷︷ ︸
glycose

+ 6 O2 −→ 6 CO2 + 6 H2O + ∆E

The produced energy is stored in up to 36 ATP molecules. The ability
to oscillate comes from the fact that ADP/ATP enters the details of
this pathway in several ways:

glycose ATP→ADP−→ glycose 6-P −→ fructose 6-P︸ ︷︷ ︸
=F6P

ATP→ADP−→
PFK

fructose 1,6-P︸ ︷︷ ︸
=FBP

Therefore the first steps of the glycolysis pathway use up ATP rather
than producing it. On the other hand, the enzyme PFK is activated
by ADP, thus switching on the ATP-generating pathway on demand.
We call this autocatalysis or a positive feedback loop. Overall, more
ATP is produced than used up by this pathway.
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In order to model these conflicting trends that eventually lead to os-
cillations, we introduce the following grouping:

y =
{

ATP
F6P

and x =
{

ADP
FBP

Introducing the reaction rates a, b, we get:

glucose b−−→ y

⊕
x
a−−→ x−→ products.

x is produced with a constant rate a from y and it reacts to prod-
ucts with a normalized rate. The production rate of x increases in
proporation to its amount. We analyze the following equations:

ẋ = −x+ ay + x2y

ẏ = b− ay − x2y.

The nullclines are y = x
a+x2 and

y = b
a+x2 . So, there is a fixed

point (x∗, y∗) = (b, b
a+b2 ).

In order to show that a trapping region exists, we consider the region
bounded by the green lines. We know for the left part x = 0 and
0 ≤ y ≤ b

a . So we get 0 ≤ ẋ ≤ b and 0 ≤ ẏ ≤ b. The flow goes inside.
For the right part we calculate ẋ − (−ẏ) = ẋ + ẏ = b − x < 0 since
x > b. This yields −ẏ > ẋ. Therefore, the flow is more negative than
−1 and goes inside.
We have thus found a trapping region. The Poincaré-Bendixson theo-
rem demands that no fixed points exist. Hence, we make a hole around
the fixed point and show that no trajectory goes into the hole. This is
equivialent to a repulsive (unstable) fixed point. The Jacobian is

A =
(
−1 + 2xy a+ x2

−2xy −(a+ x2)

)
.
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We need a positive trace τ and determinant ∆ of the matrix A.

∆ = a+ b2 > 0

τ = b4 + (2a− 1)b2 + (a+ a2)
a+ b2

!= 0

Thus, the boundary between stable and unstable fixed points τ = 0
is given by b2 = 1

2(1 − 2a) ±
√

1− 8a. This can be represented via a
state-diagram.

The arrow indicates an increasing
b. If a is small enough, the system
performs oscillations in a certain
interval of b. We call this a re-
entrance process.

Lienard systems / van der Pol oscillator

The following structure often occurs in mechanics and electronics:

ẍ︸︷︷︸
inertia

+ f(x) · ẋ︸ ︷︷ ︸
damping

+ g(x)︸︷︷︸
restoring force

= 0.

It is called Lienard-system. Note, that this is the equation of the harmonic
oscillator for f = 0 and g = x.

We consider the most famous example of Lienard systems, the van der Pol
oscillator :

f = µ(x2 − 1)
g = x.

For x� 1 we have negative damping. The system can be driven by putting
energy into the system. For large x, the damping is positive. Energy is
dissipated.

Example: Tetrode circuit (electronics)
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The system is described as follows:

Lİ + V + F (I) = 0
⇒ LÏ + V̇ + F ′(I)İ = 0
⇒ LC · Ï + I + CF ′(I) · İ = 0.

This is a van der Pol oscillator with f(I) = CF ′(I) and g = 1.

Lienard systems are very widespread: e.g.

1. neural activity, action potential

2. biological oscillators (ear, circadian rhythms)

3. stick-slip oscillations in sliding friction

Lienard theorem:
A Lienard system has a stable limit cycle around the origin at the phase
plane if

1. g(−x) = −g(x), g(x) > 0 for x > 0

2. f(−x) = f(x), F (x) =
∫ x

0
f(x′)dx′ has to have a zero at a > 0

and F (x) < 0 for 0 < x < a, F (x) > 0 for x > a, F (∞) =∞.

Obviously, the first condition is fullfilled for the van der Pol oscillator. Con-
sider the second condition:

F (x) = µ

(
x3

3 − x
)

= µx

3
(
x2 − 3

)
⇒ a =

√
3.

As for the harmonic oscillator the deflection behaves sine-shaped, the de-
flection of the van der Pol oscillator follows a sawtooth. The phase portrait
shows a deformed circle.

Now, we analyze the van der Pol oscillator in two limits: µ� 1 and µ� 1.

1. µ� 1: Lienard phase plane analysis
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The dynamic equation is

−x = ẍ+ µẋ(x2 − 1) = d
dt(ẋ+ µF (x)) =: d

dtw(x).

⇒ ẋ = w − µF (x)

In the last step, we are using dF (x)
dt = f(x) · ẋ. Define

y := w

µ
⇒ ẏ = −x

µ
, ẋ = µ(y − F (x)).

Hence, the nullclines are x = 0 and y = F (x).
We assume the initial condition y − F (x) ∼ O(1). Then, the velocity
is very fast in x-direction but very slow in y-direction:

ẋ ∼ O(µ)
ẏ ∼ O(1/µ)

Thus the first part shows a fast movement to the right which stops at
the ẋ-nullcline.

In the second part, y − F (x) ∼
O(1/µ2) can be arbitrarily small.
This leads to ẋ ∼ O(1/µ) and
ẏ ∼ O(1/µ). Thus, we have
a slow movement along the null-
cline. Both velocities are now
negative, so we slide along the
nullcline on the lower side. The
third and fourth part are like the
first and second, respectively, only
with changed signs in the veloci-
ties.

What is the oscillation period T? We neglect the fast paths. Hence,
we have to calculate

T = 2
∫ t2

t1
dt.

where t1 and t2 are the time points delimiting the fast path at the right.
For t2 we know that it corresponds to the right extremum, which is at
x2 = 1. For t1, we know that it must have the same y-value as the left
extremum at x = −1, which is 2/3. Therefore we have x1 = 2.
We now switch from time t to position x:

dy
dt = F ′(x)dx

dt = (x2 − 1)dx
dt = −x

µ
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and from this

dt = dx−µ(x2 − 1)
x

.

Therefore, the oscillation period is T ∼ O(µ):

⇒ T = 2
∫ x2=1

x1=2
dx−µ(x2 − 1)

x
= 2µ

[
x2

2 − ln(x)
]2

1
= µ(3− 2 ln(2))

⇒ T ∼ O(µ).

2. µ� 1:

This case is a small perturbation to the harmonic oscillator

ẍ+ x+ ε ·h(x, ẋ) = 0.

The systems dynamics depend on h(x, ẋ).

(a) For h = (x2 − 1)ẋ, the system is a van der Pol oscillator.

(b) For h = 2ẋ, we have a weakly damped harmonic oscillator. The
system is linear.

(c) For h = x3, the system corresponds to an unharmonic spring with
a spring constant k = 1 + εx2 that increases by extending the
spring. This is called strain stiffening. The system is a Duffing
oscillator.

We first consider the second case h = 2ẋ, because this linear case
can be solved exactly. This can be done by rewriting the equation of
motion in two dimensions with x and v. The corresponding matrix

A =
(

0 1
−1 −2ε

)
has the following eigenvalues and eigenvectors:

λ1,2 = −ε± ic, ~v1,2 = (−ε∓ ic, 1) (7.0.1)

where c = (1− ε2)1/2. Thus the general solution is

~x(t) = (a1 ~v1 exp(λ1t) + a2 ~v2 exp(λ2t))

For the initial condition ~x(0) = (0, 1) we find a1,2 = 1/2 ± (εi)/(2c).
Putting all this together, we get the analytical solution

x(t) = 1
c

exp(−εt) sin(ct).
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For the initial conditions

x(0) = 0, ẋ(0) = 1,

the exact solution reads

x(t) = (1−ε2)−1/2 · exp(−εt) · sin((1−ε2)1/2 · t).

Thus we have a damped oscilla-
tion.

If we expand for ε� 1, we find

x(t) = (1− εt) sin(t) + O(ε2).

But, this is only valid for t < 1
ε and blows up for large times. Thus,

the small epsilon limit appears to be problematic.
We now try to solve the problem using regular perturbation theory.
Plugging the ansatz

x(t) = x0(t) + εx1(t) + . . .

in the dynamic equation yields

d2

dt2 (x0 + εx1 + . . . ) + 2ε d
dt(x0 + εx1 + . . . ) + (x0 + εx1 + . . . ) = 0.

Compare the parameters for different orders of ε.

O(1) : ẍ0 + x0 = 0
⇒ x0 = sin(t)

O(ε) : ẍ1 + 2ẋ0 + x1 = 0
⇒ ẍ1 + x1 = −2 cos(t)
⇒ x1(t) = −t · sin(t)

Now, we see

x = x0 + εx1 + O(ε2) ≈ (1− εt) sin(t).

Again, we end up with a term that is linear in t.
The solution to this problem comes from singular perturbation the-
ory. We separate time scale into a fast time τ = t and a slow time
T = εt. This procedure is called two timing and is motivated by the
fact that the exact solution has a fast time scale for the oscillations
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and a slow one for the damping. Similar approaches are in general
helpful for multiscale problems, such as e.g. the boundary layer in
hydrodynamics.
We use the new ansatz:

x(t) = x0(τ, T ) + εx1(τ, T ) + O(ε2)

and therefore calculate the derivatives

ẋ = ∂τ x∂t τ + ∂Tx∂t T

= ∂τ x+ ∂T x · ε
= ∂τ x0 + ε(∂τ x1 + ∂T x0) + O(ε2)

ẍ = ∂ττ x0 + ε(∂ττ x1 + 2∂Tτ x0) + O(ε2)

and plug them into the dynamic equation

⇒ 0 = ∂ττ x0 + ε(∂ττ x1 + 2∂Tτ x0) + 2ε∂τ x0 + (x0 + εx1) + O(ε2).

O(1) : ∂ττ x0 + x0 = 0
O(ε) : ∂ττ x1 + x1 = −2(∂Tτ x0 + ∂τ x0)
O(1) : ⇒ x0 = A(T ) sin(τ) +B(T ) cos(τ)
O(ε) : ⇒ ∂ττ x1 + x1 = −2 · (A′(T ) +A(T )) cos(τ) + 2 · (B′(T ) +B(T )) sin(τ)

In order to end up with a well-behaved solution, demand the prefactors
(A′ +A) and (B′ +B) to be zero.

⇒ A = A0 · exp(−T ), B = B0 · exp(−T )

For the initial conditions x(0) = 0, ẋ(0) = 1 ⇒ B0 = 0, A0 = 1,
the general solution is sine-shaped with an envelope decaying in time

⇒ x0 = exp(−T ) · sin(τ) = exp(−εt) · sin(t).

This is identical to the exact solution in order O(ε2). To do better, we
had to introduce a super-slow time scale of order O(ε2), but at least
the blow-up is avoided and we get the correct damping.

Application to van der Pol oscillator

The dynamic equation

ẍ+ ε(x2 − 1)ẋ+ x = 0
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holds

[∂ττ x0 + ε(∂ττ x1 + 2∂Tτ x0)] + ε(x2
0 − 1)∂τ x0 + (x0 + εx1) = 0.

O(1) : ∂ττ x0 + x0 = 0
O(ε) : ∂ττ x1 + x1 = −2∂Tτ x0 − (x2

0 − 1)∂τ x0

In polar coordinates:

x0 = r(T ) · cos(τ + Φ(T ))
⇒ ∂ττ x1 + x1 = 2[r′ sin(τ + Φ) + rΦ′ cos(τ + Φ)] + r sin(τ + Φ)[r2 cos2(τ + Φ)− 1]

− [2r′ − r + 1
4r

3] sin(τ + Φ) + 2rΦ′ cos(τ + Φ) + 1
4r

3 sin(3(τ + Φ)).

In the last step, we used the relation sin(θ) · cos2(θ) = 1
4 [sin(θ)+sin(3θ)]. In

order to avoid a resonance catastrophe, demand the prefactors [2r′−r+ 1
4r

3]
and 2rΦ′ to be zero.

⇒ r′ = 1
8r(4− r

2) and Φ′ = 0

The result is a logistic growth in
r.
There is a fixed point for
r∗ = 2 and Φ = const = Φ0.
Note, that we get a limit cycle ir-
respective of the value of ε. There-
fore, ε is a singular perturbation.

Averaging method:

We now discuss a more general method to solve these kinds of problems,
because obvious the procedure is always similar. Consider ẍ+x+εh(x, ẋ) =
0, which represents a large class of non-linear oscillators.

∂ττ x0 + x0 = 0
∂ττ x1 + x1 = −2∂Tτ x0 − h
⇒ x0 = r(T ) cos(τ + Φ(T ))

∂ττ x1 + x1 = 2[r′ sin(τ + Φ) + rΦ′ cos(τ + Φ)]− h
Since we have h(x, ẋ) = h(sin(τ + Φ), cos(τ + Φ)), a 2π-periodic function in
θ = τ + Φ, we can use the Fourier expansion h(θ):

h(θ) =
∞∑
k=0

ak cos(kθ) +
∞∑
k=1

bk sin(kθ).
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Up to O(ε), the only resonant terms for x1 are (2r′ − b1) sin(θ) and (2rΦ′ −
a1) cos(θ). From this, we get the conditions

⇒ r′ = b1
2 , rΦ′ = a1

2

to avoid the resonance catastrophe. We write the Fourier coefficients in
terms of averages of θ:

a1 = 1
π

∫ 2π

0
dθ h(θ) cos(θ)

= 2 〈h cos(θ)〉θ
b1 = 2 〈h sin(θ)〉θ

⇒ r′ = 〈h sin(θ)〉θ
rΦ′ = 〈h cos(θ)〉θ .

}
dynamical equations for (r,Φ)

Example: van der Pol oscillator

Consider h = (x2 − 1)ẋ = (r2 cos2(θ)− 1)(−r sin(θ)).

r′ = 〈h sin(θ)〉θ
= −r3

〈
cos2(θ) sin2(θ)

〉
θ

+ r
〈

sin2(θ)
〉

= 1
2r −

1
8r

3

= 1
8r(4− r

2) ⇒ r∗ = 2

rΦ′ = 〈h cos(θ)〉θ
= −r〈sin(θ) cos(θ)〉θ︸ ︷︷ ︸

=0

− r3
〈

cos3(θ) sin(θ)
〉
θ︸ ︷︷ ︸

=0

= 0 ⇒ Φ = const

This is the same result as before, as it should be.
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Chapter 8

Bifurcations in 2d

Like in 1d, in 2d existence and stability of fixed points depend on the pa-
rameters of the system. In contrast to 1d, however, now also oscillations
can be switched on and off. As an example, look at the substrate-depletion-
oscillator.

There are three types of bifurcations in 2d:

1. 1d-like bifurcations (4 types)

2. Hopf bifurcation (local switch on/off of oscillations)

3. global bifurcations of cycles (3 types)

In the following, we have a closer look at them.

1. 1d-like bifurcations
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All four types of 1d bifurcations exist in 2d (cf. center manifold theo-
rem).
Example: Griffith model for genetic switch
Consider a gene that codes for a certain protein. The activity of the
gene shall be induced by the protein and its copies which are translated
from the messenger RNA. The system is described as

ẋ = y − ax

ẏ = x2

1 + x2 − by,

where, x and y are the concentrations of the protein and the mRNA,
respectively.
The following figure shows a protein acting as transcription factor.

The nullclines are y = a ·x and y = x2

b(1+x2) . We see that the system
depends on the parameters a, b. For increasing a, the two upper fixed
points approach each other until they fall together when the nullclines
intersect tangentially. For even larger a, only the fixed point in the
origin remains.

The two upper fixed points are given by

x∗ = ab(1 + x∗
2)

⇒ x∗ = 1±
√

1− 4a2b2

2ab .

For 2ab = 1, the fixed points collide. The critical values are

ac = 1
2b x∗c = 1.
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If a < ac, the system is bistable and acts like a genetic switch: de-
pending on the initial conditions, the gene is on or off.
We note that in this case, the 2d analysis gives essentially the same
results like a 1d analysis along the x-nullcline. In fact, this is an
example of a saddle-node bifurcation.

The prototype of a saddle-node bifur-
cation in 2d is

ẋ = µ− x2

ẏ = −y.

The phase portrait varies with µ.

One fixed point is a saddle, x∗ = (−√µ, 0), the other one a stable
node, x∗ = (+√µ, 0). The behavior of the saddle depends on the

eigenvalues λ of the Jacobian A =
(
−2x∗ 0

0 −1

)
with x∗ = (−√µ, 0).

The bifurcation is given for λ = 0. This is called a zero eigenvalue-
bifurcation. It exists for all bifurcations from type 1).
Recall that the eigenvalues can be calculated using

λ1/2 = τ ±
√
τ2 − 4∆
2 .

Either both eigenvalues are real (shown on the left), which corresponds
to (τ2−4∆) > 0, or they are complex (shown on the right), (τ2−4∆) <
0 ⇒ λ1/2 = τ

2 ± iω.
The saddle-node bifurcation is of the first type. We now turn to the
second type.

If the complex eigenvalues λ1/2 = τ
2 ± iω cross the y−axis from left to

right, oscillations are switched on. This is called Hopf bifurcation.
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2. Hopf bifurcation

(a) Supercritical Hopf bifurcation

ṙ = µr − r3

θ̇ = ω + br2

The systems dynamics strongly depends on µ.

In order to analyze the behavior of the eigenvalues during the
bifurcation, rewrite the system in Cartesian coordinates:

x = r cos(θ)
y = r sin(θ)
ẋ = ṙ cos(θ)− r sin(θ)θ̇

= µx− ωy + O(xr2, yr2)
ẏ = ωx+ µy

⇒ A =
(
µ −ω
ω µ

)
⇒ λ1/2 = µ± iω

Thus, if we increase µ, the eigenvalues cross the imaginary axis
from left to right as expected.
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The structure is similar to the supercritical pitchfork bifurcation.
But now, we have a supercritical Hopf bifurcation.

(b) Subcritical Hopf bifurcation

ṙ = µr + r3 − r5

θ̇ = ω + br2

The term (−r5) causes certain trajectories to drive away from
the origin. For µ < 0, both exist a stable limit cycle and an
attractive fixed point in the origin. But for increasing µ, the
attractive area around the origin decreases and finally disappears
for µ = 0. That is when the subcritical Hopf bifurcation occurs.
The origin is now unstable and there is an abrupt transition to
large-amplitude oscillations.

Note that a Hopf bifurcation theorem exists, demanding rigorous con-
ditions on λ1/2 for a Hopf bifurcation to occur.
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3. Global bifurcations of cycles
Apart from Hopf bifurcations, global bifurcations are another way in
which limit cycles are created or destroyed. They are a combination
of 1) and 2). Cycle interactions with other fixed points exist. As well,
there is a global change in flow structure.

(a) Saddle-node bifurcation of circles
This is a prototypical example of global bifurcations.

ṙ = yr + r3 − r5

θ̇ = ω + br2

µc = −1
4

(b) Infinite period bifurcation

ṙ = r(1− r2)
θ̇ = µ− sin(θ)
µc = 1

(c) Homoclinic bifurcation

ẋ = y

ẏ = µy + x− x2 + xy

µc ≈ 8.6
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Chapter 9

Excitable systems

In this chapter, we discuss so-called ”excitable systems”. One example is
grass, that is burned down and then regrows. Obviously, this process can
be repeated over and over again. We also see that such a process can occur
in the spatial domain as a wave. Our biological example is neuronal activity
in the brain. Here, the wave is called an ”action potential” and it travels
along the axon of a neuron.

A human neuron has a diameter of
r ≈ 50 µm for the cell body and
an axon that is up to 1 m long.
The axon transports the signals
called action potentials or spikes.
We think about them as traveling
waves V (x, t).

It is approximately cylindrically
shaped containing mainly potas-
sium (K+) and organic anions
(A−) and being surrounded pre-
dominantly by sodium (Na+), cal-
cium (Ca2+) and chlorine (Cl−).

Typical values of the concentrations of the two dominant ions potassium
and sodium are given in the following table:
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inside outside ∆V
[mM] [mM] [mV]

K+ 155 4 -98

Na+ 12 154 67

The axon membrane is typically 5 nm thick and made of dielectric material
(ε = 2) which is an insulator. To allow ion flow, there are many channels in
the surface. Channels can dynamically open and close. The resting potential
is approximately ∆V = −60 mV. Here is an equivalent electrical circuit:

A biological membrane acts as a
capacitor for which the equation
CA = C

A = ε0ε
d holds. Typically,

C
A is around µF

cm2 . The timescale
is τ = CA

gA
= C

g ≈ 2 ms with the
conductivity per area gA = 5 1

Ωm2 .

Assuming equilibrium, the concentration c is proportional to a Boltzmann
distribution c ∼ exp(−eV/kBT ). The ratio of the concentrations inside
and outside of the axon therefore depends on the difference of the potential
ci
co
∼ exp(−e(Vi− Vo)/kBT ). Solving for the difference of the potential, this

yields the Nernst potential:

⇒ ∆V = kBT

e
· ln

(
ci
co

)
.

This equation has been used to calculate ∆V in the previous table (kBT
e =

25 mV). Since ∆V1 6= ∆V2, the system is not in equilibrium.

The exact form of an action potential can be measured with a space clamp.
Taking a giant axon of a squid and threading a silver wire into the axon, the
action potential V (t) = Vi(t) − Vo(t) can be determined independent from
spatial components.
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1938 Hodgkin worked at Woods Hole (with Cole). Cole later invented the
space clamp.

1949 Hodgkin performed experiments with the space clamp at Plymouth
together with his student Huxley.

1952 Famous Hodgkin and Huxley papers (some together with Katz): the
dynamics of so-called gates produce temporal changes in conductivity

1960 Richard FitzHugh and later Nagumo et al. independently analyzed a
reduced HH-model with phase plane analysis, leading to the standard
NLD-model for action potentials

1963 Nobel prize for Hodgkin and Huxley (together with John Eccles, who
worked on motorneuron synapses)

1991 Nobel prize for Erwin Neher and Bert Sakmann for the patch clamp
technique: the molecular basis of an action potential could be
demonstrated directly for the first time

2003 Nobel prize for Roderick MacKinnon for his work (Science 1998) on
the structure of the K+ channel, which in particular explained why
Na+ ions cannot pass

May
2012 Andrew Huxley dies at the age of 94; after his work on the action

potential, he revolutionized muscle research (the sliding filament
hypothesis from 1954 and the Huxley model for contraction from 1957
could have earned him a second Nobel prize)

Table 9.1: Overview historical development.
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Hodgkin-Huxley model (1952)

Starting with the electrical circuit,
Hodgkin and Huxley invented a
model for action potentials. They
assumed a linear relation between
voltage and current

INa = gNa(V − VNa).

Faraday’s law states Q = C ·V ⇒ I = C · V̇ .

⇒ V̇ = − 1
C

gNa(V − VNa) + gK(V − VK) + gL(V − VL)︸ ︷︷ ︸
leakage current


The leakage current contains all contributions except those from potassium
and sodium.

This equations describes a linear
system with a stable fixed point.
If a little perturbation occurs the
system will relaxing back. But
this behavior does not fit to the
experiments.

Hence, to get an action potential we consider a conductivity that depends
on voltage, g = g(V ). The basic idea is a two-state process for opening and
closing of the gate. Such a process can be described in the following way
using the opening and closing probabilities αn and βn, respectively.

ṅ = αn(1− n)− βn ·n.

A closed gate corresponds to n = 0, an open one to n = 1. Therefore, the
time-dependent processes are

opening: n(t) = 1− exp(−t)
closing: n(t) = exp(−t).

A voltage clamp experiment
showed a good agreement for
the closing process. But the fit
result of the opening process
corresponds to power four. In
general, higher powers and three
gates are needed to fit the data.
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We use a four-dimensional model (V, n,m, h) defined by the additional equa-
tion

ṅ = αn(1− n)− βnn
ṁ = αm(1−m)− βmm
ḣ = αh(1− h)− βhh.

n, m and h label the potassium and sodium activation and the sodium
deactivation gates, respectively. Phenomenologically, the coupling to the
conductivities is

gNa = 120 ·m3h

gK = 36 ·n4

gL = 0.3.

because only in this way one can understand the sigmoidal opening curves
measured experimentally. The justification for the microscopic gate dynam-
ics (the ion channels) came only 30 years later. We can interpret the powers
as

n4: potassium 4 gates open
m3: sodium 3 gates open
h: sodium 1 gate closed

The parameters (αi, βi) are non-trivial functions of V . For example for n

αn = 10− V
100(exp((10− V )/10)− 1) , βn = 125 exp(−V/80)

1000 .

Today, again, the six parameters can be understood from the physics of ion
channels. Now, we’ve got a complete 4d model and we have to integrate the
ODEs. We end up with the following time-dependence of the gates and the
conductivities.

A more general NLD-analysis shows that the system can oscillate.
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Fitzhugh-Nagumo model

For an in-depth analysis of the Hodgkin-Huxley model, Fitzhugh in the
1960s used 2D phase plane obtained as cuts through 4D phase space. He
first used the two fast variables V and m and kept n and h constant. The
two equations then read

eV̇ = −ḡKn4
0(V − VK)− ¯gNam3h0(V − VNa)− ḡL(V − VL)

ṁ = α(V )
m (1−m)− β(V )

m ·m

with the parameters ḡ denoting constants. The phase plane dependency of
m and V is shown in the figure below.

This analysis explains the threshold between a resting and an excited state,
but not the relaxation, because this comes later. Then the V -nullcline moves
up and the excited state vanishes in a saddle-node bifurcation.

As a next step, Fitzhugh considered one fast variable v responsible for the
excitation and a slow variable n responsible for the relaxation. He found
that the v-nullcline has a cubic shape, that there is one fixed point and
that the action potential is emerging as a long excursion away and back
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(a) (b)

Figure 9.1: (a) Fast-slow phase plane of the Hodgkin-Huxley model. The
FitzHugh-Nagumo model essentially has the same structure. (b) The result-
ing action potential. Taken from Keener and Sneyd.

to the fixed point guided by the cubic nullcline, compare figure 9.1. This
reduction of the HH-equations then motivated him to define an even more
abstract model that later became to be known as the FitzHugh-Nagumo
model (Nagumo and coworkers built this model as an electronic circuit and
published in 1964). This model assumes two variables, one slow (w) and one
fast (v). The fast (excitation) variable has a cubic nullcline and the slow
(recovery) variable has a linear one. There is a single intersection which
is assumed to be at the origin without loss of generality. Thus the model
equations are

ε
dv

dt
= v(1− v)(v − α)− w + Iapp (9.0.1)

dw

dt
= v − γw (9.0.2)

where Iapp allows for an externally applied current, ε � 1 and 0 < α < 1.
Typical values are ε = 0.01, α = 0.1 and γ = 0.5. The phase plane analysis
then show that an excitation to a small value of v leads to a large excursion
(action potential) leading to the steady state (0, 0). If one injects a current
Iapp = 0.5, the fixed point becomes unstable and a stable limit cycle emerges
through a Hopf bifurction, thus the system becomes oscillatory (essential it
becomes a van der Pol oscillator). Thus this simple model reproduces the
main features of the HH-model.

Interestingly, the HH- and FN-models have many more interesting features
if studied for a time-dependent current Iapp(t). For example, one finds that
the system does not start to spike if the current is increase slowly rather
than in a step-wise fashion. Thus it does not has a fixed threshold but
goes super-threshold only if the current change is fast. Another interesting
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observation is that an inhibitory step (negative step function) triggers a
spike at the end rather than at the start of the stimulation period. Thus
the direction in which the current is changed matters.

Cable equation

Up to now, we did not consider the effects of space. We now couple many
HH-elements in series to describe wave propagation along the axon.

Describing the signal as traveling wave, Ohm’s law holds in lateral direction

V (x+ ∆x)− V (x) = −I(x) ρ

πr2dx

where ρ = 0.3 Ωm is the resistivity of the medium and r = 250µm is the
radius of the squid giant axon. Looking at a node of the circuit, current
conservation demands

I(x+ ∆x)− I(x) = −gA(2πr)V (x)dx

Taking ∆x→ 0, this yields

V ′(x) = − ρ

πr2 I(x)

I ′(x) = −gA · 2πr ·V (x)

⇒ V ′′(x) = 1
λ2V

In the last step, the decay length λ =
√

r
2ρgA

= 9 mm has been introduced.

Injecting a voltage V0 at left and asking for a decaying voltage at the right,
the space dependence is

V (x) = V0 · exp(−x
λ

).
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Because of this, the signal would just decay if the conductivities were inde-
pendent from the voltage. This has been found earlier by Lord Kelvin when
investigating the decay of a signal along a passive cable like the transatlantic
cable.

We next combine the longitudinal equation with the full transverse Hodkin-
Huxley current for the current conservation

I ′ = −[gNa(V − V Na
N ) + gK(V − V K

N ) + gL(V − V L
N )]− C∂U

∂t
.

⇒ λ2V ′′ − τ V̇ = gNa(V − V Na
N ) + gK(V − V K

N ) + gL(V − V L
N )

g
.

The result is a non-linear PDE, the ”cable equation” with time-dependent
conductivity.

Considering one type of channel (e.g. Na) and injecting a voltage V0 at the
left, a front propagates to the right. To get a wave propagation, one has
to add a counteracting process (e.g. opening of K channels). Hodgkin and
Huxley showed the waves in 1952. To understand this better, we consider
the bistable cable equation

V̇ = V ′′ + f(V )

with f(V ) = −V (V −α)(V −1). We look for solutions of the form V (x, t) =
U(x+c · t) which describe waves propagating from right to left with velocity
c. Defining y := x+ ct, we can convert the system into an ODE.

∂yU · c = ∂2
yU + f(U)

Now, we do a phase plane analysis and therefore define

W = ∂yU ⇒ ∂yW = c ·W − f(U), f(U) = −U(U − α)(U − 1).

A traveling front solution must connect the fixed points (U = 0,W = 0) and
(U = 1,W = 0) in the (U,W )-plane as we vary y from −∞ to +∞. There
is a unique c∗ which results in such a trajectory (finding this unique value
is called shooting). It can be calculated analytically. For this, we guess that
the connection between the two resting states is given by

W (U) = dU
dy = −BU(U − 1).
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So, we calculate

0 = −∂yU · c+ ∂2
yU + f(U)

= −W · c+ ∂yW + f(U)
= −W · c+ ∂UW∂yU + f(U)
= −cBU(U − 1) +B2(2U − 1) ·U(U − 1)− U(U − α)(U − 1)
= cB +B2(2U − 1)− (U − α)

Because this has to vanish for any U , we find

B = 1√
2
, c = 1√

2
(1− 2α).

The speed is a decreasing function of α and the direction of propagation
changes at α = 1

2 . In this case, there is no propagation. The profile of the
traveling front is found by integrating the assumption

W (U) = dU
dy = −BU(U − 1).

⇒ U(y) = 1
2

[
1 + tanh

( 1
2
√

2
y

)]
.

A propagating wave is a trajectory which comes back to the original state.
This occurs in the Hodgkin-Huxley model as well as in the Fitzhugh-Nagumo
model with diffusive coupling

V̇ = V ′′ + f(V,W )
Ẇ = g(V,W ).

Until now, we studied 1d wave propagation. The cable equation can also be
extended to 2d or 3d. We then obtain propagation fronts (planar or circular),
but also spirals. In the context of heart and muscle biology, spirals are a
sign of a pathophysiological situation.



Chapter 10

Reaction-diffusion systems

We started this lecture with the central equation
d~x
dt = ~f(~x)

which mathematically is an ODE. We now add space in the form of diffusion
d~x
dt = ~f(~x) +D∆~x

where D is the diagonal matrix of the diffusion constants (a non-diagonal
coupling could exist in hydrodynamic theories). Mathematically we now deal
with a PDE, similar to the Schrödinger equation, the Maxwell equations or
the Fokker-Planck equation. Naively, one might think that diffusion stabi-
lizes the system, but Alan Turing showed in 1952 that there exist diffusion-
driven instabilities (in a similar vein, stochastic noise can either stabilize
or destabilize a system). Turing suggested that diffusion-driven instabilities
might account for the spontaneous emergence of patterns in morphogenesis
of animals (like the stripes of zebra or the spots of the leopard). Although
it is hard to identify Turing instabilities in development, it is clear that they
are very important in (bio)chemical networks. Here we introduce the main
ideas and results of Turing1.

Turing investigated under which condition a reaction-diffusion system pro-
duces a heterogeneous spatial pattern. To answer this question, he consid-
ered a two-dimensional system of the type:

Ȧ = F (A,B) +DA∆A
Ḃ = G(A,B) +DB∆B.

1For a detailed discussion, consult the book on Mathematical Biology by JD Murray,
Springer, 3rd edition 2003.
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A simple choice for the reaction part would be the activator-inhibitor model
from Gierer and Meinhardt, where species A is autocatalytic and activates B,
while B inhibits A. An even simplier choice is the activator-inhibitor model
from Schnackenberg, where the autocatalytic species A is the inhibitor of B
and B activates A. Both models form stripes in the Turing version and here
we choose the second one because it is mathematically easier to analyse:

F = k1 − k2A+ k3A
2B

G = k4 − k3A
2B.

We first non-dimensionalize the system:

u = A

(
k3
k2

)1/2
, v = B

(
k3
k2

)1/2
,

t = DAt

L2 , x = x

L
, d = DB

DA
,

a = k1
k2

(
k3
k2

)1/2
, b = k4

k2

(
k3
k2

)1/2
,

γ = L2k2
DA

Note that the variables u and v are positive since they are concentrations
of reactants. By introducing the variables above, the system is described as
follows

u̇ = γ(a− u+ u2v)︸ ︷︷ ︸
=:f(u,v)

+ ∆u

v̇ = γ(b− u2v)︸ ︷︷ ︸
=:f(u,v)

+ d∆v

with the ratio of the diffusion d and the relative strength of the reaction
versus the diffusion terms γ which scales as γ ∼ L2.

We first consider the case without diffusionD = 0 and ask for a homogeneous
state which is stable; we then ask under which conditions diffusion leads to
an instability, the Turing instability.

Stabilizing diffusion. 1D reaction-diffusion system

For single reactant u(x, t) there is no Turing instability:

ut = Duxx + f(u), x ∈ [0, l] + BC
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An ”uniform” (x - independent) ODE

u̇ = f(u)

has either: stable m = f ′(u∗) < 0, or unstable m > 0 equilibrium at
stationary point u∗ : f(u∗) = 0.

The diffusion will maintain a stable one, and it can stabilize the unstable
one.
To check it we take the linearized problem about u∗, for v(x, t) = u(x, t)−u∗ : vt = Dvxx +mv, x ∈ [0, l]

m = f ′(u∗)

We use the Neumann BC (no flux):

∂xv

∣∣∣∣
0,l

= 0

and eigenfunction expansion.
Separation of variables: look for the solution in the form:

v(x, t) = ϕ(t) ·ψ(x)

Leading to:
ϕ′ ·ψ = ϕ · (D ·ψ′′ +m ·ψ)

⇒ ϕ′

ϕ
= Dψ′′ +mψ

ψ
=: µ

Hence, the solution stability depends on the sign of µ :

ϕ(t) ≈ exp(µt)

The second equation:

Dψ′′ + (m− µ)ψ = 0, ψ(0, l) = 0

or
ψ′′ + λ2ψ = 0, λ2 = m− µ

D

The eigenfunctions are:

ψk(x) = cosλkx = cos πkx
l
, k = 0, 1, ...
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Using the expression for λ we get:

µ = m−D
(
πkx

l

)2

So:

• stable case (m < 0) remains stable,

• For unstable case the system get bifurcation values at D
(
πkx
l

)2
= m.

The diffusion stabilize the unstable ”uniform” equillibrium.

2d reaction-diffusion system

We now turn to two dimensions, where the Turing instability occurs. So
let’s start with a linear stability analysis of the reaction part using ~W =(
u− u∗
v − v∗

)
. We denote the steady state with ~W ∗ =

(
u∗

v∗

)
and a partial

derivative with fu = ∂f
∂u etc. This yields

~̇W = γA ~W

with the matrix
A =

(
fu fv
gu gv

)
| ~W ∗ .

Linear stability is guaranteed if the real part of the eigenvalues λ is smaller
than zero, Re λ < 0. Thus, the trace of A is smaller than zero

tr A = fu + gv < 0 (10.0.1)

and the determinant larger than zero

det A = fugv − fvgu > 0. (10.0.2)

The u- and v- nullcline is given by setting f = 0 and g = 0, respectively.

u-nullcline: v = u− a
u2

v-nullcline: v = b

u2

For the steady state ~W ∗ =
(
u∗

v∗

)
, we demand u∗ and v∗ to be positive for

physical reasons.

⇒ (u∗, v∗) =
(
a+ b,

b

(a+ b)2

)
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Thus, it is a+ b > 0 and b > 0.

⇒ A =
(
−1 + 2uv u2

−2uv −u2

)
| ~W ∗ =

(
b−a
b+a (a+ b)2

−2ab
a+b −(a+ b)2

)
⇒ det A = (a+b)2 > 0

We get a stable spiral for b = 2
and a = 0.2.

We now turn to the full reaction-diffusion system and linearize it about the
steady state

~̇W = γA ~W +D∆ ~W

with D =
(

1 0
0 d

)
.

In order to obtain an ODE from this PDE, we use the solutions of the
Helmholtz wave equation

∆ ~W + k2 ~W = 0

with no-flux boundary of size p in 1d, we have

~Wk(x) ∼ cos(k ·x)

with wavenumber k = nπ
p and wavelength λ = 2π

k = 2p
n (n integer).

⇒ ~W (~r, t) =
∑
k

ck exp(λt) ~Wk(~r)

⇒ λ ~Wk = γA ~Wk −Dk2 ~Wk

We now have to solve this eigenvalue problem. A Turing instability occurs
if Re λ(k) > 0. Our side constraint is that the eigenvalue problem for D = 0
(only reactions) is assumed to be stable, that is Re λ(k = 0) < 0.

⇒ 0 = λ2 + λ[k2(1 + d)− γtr A] + [dk4 − γ(dfu + gv)k2 + γ2det A].

We first note that the coefficient of λ is always positive because k2(1+d) > 0
and tr A < 0 (for reasons of the stability of the reaction system). In order
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to get an instability, Re λ > 0, the constant part has to be negative. Since
the first and last terms are positive, this implies

dfu + gv > 0 ⇒ d 6= 1. (10.0.3)

This is the main result by Turing: An instability can occur if one component
diffuses faster than the other. (10.0.3) is only a necessary, but not a sufficient
condition. We require that the constant term as a function of k2 has a
negative minimum.

(dfu + gv)2

4d > det A = fugv − fvgu (10.0.4)

The critical wavenumber can be calculated to be

kc = γ

(det A
dc

)1/2

with the critical diffusion constant from

d2
cf

2
u + 2(2fvgu − fugv)dc + g2

v = 0.

For d > dc, we have a band of instable wavenumbers. The relation λ =
λ(k2) is called the dispersion relation. The maximum singles out the fastest
growing mode. This one dominates the solution

~W (~r, t) =
∑
k

ck exp(λ(k2)t)

for large t. Note however, that in this case also non-linear effects will become
important and thus will determine the final pattern.

In summary, we have found four conditions (10.0.1) - (10.0.4) for the Turing
instability to occur. We now analyze the Schnackenberg-model in one spatial
dimension. We already noted that a+ b > 0 and b > 0 for the steady state
to make sense. From the phase plane we see that f > 0 for large u and
f < 0 for small u. Hence, fu > 0 around the steady state. Thus, b > a.

All in all, there are four relations:
fu, fv > 0 and gu, gv < 0.

⇒ A ∼
(

+ +
− −

)

From condition (10.0.1) and (10.0.3), we now calculate that d > 1 in this case
(the activation B diffuses faster in this model). In general, the conditions
(10.0.1)-(10.0.4) define a domain in (a, b, d)−space, the Turing space, in
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which the instabilities occurs. The structure of the matrix A tells us how
this will happen: as u or v increases, u increases and v decreases. So, the
two species will grow out of phase. If there is a fluctuation to a larger A-
concentration, it would grow due to the autocatalytic feature. Locally this
would inhibit B and it decreases strongly. However, because B is diffusing
fast, it now is depleted from the environment and there A is not activated
anymore. Therefore A goes down in the environment, whereas B is high.
This is the basic mechanism for stripe formation.

In the Gierer-Meinhardt model, the two species grow in phase. When the
autocatalytic species A grows, so does B, because A is the activator in this
model. Now B diffuses out and suppressed A in the environment. This is
an alternative mechanism for stripe formation.

The domain size p has to be large enough for a wavenumber k = nπ
p to be

within the range of the unstable wavenumbers (γ ∼ L2):

γL(a, b, d) <
(
nπ

p

)2
< γM(a, b, d)

where L and M can be calculated exactly. Typically, the mode which grows
has n = 1.

Whether the left or right solution occurs depends on the initial conditions.
If the domain grows to double size, than γ changes by four (γ ∼ L2). p
stays the same because it is measured in units of L. Now, the mode n = 2
behaves as shown in the following figures.

On this way, a growing system will develop a 1D stripe pattern.

In D=2 spatial dimensions, many more possible scenarios exist in a model-
dependent manner: stripes (left), checkerboard (middle), hexagonal or tri-



84 CHAPTER 10. REACTION-DIFFUSION SYSTEMS

angular (right) patterns, etc.

Today, the corresponding models are usually explored numerically, thus
making it easy to also analyse the effects of the non-linear parts.
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