
HEIDELBERG UNIVERSITY

DEPARTMENT OF PHYSICS AND ASTRONOMY

Theoretical Statistical Physics

Prof. Ulrich Schwarz
Winter term 2022/23

Last update: February 24, 2023

Le
ctu

re scripts by Ulrich Schwarz

Heidelberg University



Foreword

This script is written for the course Theoretical Statistical Physics which is one of the
core courses for the 1st semester master studies of physics at Heidelberg University, al-
though in practise it is also attended by many bachelor students from the 5th semester.
I have been giving this course several times now namely in the winter terms of 2012,
2015, 2017, 2020 and 2022, and it is my experience that a script helps to correct the un-
avoidable errors made at the blackboard, to cover material for which is no time during
the lecture, to solidify the new knowledge through a coherent presentation and to pre-
pare for the final exam and also for the oral master exam. There exist many very good
textbooks on statistical physics and the purpose of this script is soley to document my
personal choice from the vast range of subjects covered by statistical physics.
Statistical physics provides the basis for many important parts of physics, including
atomic and molecular physics, solid state physics, soft matter physics, biophysics, as-
trophysics, environmental and socioeconomic physics. For example, you cannot under-
stand the greenhouse effect or the cosmic microwave background without the Planck
formula for the statistics of photons at a given temperature (black body radiation) or
the electrical conduction of solids without the concept of a Fermi sphere (the ground
state of a fluid of electrons at low temperature). Equally important, however, statis-
tical physics provide the basis for our understanding of phase transitions, which are
truely collective effects and often do not depend much on microscopic details. As you
will learn in this course, at the heart of statistical physics is the art of counting, which
is formalized in the concept of a partition sum. The details of how this has to be done
in different systems can be quite challenging. Due to these technical challenges, but
also due to the addition of new and interesting areas of application, statistical physics
is still a very active research area, continuously expanding into new applications and
developing new methods.
Several guiding principles and helpful books determined the design of this course.
First I completely agree with Josef Honerkamp, who in his book Statistical Physics notes
that statistical physics is much more than statistical mechanics. A similar notion is ex-
pressed by James Sethna in his book Entropy, Order Parameters, and Complexity. Indeed
statistical physics teaches us how to think about the world in terms of probabilities.
This is particularly relevant when one deals with complex systems and real world data.
Therefore applications of statistical physics can also be found in data-intensive research
areas, such as astrophysics, environmental physics, biophysics, socioeconophysics and
physics of information (including machine learning). As instructive examples, consider
the models for the spread of rumours or viruses on networks, or the algorithms used for
segmentation and object recognition in image processing. If you investigate how these
models work, you will realize that they often relate to the Ising model for ferromagnets,



arguably the most important model of statistical physics and an important subject for
this course.
Second a course on statistical physics certainly has to make the connection to thermo-
dynamics. Thermodynamics can be quite cumbersome and hard to digest at times, so
a pedagogical approach is highly appreciated by most students. Here I am strongly
motivated by the axiomatic and geometrical approach to thermodynamics as layed out
in the beautiful book Thermodynamics and an introduction to thermostatistics by Herbert
Callen. The same approach has been taken by Luca Peliti in his book Statistical me-
chanics in a nutshell. Historically thermodynamics developed as a phenomenological
theory of heat transfer, but when being approached from the axiomatic and geometri-
cal side, it becomes the convincing and universal theory that it actually is. The book by
Callen also draws heavily on the work by Edwin Jaynes on the relationship between
statistical physics and information theory as pioneered by Claude Shannon. Although
somehow debated, this link shows once again that statistical physics is more than sta-
tistical mechanics. Information theory provides very helpful insight into the concept of
entropy, which is the cornerstone of statistical mechanics. Recently this area has been
revived by the advent of stochastic thermodynamics, which shows that entropy is not
only an ensemble property, but can also be defined for single trajectories. By now the
first textbook Stochastic thermodynamics: an introduction has been written by Luca Peliti
and Simone Pigolotti.
Third a comprehensive course on statistical physics should also include some numer-
ical component, because modern statistical physics cannot be practised without com-
putational approaches, as nicely argued also by Josef Honerkamp, James Sethna and
Luca Peliti. Moreover statistical physics is much more than thermodynamic equilib-
rium and if time permits, a course on statistical physics should also cover some aspects
of non-equilibrium physics, for example the exciting recent developments in stochas-
tic thermodynamics. Although it is hard to fit all of these aspects into a one-semester
course, some of them are included here.
Together, these considerations might explain the structure of this script. We start with
an introduction to the concepts of probability theory, which should be useful also in
other contexts than only statistical mechanics. Here it is important to think clearly
about probability as a volume in event space and to practise with a few important
examples like the binomial distribution. It also allows us to introduce the concept
of entropy (from the viewpoint of information theory) and random walks (as exten-
sion of random variables into the time domain, eventually leading to the Langevin and
Fokker-Planck equations). We then introduce the fundamental postulate of equilibrium
physics, namely that each microstate is equally probable, leading to the microcanon-
ical ensemble and the principle of maximal entropy. We next discuss the canoncial
and grandcanonical ensembles, when reservoirs exist for exchange of heat and particle
number, respectively. We then apply these concepts to quantum fluids, in particular the
Fermi fluid (e.g. electrons in a solid) and the Bose gas (e.g. black body radiation with
photons or the Debye model for crystal vibrations). These systems do not have direct
interactions, but the particles interact indirectly through the parity rules, which has to
be accounted for by the correct way of counting. This then also leads to our first phase



transition, namely the Bose-Einstein condensation. We then introduce the concept of
phase transitions emerging from direct interactions through the example of the Ising
model. In particular, it is here that we introduce one of the most important advances
of theoretical physics of the 20th century, namely the renormalization group. We then
continue to discuss phase transitions, now for complex fluids, starting with the van der
Waals fluid and the virial expansion. We close with a discussion of thermodynamics,
from which we see that statistical physics and thermodynamics essentially lead to the
same formal structure of ensembles and thermodynamic potentials, but that they also
complement each other in a unique manner: statistical physics focuses on the emer-
gence of macroscopic properties from microscopic mechanisms, and thermodynamics
on the macroscopic principles that necessarily have to be valid in the thermodynamic
limit of very large system size, independent of the microscopic details.
Finally one should note some subjects which are not covered in the script due to space
reasons. We do not cover kinetic and transport theories, which would also include
the Boltzmann equation. The very important subject of fluctuations and correlations
(including the fluctuation-dissipation theorem) is mentioned only in passing. We also
cannot treat much out-of-equilibrium physics here, in particular we do not cover Green-
Kubo relations, Onsager’s reciprocity theorem, Kramers-Krönig relations or linear re-
sponse theory. From the subject side, we will not have time to cover such interest-
ing subjects as liquid crystals, percolation, disordered and glassy systems (including
the replica method), nucleation, coarsening and Ostwald ripening, or the dynamics of
chemical reactions and populations.

Heidelberg, winter term 2022/23 Ulrich Schwarz
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1 Introduction to probability theory

1.1 Probability in physics

Classical physics (classical mechanics and electrodynamics) is deterministic, that means
the governing equations (Newton’s and Maxwell’s equations, respectively) are differ-
ential equations that have a unique solution once we know the initial conditions (and
boundary conditions for the case of Maxwell’s equations, which are partial differen-
tial equations). Probability might enter only in the sense that the intial and boundary
conditions are not known with certainty. Quantum mechanics of course introduces
probability into physics in the form of the statistical (Kopenhagen) interpretation, that
is experiments lead to the collapse of the wavefunction with probabilistic outcomes.
Yet here we still solve a deterministic differential equation (Schrödinger’s equation for
the wavefunction) and then probability for the outcome follows only at the end as the
squared modulus of the complex wavefunction.
In marked contrast, statistical physics directly brings the concept of probability into
physics. Now the central concept is to calculate the probability of a certain macroscopic
state, thus probability is not a derived quantity, but the most elementary concept. For
example, in the canonical ensemble the relevant statistics will be the Boltzmann distri-
bution. Therefore we start our course on statistical physics with an introduction into
probability theory. Later of course we have to ask how the probabilistic nature of sta-
tistical physics emerges from more microscopic descriptions, and we will see that both
classical and quantum mechanics provide some justification for this.

1.2 Frequentist approach

The history of probability theory is long and twisted. Yet everybody has an intuitive
notion of probability that is related to frequencies of certain outcomes. We start with
a simple example (throwing dice) to illustrate what this means and what one would
expect from a theory of probability. Possible outcomes for a die are {1, 2, 3, 4, 5, 6}. For
N throws the event {i} occurs Ni times. We then identify the probability pi for event
{i} with its frequency:

pi =
# favorable outcomes
# possible outcomes

=
Ni

N
in the limit N → ∞

For an ideal die we expect pi =
1
6 ≈ 0.167. Hence for 1000 throws {6} should occur

around 167 times.

1



We first note that our definition is normalized:
6

∑
i=1

Ni = N 1/N⇒
6

∑
i=1

pi = 1

We next consider events that are not directly an experimental outcome, but a more
complicated question to ask about the system. E.g. what is the probability to get an
odd outcome?

podd =
# favorable outcomes
# possible outcomes

=
N1 + N3 + N5

N
= p1 + p3 + p5

⇒ sum rule: summation of probabilities for simultaneous disjunct events

What is the probability to get twice {6} when throwing two times? We first throw N
times and find N6 times a 6. We then throw M times and find M6 times a 6. Thus we
count

p66 =
# favorable outcomes
# possible outcomes

=
N6 ·M6

N ·M =
N6

N
· M6

M
= p6 · p6 =

1
36

⇒ product rule: multiplication of probabilities for subsequent independent events

Finally we note that we could either throw N dice at once or the same die N times - the
result should be the same

⇒ ergodic hypothesis of statistical physics: ensemble average = time average

Identifying probability with frequency is called the classical or frequentist interpretation
of probability. There are two problems with this. First there are some examples for
which naive expectations of this kind fail and a more rigorous theory is required. Sec-
ond there are many instances in which an experiment cannot be repeated. Consider
e.g. the statistical distribution of galaxy sizes in the universe, for which we have only
one realization in our hands. In order to address these problems, it is better to assign
some a priori probabilities to events and to include new knowledge about outcomes as
it becomes available. This is called the Bayesian interpretation of probability. In order
to avoid certain paradoxa, this approach has to be formalized with the correct choice of
axioms.

1.3 Axiomatic approach

Above we described an empirical approach to measure probability for the dice throw-
ing experiment and this sharpened our intuition what we expect from a theory of prob-
ability. We now construct a mathematical theory of probability by introducing an ax-
iomatic system (Kolmogorov 1933). It has been shown that this approach allows to de-
scribe also complex systems without generating contradictions1.

1For an introduction into probability theory, we recommend Josef Honerkamp, Stochastische Dynamische
Systeme, VCH 1990; and Geoffrey Grimmett and Dominic Welsh, Probability: an introduction, 2nd edition
2014, Oxford University Press.

2



Let Ω = {ωi} be the set of elementary events. The complete set of possible events is
the event space B defined by:

1 Ω ∈ B

2 if A ∈ B , then A ∈ B

3 if A1, A2, · · · ∈ B , then ∪∞
i=1Ai ∈ B

By setting all Ai with i larger than a certain value to empty sets, the last point includes
unions of a finite number of sets. We see that the event space is closed under the op-
erations of taking complements and countable unions. This concept is also known as
σ-algebra. In our case we actually have a Borel-algebra, because the σ-algebra is gener-
ated by a topology. The most important point is that we have to avoid non-countable
unions, because this might lead to pathological situations of the nature of the Banach-
Tarski paradoxon (which states that a sphere can be disassembled into points and that
they then can be reassembled into two spheres because the set of real numbers is non-
countable). Later we will see that probability is some kind of volume in event space
and that it has to be conserved, so we have to make sure that such changes in volume
are not possible.

Corollaries
1 ∅ ∈ B

2 A ∩ B = A ∪ B ∈ B

Examples

1 Ω = {1, ..., 6} for the ideal die. This set of elementary events is complete and
disjunct (ωi ∩ωj = ∅ if i 6= j,

⋃6
i=1 ωi = Ω ). This event space is discrete.

2 All intervals on the real axis, including points and semi-infinite intervals like x ≤
λ. Here x could be the position of a particle. This event space is continuous.

We now introduce the concept of probability. For each event A in the event space B we
assign a real number p(A), such that

1 p(A) ≥ 0 ∀A ∈ B

2 p(Ω) = 1

3 p(
⋃

i Ai) = ∑i p(Ai) if Ai ∩ Aj = ∅ for i 6= j

Note that the last assumption is the sum rule. Kolmogorov showed that these rules are
sufficient for a consistent theory of probability.

3



Corollaries
1 p(∅) = 0

2 p(A) + p(A) = p(Ω) = 1 ⇒ p(A) = 1− p(A) ⇒ 0 ≤ p(A) ≤ 1

3 Consider A1, A2 ∈ B:

p(A1) = p(A1 ∩ A2︸ ︷︷ ︸
:=I

) + p(A1 ∩ A2︸ ︷︷ ︸
:=C1

)

p(A2) = p(A2 ∩ A1︸ ︷︷ ︸
:=I

) + p(A2 ∩ A1︸ ︷︷ ︸
:=C2

)

⇒ p(A1) + p(A2) = p(C1) + p(C2) + 2p(I)
= p(A1 ∪ A2) + p(I)

⇒ p(A1 ∪ A2) = p(A1) + p(A2)− p(A1 ∩ A2)

1.4 Continuous distributions and distribution function

Consider the event space containing the intervals and points on the real axis. p(x ≤ λ)
is the probability that x is smaller or equal to a given λ (eg the position of a particle in
1D):

P(λ) := p(x ≤ λ) cumulative distribution function

If P(λ) is differentiable, then

P(λ) =
∫ λ

−∞
p(x)dx

where

p(λ) =
dP(λ)

dλ
probability density or distribution function

We now can write the probability for x ∈ [x1, x2] as
∫ x2

x1
p(x)dx. With x2 = x1 + dx1,

we can approximate the integral by a product and thus find that p(x1)dx1 is the proba-
bility to have x ∈ [x1, x1 + dx1]. Thus p(x) is the probability density and p(x)dx is the
probability to find a value around x. Note that the physical dimension of p(x) is 1/m,
because you still have to integrate to get the probability.

1.5 Joint, marginal and conditional probabilities

A multidimensional distribution ~x = (x1, ...xn) is called a multivariate distribution, if

p(~x) dx1 ... dxn is the probability for xi ∈ [xi, xi + dxi]

We also speak of a joint distribution. Note that in principle we have to distinguish
between the random variable and its realization, but here we are a bit sloppy and do
not show this difference in the notation.

4



Examples

1 A classical system with one particle in 3D with position and momentum vectors
has six degrees of freedom, thus we deal with the probability distribution p(~q,~p).
For N particles, we have 6N variables.

2 We measure the probability p(a, i) for a person to have a certain age a and a certain
income i. Then we can ask questions about possible correlations between age and
income.

3 Consider a collection of apples (a) and oranges (o) distributed over two boxes (left
l and right r). We then have a discrete joint probability distribution p(F, B) where
F = a, o is fruits and B = l, r is boxes.

Marginal probability: now we are interested only in the probability for a subset of all
variables, e.g. of x1:

p(x1) =
∫

dx2 ... dxn p(~x)

is the probability for x1 ∈ [x1, x1 + dx1] independent of the outcome for x2, ..., xn.

Examples

1 We integrate out the momentum degrees of freedom to focus on the positions.

2 We integrate p(a, i) over i to get the age structure of our social network.

3 We sum over the two boxes to get the probability to have an orange

p(o) = p(o, l) + p(o, r)

This example shows nicely that the definition of the marginal probability essen-
tially implements the sum rule.

Conditional probability: we start with the joint probability and then calculate the marginal
ones. From there we define the conditional ones. Consider two events A, B ∈ B. The
conditional probability for A given B, p(A| B), is defined by

p(A, B)︸ ︷︷ ︸
joint probability

= p(A| B)︸ ︷︷ ︸
conditional probability for A given B

· p(B)︸︷︷︸
marginal probability for B

Thus the definition of the conditional probability essentially introduces the product
rule.

5



Example

Consider a fair die and the events A = {2} and B = {2, 4, 6}.

p(A| B) = p(A, B)
p(B)

=
p(A)

p(B)
=

1
3

p(B| A) =
p(A, B)

p(A)
=

p(A)

p(A)
= 1

Statistical independence: p(A1| A2) = p(A1) A1 is independent of A2

⇒ p(A1, A2) = p(A1| A2) p(A2) = p(A1) p(A2)

Thus we get the product rule (multiplication of probabilities) that we expect for inde-
pendent measurements, compare the example of throwing dice discussed above. We
also see that

⇒ p(A2| A1) =
p(A1, A2)

p(A1)
= p(A2)

Statistical independence is mutual.
Bayes’ theorem: p(A, B) = p(A| B) · p(B) = p(B, A) = p(B| A) · p(A)

⇒ p(B| A) =
p(A| B) · p(B)

p(A)
=

p(A| B) · p(B)
∑B′ p(A| B′) · p(B′)

Bayes’ theorem

where for the second form we have used the sum rule. Despite of its simplicity, this for-
mula named after Thomas Bayes (1701-1761) is of extremely large practical relevance. It
allows to ask questions about the data that are not directly accessible by measurements.

Examples

1 Consider again the fruits (F = a, o) in the boxes (B = l, r). We assume that left
and right are selected with probabilites p(l) = 4/10 and p(r) = 6/10 (they sum
to 1 as they should). We next write down the known conditional probabilities by
noting that there are two apples and six oranges in the left box and three apples
and one orange in the right box:

p( a| l) = 1/4, p( o| l) = 3/4, p( a| r) = 3/4, p( o| r) = 1/4

We now ask: what is the probability of choosing an apple ?

p(a) = p( a| l)p(l) + p( a| r)p(r) = 11/20

Note that the result is not 5/12 that we would get if there was no bias in choosing
boxes. The probability of choosing an orange is

p(o) = 1− p(a) = 9/20

6



We next ask a more complicated question: if we have selected an orange, what is
the probability that it did come from the left box ? The answer follows by writing
down the corresponding conditional probability:

p( l| o) = p( o| l)p(l)
p(o)

= 2/3

Therefore
p( r| o) = 1− 2/3 = 1/3

Above we have formulated the probability p(F| B) for the fruit conditioned on
the box. We now have reverted this relation to get the probability p(B| F) for the
box conditioned on the fruit. Our prior probability for the left box was p(l) =
4/10 < 0.5. Our posterior probability for the left box, now that we know that
we have an orange, is p( l| o) = 2/3 > 0.5. Thus the additional information has
reverted the bias for the two boxes.

2 We discuss the statistics of medical testing. Imagine a test for an infection with
the new Corona virus Sars-CoV-2. The standard test is based on the polymerase
chain reaction (PCR), but now there new tests that are cheaper and faster, but
not as reliable (e.g. the LAMP-test from ZMBH Heidelberg or the rapid antigen
test by Roche). At any rate, such a test always has two potential errors: false
positives (test is positive, but patient is not infected) and false negatives (test is
negative, but patient is infected). We have to quantify these uncertainties. Let’s
assume that the probability that the test is positive if someone is infected is 0.95 (so
the probability for false negatives is 0.05) and that the probability that the test is
positive if someone is not infected is 0.01 (false positives). Actually these numbers
are quite realistic for antigen tests against Sars-CoV-2 (PCR-tests are much more
reliable).

Let A be the event that someone is infected and B the event that someone is tested
positive. Our two statements on the uncertainties are then conditional probabili-
ties:

p(B|A) = 0.95, p(B|Ā) = 0.01 .

We now ask what is the probability p(A|B) that someone is infected if the test was
positive. As explained above, this question corresponds to the kind of change of
viewpoint that is described by Bayes’ theorem. We will answer this question as
a function of p(A) = x, because the answer will depend on which fraction of the
population is infected.

According to Bayes’ theorem, the conditional probability p(A|B) is determined
by

p(A|B) = p(B|A)x
p(B)

=
p(B|A)x

p(B|A)x + p(B|Ā)p(Ā)
. (1.1)
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Using x + p(Ā) = 1, we get

p(A|B) = p(B|A)x
[p(B|A)− p(B|Ā)] x + p(B|Ā)

=
x[

1− p(B|Ā)
p(B|A)

]
x + p(B|Ā)

p(B|A)

. (1.2)

Introducing the ratio of false positive test results to correctly positive ones, c :=
p(B|Ā)/p(B|A), we have our final result

p(A|B) = x
[1− c] x + c

. (1.3)

Thus the probability p(A|B) that someone is in fact infected when tested positive
vanishes for x = 0, increases linearly with x for x � c and eventually saturates
at p(A|B) = 1 as x → 1. This type of saturation behaviour is very common in
many applications, e.g. for adsorption to a surface (Langmuir isotherm) or in the
Michaelis-Menten law for enzyme kinetics.

Putting in the numbers from above gives c = 0.01� 1. Therefore we can replace
the expression for p(A|B) from above by

p(A|B) ≈ x
c + x

. (1.4)

For a representative x-value below c, we take x = 1/1000 (one out of 1000 people
is infected). Then p(A|B) = 0.1 and the probability to be infected if the test is pos-
itive is surprisingly small. It only becomes 1/2 if x = c (one out of 100 people is
infected). Thus the test only becomes useful when the fraction of infected people
x is larger than the fraction of false positives c.

3 A company produces computer chips in two factories:

factory: events A and A

{
60% come from factory A
40% come from factory B

defect or not: events d and d

{
35% from factory A
25% from factory B

What is the probability that a defect chip comes from factory A?

p(A| d) = p(d| A) p(A)

p(d)

p(d) = p(d| A) p(A) + p(d| B) p(B)

p(A) = 0.6, p(B) = 0.4, p(d| A) = 0.35, p(d| B) = 0.25

⇒ p(A| d) = 0.68
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4 We can design a webpage that makes offers to customers based on their income.
However, the only data we are allowed to ask them for is age. So we buy the
correlation data p(a, i) from the tax office and then estimate the income of our
users from their age information. The more multivariate data sets we can use for
this purpose, the better we will be with these estimates and the more accurate our
offers will be.

1.6 Expectation and covariance

Both for discrete and continuous probability distributions, the most important opera-
tion is the calculation of the expectation of some function f of the random variable:

〈 f 〉 = ∑
i

f (i)pi or 〈 f 〉 =
∫

f (x)p(x)dx

In particular, the average of the random variable itself is

µ = 〈i〉 = ∑
i

ipi or µ = 〈x〉 =
∫

xp(x)dx

Examples

1 Throwing the dice: 〈i〉 = 21/6 = 3.5

2 Particle with uniform probability for position x ∈ [−L, L]: 〈x〉 = 0

The next important operation is the calculation of the mean squared deviation (MSD) or
variance, which tells us how much the realization typically deviates from the average
(now only for the discrete case):

σ2 =
〈
(i− 〈i〉)2〉 = 〈(i2 − 2i 〈i〉+ 〈i〉2)

〉
=
〈
i2〉− 2〈i〉2 + 〈i〉2 =

〈
i2〉− 〈i〉2

Here we have used the fact that averaging is a linear operation. σ is called the standard
deviation.
For two random variables, the covariance is defined as

σ2
ij = 〈(i− 〈i〉)(j− 〈j〉)〉 = 〈ij〉 − 〈i〉 〈j〉

where the average has to be taken with the joint probability distribution if both vari-
ables are involved. If i and j are independent, then their covariance vanishes.

Examples

1 Throwing the dice: σ2 = 35/12 = 2.9

2 Particle with uniform probability for position x ∈ [−L, L]: σ2 = L2/3
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1.7 Binomial distribution

The binomial distribution is the most important discrete distribution.
We consider two possible outcomes with probabilities p and q (p + q = 1, binary pro-
cess), respectively, and repeat the process N times.

Examples

1 flipping a coin N times, outcomes head or tail

0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Figure 1.1: lineage tree for the ideal coin experiment

2 following a ball falling through an ‘obstacle array’

Figure 1.2: obstacle array

3 stepping N times forward or backward along a line⇒ 1D Brownian random walk
(‘drunkard’s walk’)

4 throwing the dice N times and counting # {6} ⇒ p = 1
6 , q = 5

6

5 N gas atoms are in a box of volume V which is divided into subvolumes pV and
qV. On average 〈n〉 = p · N atoms are in the left compartment. What is the
probability for a deviation ∆n? Or the other way round: Can one measure N by
measuring the frequencies of deviations ∆n ?

10



x

t

Δ x

Δ t

Figure 1.3: random walk: one possible path out of many

pV qV

Figure 1.4: gas box with two compartments

In the following we use the terms of example 1. What is the probability to get i ∈
{0, 1, ..., N} heads? Because every throw is independent we have to multiply the prob-
abilities:

pi · qN−i

However, there is more than one sequence of head and tails to arrive at i heads. The
number of realizations is given by the binomial coefficient:

N(N − 1) . . . (N − (i− 1))
i(i− 1) . . . 1

=
N!

(N − i)!i!
=

(
N
i

)
binomial coefficient

The binomial coefficient is the number of ways one can choose i objects out of N. The
numerator is the number of ways we can select i objects out of N without putting them
back. However, here we assume that we have numbered the objects and care for their
identify. We therefore have to correct for the number of ways to rearrange the i objects,
which is the denominator.
Another way to understand that the binomial coefficient has to appear here is to write
our procedure of repeating the experiment with the two possible outcomes N times:

(p + q)N = (p + q)(p + q)...(p + q)︸ ︷︷ ︸
N times

=
N

∑
i=0

(
N
i

)
· piqN−i
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where in the last step we have used the binomial formula (x + y)N = ∑N
i=0 (

N
i )xiyN−i.

Thus the binomial coefficient simply gives the multiplicity that arises from multiplying
out this expression. Remember Pascal’s triangle (Figure 1.5):(

N
i

)
=

(
N − 1
i− 1

)
+

(
N − 1

i

)

Figure 1.5: Pascal’s triangle with sums on the right

In summary, we now have for the binomial distribution:

pi =

(
N
i

)
· pi · qN−i

Note that normalization is ensured:

N

∑
i=0

pi =
N

∑
i=0

(
N
i

)
· piqN−i = (p + q)N = 1N = 1

Obviously we have 2N possible outcomes of the experiment, which we also see by con-
sidering

N

∑
i=0

(
N
i

)
=

N

∑
i=0

(
N
i

)
1i · 1N−i = (1 + 1)N = 2N

Example

We plot the binomial distribution in Figure 1.6 for p = 1
6 and N = 10. This is the

probability to get i times a 6 when we throw the dice 10 times. The average of this
distribution is N · p = 10/6 = 1.67 and close to the peak.
Next we want to characterise the binomial distribution. It typically looks like in Fig-
ure 1.6 with one clear peak. We first calculate the average µ:
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0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.35

i

p i

width σ

average µ

Figure 1.6: Binomial distribution for p = 1
6 , N = 10. Points are joined by lines to

better show the shape of the distribution. The average is µ = 1.67 and the
width is σ = 1.18.

µ = 〈i〉 =
N

∑
i=0

i · pi =
N

∑
i=0

i · N!
(N − i)!i!

pi · qN−i

= N · p
N

∑
i=1

(N − 1)!
(N − i)!(i− 1)!

pi−1 · qN−i

= N · p
M

∑
j=0

M!
j!(M− j)!

pj · qM−j

︸ ︷︷ ︸
=1

= N · p

where we relabeled according to M = N− 1, j = i− 1 and used (N− i) = (N− 1)−
(i− 1) = M− j.

A more elegant way to get the same result is:

〈i〉 =
N

∑
i=0

(
N
i

)
(p · d

dp
)pi · qN−i

= (p
d

dp
)(p + q)N = N · p(p + q)N−1 = N · p

The trick is to consider p as a variable before using p + q = 1 in the final step.

We now use the same trick to calculate the second moment:
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〈
i2〉 = N

∑
i=0

(
N
i

)
(p

d
dp

)2 pi · qN−i

= (p
d

dp
)2(p + q)N = (p

d
dp

)p · N(p + q)N−1

= p · N(p + q)N−1 + p2 · N(N − 1)(p + q)N−2

= p · N + p2 · N · (N − 1)

The mean squared deviation (MSD or variance) follows as:

σ2 =
〈
(i− 〈i〉)2〉 = 〈i2〉− 〈i〉2

= p · N + p2 · N(N − 1)− p2 · N2 = p · N − p2 · N
= p · N(1− p) = N · p · q vanishes for p = 0 or q = 0

⇒ 〈i〉 = p · N, σ2 = N · p · q

σ is called ‘width’ or ‘standard deviation’ (SD). The ‘relative width’ or ‘coefficient of variation’
is then given as

σ

µ
=

√
N · p · q
N · p =

√
q
p

1√
N

N→∞→ 0

This is an example of the ‘law of large numbers’: For large N the distribution becomes
very sharp.

Examples

1 1024 gas atoms in a box, divided into two compartments of equal size

⇒ p = q = 0.5

⇒ µ = N · p = N/2 atoms on average on left side

The actual number deviates by

σ =
√

N · p · q = 0.5 · 1012

⇒ σ

µ
= 10−12 The relative deviation is tiny.

This is the reason why thermodynamics works; N represents the Avogadro num-
ber and for so many particles, only the mean is relevant.
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2 We can use the result for the standard deviation to check experimentally if a die
is ideal. We throw N = 105 times and find n = 1.75 · 104 times a {6}

⇒ p6 =
n
N

= 0.175

This is not in agreement with the ideal value p6 = 0.167. However, how relevant
is the deviation? We calculate the expected deviation for p6:

∆n
N

=

√
N · q · p

N
=

√
5

6
√

N
= 0.001

where we have used p = 1/6 and q = 5/6 for the ideal die. Because the measured
value is farther away from the ideal p6 than this, we conclude that the die is not
ideal. Note that for N = 103 the width σ = 0.012 would have been too large to
draw this conclusion.

1.8 Gauss distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

P

p ·N2p ·N1

N increasing

Figure 1.7: change of the binomial distribution with increasing N

We now consider the case that we perform infinitely many realizations of the binary
process. For p = const the limit N → ∞ implies:

µ = p · N → ∞ for N → ∞.

However, the relative width σ
µ becomes smaller and smaller:

σ

µ
=

√
1− p

p
1√
N
→ 0 for N → ∞.

Where is the peak of the distribution?

pi =

(
N
i

)
pi · qN−i
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A Taylor expansion around the peak is problematic, because pi = (N
i )piqN−i is a sen-

sitive function of i. Therefore it is better to expand its logarithm ln pi. In regard to the
normalization, our method is an example of the saddle-point approximation or method of
steepest descent.
We start by taking the logarithm:

ln pi = ln N!− ln i!− ln(N − i)! + i ln p + (N − i) ln q

We need derivatives:

d ln i!
di
≈ ln(i + 1)!− ln i!

1
= ln(i + 1) ≈ ln i for i� 1

Integration yields:
ln i! ≈ i(ln i− 1)

This agrees with Stirling’s formula:

ln i! = i ln i− i + O (ln(i))

Back to pi:

⇒ d ln pi

di
= − ln i + ln(N − i) + ln p− ln q

= ln
(N − i)p

i · q︸ ︷︷ ︸
=1

!
= 0 at peak im

⇒ (N − im)p = im(1− p)

⇒ im = p · N = µ

We note that peak and average of the binomial distribution are the same in this limit.
We next consider the second derivative

d2 ln(pi)

di2 = −1
i
− 1

N − i
= − N

i(N − i)

which we then evaluate at the peak position as

− 1
N · p · q = − 1

σ2 < 0 therefore it is a maximum

⇒ ln pi = ln pm −
1
2

1
σ2 (i− µ)2 + ...

⇒ pi = pm · e−
(i−µ)2

2σ2
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This is a Gaussian with average µ = p · N and variance σ2 = N · p · q.
We now change from index i to a spatial variable x = N · ∆x with µx = µ · ∆x and
σx = σ · ∆xi.

∆x ∝
1
N
→ 0 for N → ∞

⇒ µx = p · N · ∆x = const

⇒ p(x) = pm · e−(x−µx)2/(2σ2
x ) continuous probability density

The probability for the continuous random variable x ∈ [x1, x2] is given by
∫ x2

x1
dx p(x)

where we integrated over p(x)dx, the probability to find x between x and x + dx. The
continuous probability distribution p(x) is actually a probability density, because we
have to integrate to turn it into a probability. For simplicity, in the following we drop
the subscript x again.
Regarding the normalization, we first note that it is independent of the average µ, so
we can take µ = 0: ∫

p(x)dx = 1 = pm

∫ ∞

−∞
dx e−x2/(2σ2)

Thus we have to deal with the Gauss integral:

∫
dx e−ax2

=

(∫
dx e−ax2

∫
dy e−ay2

) 1
2

=

(∫ 2π

0
dφ

∫ ∞

0
dr r · e−ar2

) 1
2

=

(
2π
∫ ∞

0

1
2

du e−au
) 1

2

=
(π

a

) 1
2

In the following, we often need the second moment of this distribution:

σ2 =
( a

π

) 1
2
∫

dx x2e−ax2
= −

( a
π

) 1
2 d

da

∫
dx e−ax2

= −
( a

π

) 1
2 · d

da
(

π

a
)

1
2 =

1
2a

In our case a = 1/(2σ2) and thus pm = (2πσ2)−
1
2

⇒ p(x) =
1

(2πσ2)
1
2
· e−(x−µ)2/(2σ2) Gauss or normal distribution

Its variance is
〈

x2〉 = 1
2a = σ2. Thus the factor of 2 in the Gaussian is needed to get the

correct variance.
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Figure 1.8: Gaussian with indicated 1σ-interval

The probability to find x within an interval of one, two or three standard deviations
around µ is

∫ µ+mσ

µ−mσ
dx p(x) =


0.683, m = 1
0.954, m = 2
0.997, m = 3

1.9 Poisson distribution

Note that the continuum limit to the Gauss distribution does not work for rate events,
e.g. when p → 0. For the above arguments to work we need p = const, hence µ =
p · N → ∞. If we take the alternative limit

N → ∞, p→ 0, p · N = µ = const

we get a different result called the ‘Poisson distribution’. We now have

pi =
N!

(N − i)!i!
piqN−i =

N(N − 1)...(N − i + 1)
i!

( µ

N

)i(
1− µ

N

)N(
1− µ

N

)−i

= 1
(

1− 1
N

)
...
(

1− i− 1
N

)(µi

i!

)(
1− µ

N

)N(
1− µ

N

)−i
→ µi

i!
e−µ

where we have used that in the limit N → ∞ the first and the last parts go to 1, and that

(1− µ

N
)N → e−µ. Thus we get

pi =
µi

i!
· e−µ .

Normalization can be checked as follows

∞

∑
i=0

pi =
∞

∑
i=0

µi

i!
e−µ = e−µeµ = 1 (1.5)
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The first moment is:

〈i〉 =
∞

∑
i=0

i
µi

i!
e−µ = µe−µ

∞

∑
i=1

µi−1

(i− 1)!
= µ (1.6)

Higher moments can be derived recursively:

µ
d

dµ
〈in〉 =

∞

∑
i=0

in

i!
e−µ

(
iµi − µi+1

)
= 〈in+1〉 − µ〈in〉 (1.7)

For n = 1, this results in 〈i2〉 = µ + µ2, which means that σ2 = µ. Thus variance and
average are identical. For n = 2 we get 〈i3〉 = µ( d

dµ + 1)(µ + µ2) = µ + 3µ2 + µ3. In
general, the Poisson distribution is completely determined by its first moment µ, this
distribution has only one parameter.

1.10 Random walks

As indicated in Figure 1.3, a random walk is the trajectory in which for each step we
draw a random number to decide whether to step to the left or to the right. This has
been compared to a drunkard walking home along the pavement.
To make this more precise, we define the following quantities:

#right steps: nr = i

#left steps: nl = N − i

time: t = N · ∆t

position: x = m · ∆x

m = nr − nl = i− (N − i) = 2i− N

Note that at a given time step the particle can be only at an even or odd position. Our
terms yield the following average:

⇒ 〈x〉 = (2 〈i〉 − N)∆x = (2p− 1)N · ∆x

= (2p− 1)
∆x
∆t︸ ︷︷ ︸

drift velocity v

·t

p = q = 1/2 (symmetric random walk)⇒ v = 0 .〈
x2〉 = 〈(2i− N)2〉∆x2

= (4
〈
i2〉− 4 〈i〉N + N2)∆x2

= (4Np(1− p) + N2(4p2 − 4p + 1))∆x2

= 2(4pq
∆x2

2∆t
t + ((2p− 1)

∆x
∆t

)2t2)
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The second term quadratic in t is the drift term with the same drift velocity v above,
which vanishes for the symmetric random walk. Then only the first term remains,
which is linear in t. This is the famous diffusion part of the random walk. The term in
brackets is called the diffusion constant D. For the symmetric random walk, 4pq = 1
and we have the standard definition of D. We now have the most important result for
random walks:

σ2 =
〈

x2〉 = 2 · D · t

⇒ σ ∝
√

t

The ‘mean squared displacement’ (MSD) grows ∝ t, the ‘root mean squared displacement’
(RMSD) grows as ∝ t0.5.

0 1 2 3
0

1

2

3

4

5

t

x

ballistic movement

diffusive movement

= v · t

=
√

2 ·D · t

Figure 1.9: ballistic versus diffusive movement
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Figure 1.10: The uncorrelated jumps of a particle starting at position 1 and ending at 6.
~R is the resulting end-to-end vector.

A more general derivation for arbitrary dimensions d is as follows: We consider the
end-to-end vector defined by

~R =
N

∑
i=1

~ri
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⇒
〈
~R
〉
= 0

For the mean squared displacement we get

〈
~R2
〉
=

〈
(

N

∑
i
~ri) · (

M

∑
j
~rj)

〉
= ∑

i
∑

j

〈
~ri~rj
〉

=
N

∑
i=1

〈
r2

i
〉
=

N

∑
i=1

d · ∆x2 = N · d · ∆x2 = 2 · d · ∆x2

2∆t︸︷︷︸
=D

·t

⇒
〈
~R2
〉
= 2 · d · D · t

The most important aspect here is that two random vectors are uncorrelated if i 6= j,
so all off-diagonal terms vanish and only the diagonal terms survive. This creates the
linear scaling with N and therefore also with t. d is the spatial dimension and we
use Pythagoras and the fact that all dimensions are equivalent (in each dimension, the
walker must make a step a size ∆x). In one dimension, d = 1, this result becomes the
same as above. Note that if you identify time with contour length, this would be a
model for a polymer (freely jointed chain).

Rate equation approach

Above we have derived the global properties of the random walk. Now we address its
local properties and see that in the end we essentially get the same results again. We
ask how the equation of motion looks like for a random walk particle. We introduce
the probabilities p and q to jump to the right or the left, respectively, with p + q = 1.
We then write a self-consistency equation for the probability:

p(x, t + ∆t) = pp(x− ∆x, t) + qp(x + ∆x, t)

We next Taylor-expand both in time and space:

p(x, t + ∆t) = p(x, t) + ṗ(x, t)∆t + . . .

p(x + ∆x, t) = p(x, t) + p′(x, t)∆x +
1
2

p′′(x, t)∆x2 + . . .

p(x− ∆x, t) = p(x, t)− p′(x, t)∆x +
1
2

p′′(x, t)∆x2 + . . .

Inserting into the jump equation give

p(x, t) + ṗ(x, t)∆t = (p + q)p(x, t) + (−p + q)p′(x, t)∆x +
1
2

p′′(x, t)(p + q)∆x2
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The first terms on both sides cancel and we can divide by ∆t and take the continuum
limit:

∆x, ∆t→ 0 ⇒ ṗ(x, t) = −vp′(x, t) + Dp′′(x, t) Fokker-Planck equation

Here the drift velocity v = (p− q)∆x/∆t and the diffusion constant D = (p+ q)∆x2/2∆t =
∆x2/2∆t are defined as above. The general form of the Fokker-Planck equation is

ṗ(x, t) = −∂x[(v(x)p(x, t)− ∂xD(x))p(x, t)]

where we now also allow for position-dependent drift velocity and diffusion constant.
This form shows that the Fokker-Planck equation really is a continuity equation ṗ +
∂x J = 0, with the probability flux J being the expression in square brackets. Note that
here we give the so-called overdamped form of the Fokker-Planck equation (because we
stay in one dimension for the phase space, to include inertia we needed an additional
phase space dimension for momentum), thus drift velocity can be equated with force,
ξv(x) = F(x) = −∂xU(x), with some potential U and the friction coefficient ξ.
In general, the Fokker-Planck equation is a PDE of second order that has a similar char-
acter as does the Schrödinger equation. For v = 0 it is the time-dependent diffusion
equation. For the initial condition

p(x, t = 0) = δ(x)

the solution is given by a Gaussian

p(x, t) =
1√

4πDt
· e−(x−vt)2/(4Dt)

as you can check by reinserting it into the FPE. This is the same solution as above, with
σ =
√

2 · D · t. So as the global analysis, also the local considerations give us again the
square root scaling of a random walk.
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Figure 1.11: Two distributions with different t values (without drift). The distribution’s
width σ =

√
2 · D · t increases with the root of time.
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Mean first passage time

We finally consider the following question. A particle is performing a symmetric ran-
dom walk in d = 1 with step size δ and jump time τ in the interval x ∈ [0, b]. We
ask how long it will take to leave this boundary. Obviously this time will depend on
the starting position x and we call it T(x), the mean first passage time. We now use a
similar consideration as for the rate equation to write

T(x) = τ +
1
2
[T(x + δ) + T(x− δ)]

We rearrange to get

1
δ2 [T(x + δ) + T(x− δ)− 2T(x)] +

2τ

δ2 = 0

We identify again a second spatial derivate and perform the continuum limit to get

T′′(x) +
1
D

= 0

Thus we have obtained an ordinary differential equation for T(x). The solution has to
be a polynomial of order 2 that depends on boundary conditions. For two absorbing
boundaries we have T(0) = T(b) = 0 and the solution is

T(x) =
1

2D
(bx− x2)

We assume that the position is released at a random position and therefore we average
over x:

T =
1
b

∫ b

0
T(x)dx =

b2

12D
Again we see that the time scales with the distance b squared. The inverse scaling with
D is expected for dimensional reasons. The prefactor 12 can only be obtained by doing
the full calculation. For a reflecting boundary at x = 0, one has to use the boundary
condition T′(0) = 0.

1.11 Computation with random variables

Let x be some random variable with a continuous distribution p(x). We consider a
coordinate transformation x → y(x). Assuming that also the inverse transformation
y → x(y) exists, we want to know what the probability distribution py(y) is. This
result is easily obtained using the transformation theorem.

1 =
∫

dx px(x) =
∫

dy |dx
dy
| · px(x(y))︸ ︷︷ ︸
=py(y)
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Examples

1

y = c · x

⇒ py(y) =
1
c
· px(

y
c
)

Another way to see this:

py(y) =
∫

dx px(x)δ(y− cx)

=
∫ dz

c
px

( z
c

)
δ(z− y), substituting z = c · x

=
1
c

px

(y
c

)
Moments:

〈y〉 =
∫

dy y · py(y) =
∫
(c dx)(c · x)1

c
· px(x) = c 〈x〉〈

y2〉 = ∫
dy y2 · py(y) = c2 〈x2〉

σ2
y =

〈
(y− 〈y〉)2〉 = 〈y2〉− 〈y〉2 = c2 · σ2

x

2

y = − 1
ω

ln(1− x)

⇒ x = 1− e−ωy

⇒ py(y) = ω · e−ωy · px(x(y))

Let’s take x to be a uniformly distributed variable in [0, 1] with px(x) := 1. We
will need this later, eg for Monte Carlo simulations of the Boltzmann distribution.

⇒ px = 1⇒ y is exponentially distributed

3 A similar procedure exists in higher dimensions. We have a look at an n-tupel
~x = (x1, ..., xn). This tupel is transformed to another tupel yi(~x) with the index i
in the set [1, ..., n]:

p~y(~y) = |
∂(x1, ..., xn)

∂(y1, ..., yn)
|︸ ︷︷ ︸

Jacobian

·p~x(~x(~y))
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A standard method to obtain Gaussian random variables is the Box-Müller pro-
cedure:

y1 =
√
−2 ln x1 cos 2πx2

y2 =
√
−2 ln x1 sin 2πx2

⇒ x1 = e−
1
2 (y

2
1+y2

2)

⇒ x2 =
1

2π
arctan

y2

y1

⇒ p~y(~y) =
1√
2π

e−
1
2 y2

1 · 1√
2π

e−
1
2 y2

2 · p~x(~x)︸ ︷︷ ︸
=1

Both y1 and y2 are Gaussian distributed with σ = 1, if x1 and x2 are uniformly
distributed in [0, 1].

1.12 Addition of random variables

We next consider the addition of two random variables x and y. Given px(x), py(y), we
define z = x + y and write

pz(z) =
∫ ∫

dxdyδ(z− (x + y))p(x, y) =
∫

dx p(x, z− x) =
∫

dx px(x)py(z− x)

where in the last step we have assumed that the two variables are independent. We see
that the resulting probability distribution is a convolution. This suggests that it might
be helpful to use Fourier transforms.
For a given probability distribution p(x), we define the following characteristic or gen-
erating function:

G(k) =
〈

eikx
〉
=
∫

dx p(x)eikx

which is the Fourier transform of p(x).
If all moments exist and grow sufficiently slowly, we can make a Taylor expansion:

G(k) =
∞

∑
n=0

(ik)n

n!
〈xn〉

⇒ 〈xn〉 = µn =
1
in ·

dnG(k)
dkn

∣∣∣∣
k=0

Hence if we know the characteristic function we can generate all moments µn.
Now let us do the same thing for the logarithm:

ln G(k) =
∞

∑
n=0

(ik)n

n!
· κn︸︷︷︸

cumulants of order n
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The cumulants can be generated using the same trick as above:

κn =
1
in ·

dn ln G(k)
dkn

∣∣∣∣
k=0

Looking at the first few cumulants, we see that they are interesting quantities:

κ0 = ln G(k)|k=0 = ln 1 = 0

κ1 =
1
i
· G′

G

∣∣∣∣
k=0

= 〈x〉

κ2 =
1
i2

G′′G− G′2

G2

∣∣∣∣
k=0

=
〈

x2〉− 〈x〉2 = σ2

The third cumulant looks more complicated:

κ3 =
1
i3 (G′′′ − 3G′G′′ + 2G′3)

∣∣∣
k=0

= µ3 − 3µ1µ2 + 2µ3
1

The cumulants are specific combinations of the moments. The relation can also be re-
versed:

µ1 = κ1

µ2 = κ2 + κ2
1

µ3 = κ3 + 3κ2κ1 + κ3
1

You can characterize a probability distribution either by its moments or by its cumu-
lants (except if its moments are not finite, as for the Lorentz distribution, or if they grow
too fast, then you have to know the distribution directly). A theorem of Marcinkiewicz
from 1939 states that either all but the first two cumulants vanish or there are an infinite
number of non-vanishing cumulants.

Examples

The most important example is the Gauss distribution. Its characteristic function is
given as:

G(k) =
∫

dx eikx · 1

(2πσ2)
1
2
· e−(x−µ)2/(2σ2)

=
∫

dx
1

(2πσ2)
1
2
· e−

(x−µ−ikσ2)2+k2σ4−2ikσ2µ

(2σ2)

= e−
1
2 k2σ2+ikµ

⇒ ln G(k) = ikµ− 1
2

k2σ2

⇒ κ1 =
1
i

d ln G
dk

∣∣∣∣
k=0

= µ

κ2 =
1
i2

d2 ln G
dk2

∣∣∣∣
k=0

= σ2
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All other κi vanish. The Gauss distribution is the only one having just two non-zero
cumulants.

Back to addition of two random variables x and y:

z = x + y

⇒ pz(z) =
∫

dx px(x) · py(x− z)

Due to the convolution theorem this becomes

Gz(k) = Gx(k) · Gy(k)

⇒ ln Gz(k) = ln Gx(k) + ln Gy(k)

Having in mind the definition of the cumulants this yields

κ
(z)
n = κ

(x)
n + κ

(y)
n

By iteration, hence z = x1 + ... + xN , it is possible to construct the n-th cumulant:

κz
n =

N

∑
i=1

κ
(i)
n

We are now in a state to formulate the law of large numbers:

The average of many realizations approaches the expectation value.

Proof

Z =
1
N
(x1 + ... + xN)

⇒ 〈z〉 = 1
N

N

∑
i
〈xi〉 =︸︷︷︸

xi :=x

〈x〉

⇒ σ2
z = (

1
N
)2

N

∑
i=1

σ2
xi

=︸︷︷︸
xi :=x

1
N

σ2
x =

σ2
x

N

κz
n =︸︷︷︸

n>2

(
1
N
)n

N

∑
i=1

κxi
n =︸︷︷︸

xi :=x

1
Nn−1 κx

n

Thus the variance and all higher order moments / cumulants vanish in the large N
limit.
In order to get a finite variance, we have to sum differently. This leads to the central
limit theorem:
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The sum of many independent variables has a Gauss distribution after ap-
propriate rescaling.

From above we see how we have to rescale to get this result:

Z =
1√
N
((x1 − 〈x1〉) + ... + (xN − 〈xN〉)

Then 〈Z〉 = 0, σ2
z = σ2

x and all higher cumulants vanish in the limit of very large N.
Therefore this sum indeed has a Gauss distribution (normal distribution if we also scale
the variance to 1).

1.13 Information entropy

In 1948 Claude Shannon introduced a measure for uncertainty of a probability distribu-
tion which agrees with the thermodynamic definition of entropy. The relation between
information theory and statistical physics was further discussed by Edwin Jaynes in
1957, who introduced the maximum entropy principle, which today is widely used in
statistical data analysis (eg image processing)2.
For a given discrete probability distribution pi, we introduce a dimensionless measure
for its uncertainty (information theory) or disorder (physics), the entropy:

S = −∑
i

pi ln pi

Comments
1 One can interpret ln(1/pi) = − ln(pi) is the surprise or uncertainty about state i

being the outcome of an experiment: the smaller pi, the more surprised we are.
The entropy is then the average over these individual surprises.

2 0 ≤ pi ≤ 1 ⇒ S ≥ 0

3 ∃j : pj = 1 ⇒ pi = 0 f or i 6= j ⇒ S = 0
The entropy is minimal, if outcome is certain.

4 For a given homogeneous distribution pi = const = 1
Ω , with Ω = #states:

∑
i

pi =
Ω

∑
i=1

1
Ω

= Ω · 1
Ω

= 1

2For an introduction into information science, we recommend Christopher M. Bishop, Pattern recogni-
tion and machine learning, Springer 2006. A very pedagogical introduction is given by Henry Pinkard
and Laura Waller, A visual introduction to information theory, https://doi.org/10.48550/arXiv.
2206.07867
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Figure 1.12: −x · ln x as a function of x

Sh = −
Ω

∑
i=1

1
Ω

ln
1
Ω

= ln Ω

Hence we see that entropy increases with the number of states.

5 Entropy is maximal for the homogeneous distribution.

Sh − S =
Ω

∑
i=1

pi ln pi + ln Ω

=
Ω

∑
i=1

pi ln pi +
Ω

∑
i=1

pi ln Ω

=
1
Ω

Ω

∑
i=1

(pi Ω)︸ ︷︷ ︸
=xi

ln(pi Ω︸︷︷︸
xi

)

Our aim is to minimize Sh − S. Direct minimization gives us

δ(Sh − S) =
1
Ω

Ω

∑
i=1

(ln xi + 1) δxi
!
= 0⇒ xi = e−1

because x = 1/e is the position of the minimum of x ln x and because each term
has to be minimized by itself independent of the others. However, this result does
not satisfy the normalization constraint ∑Ω

i=1 xi = Ω. We add this constraint to the
target function with a Lagrange parameter λ and thus have

1
Ω

Ω

∑
i=1

(ln xi + 1 + λ) δxi
!
= 0⇒ xi = e−(1+λ)

Implementing the constraint specifies λ = −1 and thus xi = 1 will be the cor-
rect solution. Hence the entropy (or disorder) is maximal for the (normalized)
homogeneous distribution and all other distributions have smaller entropies.
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The same result can also be obtained by using a small trick rather than a Lagrange
parameter. Rather than introducing λ, we add zero to the target function in a way
that only works for the properly normalized distribution:

Sh − S =
1
Ω

Ω

∑
i=1

xi ln xi +
1
Ω

Ω

∑
i=1

(1− xi)︸ ︷︷ ︸
=0

=
1
Ω

Ω

∑
i=1

(xi ln xi + 1− xi)

⇒ The only minimum (Figure 1.13) is at xi = 1.

Thus we get the same result as for the calculation with the Lagrange parameter.
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Figure 1.13: x · ln x + 1− x as a function of x

6 A simple example to illustrate this point: in the example of apples and oranges in
boxes, we had pl = 4/10 and pr = 6/10. This gives the entropy S = 4/10 ln(10/4)+
6/10 ln(10/6) = 0.673. We compare with the homogeneous distribution, which
has entropy S = 1/2 ln(2) + 1/2 ln(2) = ln(2) = 0.693, thus the homogeneous
distribution has indeed the larger entropy. If we make the distribution more het-
erogeneous, let say S = 1/10 ln(10) + 9/10 ln(10/9) = 0.325, then entropy be-
comes even smaller. Because we use the natural logarithm, 1 bit = ln(2) and we
should measure everything in this unit. So the three example would be 1, 0.971
and 0.469 bits.

7 We consider two independent subsystems 1 and 2:

pij = p(1)i · p
(2)
j
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⇒ S = −∑
i,j

pij ln pij

= ∑
ij

p(1)i p(2)j

[
ln p(1)i + ln p(2)j

]
= −∑

i

(
∑

j
p(2)j

)
p(1)i ln p(1)i −∑

j

(
∑

i
p(1)i

)
p(2)j ln p(2)j

= S1 + S2

Entropy is additive for independent subsystems.

8 A bit of information theory: How many ‘yes-or-no’ questions do we have to ask
to find out which state j is realized? We divide Ω into two disjunct domains Ω1
and Ω2 such that

∑
i∈Ω1

pi = ∑
i∈Ω2

pi =
1
2

Firstly we ask: Is j in Ω1? We then choose the correct domain and scale the prob-
ability by 2 and repeat the dividing procedure. This has to be done k-times while
k is given by

2k pj = 1

⇒ k = − log2 pj

On average, the number of questions required is

Ω

∑
i=1

pi (− log2 pi) = S/ ln 2

because change of base gives a constant factor, log2 x = (ln x)/(ln 2). In general
it does not matter to which base we take the logarithm, because this only changes
the unit in which we have to measure entropy; while in physics we always take
the natural logarithm, in information theory the binary logarithm is used. We
conclude again that entropy is a measure for uncertainty in our expectation of the
result.

9 Information theory is closely related to coding messages. Shannon proved the
noiseless coding theorem: entropy is a lower bound on the number of bits needed
to transmit the state of a random variable.

10 We now aim to maximize entropy with the additional constraint:

U = ∑
i

pi Ei = const

Here Ei is some scalar property of each state (later this will be energy, thus U will
be the average energy).
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⇒ δS = −
Ω

∑
i=1

(ln pi + 1) δpi
!
= 0

Auxiliary conditions:

1 ∑i pi = 1 ⇒ ∑i δpi = 0

2 ∑i pi Ei = U ⇒ ∑i Ei δpi = 0

Method of Lagrange multipliers:

−∑
i
(ln pi + 1 + λ1 + λ2 Ei)︸ ︷︷ ︸

=0

· δpi = 0

⇒ pi = e−(1+λ1+λ2 E1)

The auxiliary conditions then yield

1

e−(1+λ1) ∑
i

e−λ2 Ei = 1

e−(1+λ1) =
1

∑i e−λ2 Ei
:=

1
Z

2

∑i Ei e−λ2 Ei

∑i e−λ2 Ei
= U

⇒ λ2 := β is a function of U

⇒ pi =
1
Z
· e−βEi

This exponential distribution later becomes the Boltzmann distribution.

Continuous distribution

In the case of a continuous distribution the entropy becomes:

S = −
∫

dx p(x) ln p(x)

Mathematically this case is a bit tricky as you can see that we have a problem with
dimensions, so a more rigorous derivation gives some correction factors. If we do a
similar variation like above and enforce conservation of probability, fixed first moment
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µ and fixed variance σ2 using Lagrange multipliers, then the result would be the Gaus-
sian distribution. The corresponding entropy is

S =
∫

dx
1√
2πσ

e−(x−µ)2/(2σ)

(
(x− µ)2

2σ2 +
1
2

ln 2π σ2
)

=
1
2
(1 + ln(2π σ2))

The entropy increases with the variance: the broader the distribution, the larger the dis-
order or uncertainty. This is a similar conclusion as above for the discrete distribution,
where the homogeneous distribution is optimal.

1.14 Mutual information

We finally discuss other important definitions which follow from the concept of in-
formation entropy and which help to understand it better. The first one is the Kull-
back–Leibler divergence (also called relative entropy), which describes how different two
probability distributions are from each other:

D(p‖q) := ∑
x

px ln
px

qx

One immediately notes that D(p‖q) 6= D(q‖p). Further one can show that D(p‖q) ≥ 0,
with the equality being valid if the two distributions are identical.
For the proof, we need Jensen’s inequality. For any convex function, we know that

f (x) ≥ f (x0) + f ′(x0)(x− x0)

because it always has to lie above the linear approximation. If we now choose x0 = 〈x〉
and average on both sides, we see that the linear term vanishes and we get

〈 f (x)〉 ≥ f (〈x〉)

Thus the averaged value of f is larger or equal than f evaluated at the average value of
x. A typical convex functions for which we can apply this would be f (x) = e−x.
The desired proof now amounts to applying Jensen’s inequality to the function f (x) =
− ln x:

D(p‖q) = ∑
x

px ln
px

qx
=

〈
− ln

qx

px

〉
≥ − ln

〈
qx

px

〉
= − ln ∑

i
px

qx

px
= − ln 1 = 0

Next we consider two random variables with joint probability px,y. One example would
be the apples and oranges (x) in the two boxes left and right (y). The mutual information
between the two random variables is defined as

I(x; y) := D(px,y‖px py) = ∑
x,y

px,y ln
px,y

px py
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where px and py are the marginal probabilities. One immediately notes that now I(x; y) =
I(y; x). Moreover I = 0 if the two random variables are independent. Because this is
a Kullback–Leibler divergence, we also have I ≥ 0. Mutual information I compares a
joint distribution of two random variables to one of two independent random variables.
The larger I, the more information is shared between the two random variables.
Using the definitions of conditional probability, we can rewrite the mutual information

I(x; y) = ∑
x,y

px,y ln
px|y py

px py
= ∑

x,y
px,y ln

px|y
px

= S(x)− S(x|y)

where the definition of the conditional entropy is

S(x|y) = −∑
x,y

px,y ln px|y

In the same manner we get
I(x; y) = S(y)− S(y|x)

We next consider the joint entropy and again use the definitions of conditional proba-
bilities to get

S(x, y) = −∑
x,y

px,y ln px,y = −∑
x,y

px,y ln(px|y py) = S(x|y) + S(y)

In the same manner we have

S(x, y) = S(y|x) + S(x)

Thus one can use the conditional entropies to connect joint entropy and mutual infor-
mation:

S(x|y) = S(x, y)− S(y) = S(x)− I(x; y)⇒ S(x, y) = S(x) + S(y)− I(x; y)

Thus mutual information quantifies the reduction of uncertainty about the pair (x, y)
due to their mutual dependence. Its upper bound is set by the random variable contain-
ing less information, that is by the smaller of S(x) or S(y). This means that a random
variable can not convey more information about another random variable as it contains
itself.
To summarize, we have introduced the following concepts. Entropy is the average
uncertainty in a single random event. Mutual information is uncertainty that is in com-
mon with another random event. Conditional entropy is the remaining uncertainty in
one random event after subtracting the mutual information shared with another ran-
dom event. Joint entropy is the average uncertainty when describing both random
events together.
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joint entropy

conditional
entropies

mutual information

S(x,y)

S(x) S(y∣x)

S(y)S(x∣y)

S(y∣x)S(x∣y) I(x;y)

Figure 1.14: The joint entropy can be decomposed in several ways. Mutual information
is the difference to the sum of the entropies of the two marginal distribu-
tions, S(x, y) = S(x) + S(y)− I(x; y).
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2 The microcanonical ensemble

2.1 Thermodynamic equilibrium

It is a matter of experience that after some time (relaxation time) an isolated physical
system arrives at a state of macroscopic rest (thermodynamic equilibrium). Then a few
macroscopic quantities (such as volume V, pressure p and temperature T) are suffi-
cient to completely characterise the system (state variables). If external conditions are
changed, the system adopts a new equilibrium state. If we change external conditions
very slowly, the system is going through a series of equilibrium states (quasi-stationary
process). Even if a system is in macroscopic equilibrium, its constituents move on a
microscopic level as long as temperature is finite. This becomes evident when observ-
ing dust particles in gas or liquid, or to be more specific, aerosols in the atmosphere or
colloids in a fluid solvent: they all undergo Brownian motion. Therefore many micro-
scopic states correspond to the macrosopic state. The essence of equilibirum statistical
physics is to calculate the macroscopic properties of equilibirum states from our knowl-
edge of the underlying microscopic physics. As long as the system is not completely at
rest, it will always explore as many microstates as possible.

Examples

1 Consider a gas container with two compartments, of which only one is filled. If
the wall is removed, the gas expands until it fills the whole space (Figure 2.1).

Figure 2.1: A gas expands into empty space if the wall is removed. In a larger volume,
the gas has more configurations.
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2 Again we consider a box with two compartments, this time with two different
fluids (black and white). After the separating wall is removed, the fluids mix due
to diffusion. A grey final state is established (Figure 2.2).

1 2 3

Figure 2.2: Two fluids mix by diffusion. Like in the first example, the mixed state has
more microstates.

3 Stretch a polymer to its maximal extension and let it shrink afterwards. The fol-
lowing movement results in a coiled equilibrium state (Figure 2.3).

1 2 3

Figure 2.3: The equilibrium state of a polymer is a random coil. In a coiled state it can
explore many more microstates than in a stretched state.

2.2 Micro- and macrostates

Talking about many (≈ 1023) particles, it is neither possible nor desirable to follow
their trajectories. Moreover we could be never certain about the initial conditions to
assume for such a calculation. Therefore the statistical description aims at averaging
or projecting the microstates onto the macrostates without going into the issue of time
evolution. The solution to this challenge is a central postulate which will allow us to
perform such a procedure. For the averaging procedure, we need a statement about the
probability pi that a certain microstate i occurs.
In thermodynamic equilibrium, the microstates are visited one after the other (‘time
average’) or occur simultaneously in equivalent realizations (‘ensemble average’). The
equivalence of time and ensemble averages is called ‘ergodicity’.
In statistical physics, we first have to identify the relevant microstates. In general, they
are characterised by their quantum numbers resulting from the solution of Schrödinger’s
equation. Each state i then has a distinct probability pi.
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Examples

1 Consider a spin- 1
2 particle with spin |↑〉 and |↓〉, hence this is a two state system.

For an electron we have the magnetic moment µ = eh̄/2mc, energy E = −2µHmz
and spin mz = ±1/2. H is the external magnetic field.

2 N non-interacting spin- 1
2 particles. Now the system has 2N possible states. The

energy of the system is then given as E = ∑N
i=1 Ei.

3 1D harmonic oscillator En = h̄ ω (n + 1
2 ), n = 0, 1, .... This system has infinitely

many but countable states.

4 N atoms in a crystal, each vibrating around its mechanical equilibrium state ("har-
monic crystal"). In three dimensions, a simple model is to consider this is a col-
lection of 3N non-interacting harmonic oscillators ("Einstein model"). Although
these are infinitely many states, they can be counted easily.

5 A particle in a box. The Schrödinger equation then is:

Figure 2.4: 3D potential well

−h̄2

2m
∆Ψ = E Ψ

⇒ Ψ(t) = sin
πnxx

Lx
· sin

πnyy
Ly
· sin

πnzz
Lz

E =
π2h̄2

2 m
(

n2
x

L2
x
+

n2
y

L2
y
+

n2
z

L2
z
)

This system has infinitely many but countable states (nx, ny, nz).

6 Now consider N such particles in a box without interaction ("ideal gas"). Like for
the harmonic crystal, this will be infinitely many states, but they can be counted.
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2.3 Density of states

We see that in quantum mechanics we can easily count the number of states. The ques-
tion now is how to deal with classical systems. We clarify this issue using the 1D har-
monic oscillator.
In quantum mechanics the energy levels are given as:

En = h̄ ω (n +
1
2
)

The number of states with En ≤ E is then obtained as

NE ≈
E

h̄ω

In the classical case it is a bit more complicated:

mẍ + kx = 0 ⇒ ω2 =
k
m

p = ẋm, q = x

⇒ H(q, p) =
1
2

m ω2 q2 +
p2

2m
!
= E

Defining the quantities:

a :=
√

2mE b :=

√
2E

mω2

⇒
( p

a

)2
+
(q

b

)2
= 1

This is the equation of an ellipse in phase space with area A = π a b which represents
the number of states with energy ≤ E.

⇒ VE = π a b =
2πE

ω

Comparing this result with the quantum mechanics one gets

NE =
VE

h

Hence we see that the number of classical states is obtained by dividing the phase space
volume through the Planck constant h.

This example suggests to count states in a classical system by dividing phase space into
boxes of size h. Another argument leading to the same conclusion comes from wave
mechanics. According to de Broglie, for a single particle with mass m we have p =
h̄k = mv = h/λ, therefore v = h/(mλ), where λ is the wavelength of the particle. For a
wave packet with size l, the uncertainty in position is δx = l. The relative uncertainty in
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Figure 2.5: The classical 1D harmonic oscillator corresponds to a movement in 2D phase
space on the elliptical path that corresponds to energy conservation. The
enclosed area A represents all states with equal or lower energy. In quantum
mechanics, state space is divided into small boxes of size h. Thus A/h is the
number of states corresponding to the classical system.

wavelength is δλ/λ = λ/l. Therefore δp = mδv = hδλ/λ2 = h/l and we finally get the
Heisenberg uncertainty relation δxδp = h, because l drops out. Therefore in quantum
mechanics it is meaningless to choose a smaller box size in phase space and it becomes
possible to count the number of states by dividing classical phase space volume by the
Planck constant h (for one particle).

2.4 The fundamental postulate

For both classical and quantum mechanical systems, energy E is a conserved quantity
for an isolated system. For a system at rest, E is the only relevant integral of motion, as
suggested by Noether’s theorem (energy conservation follows from invariance to trans-
lation in time, and this is always valid). We now consider the ensemble of microstates
corresponding to a macrostate with state variables E, V, N given (‘microcanonical ensem-
ble’). For a system at rest, there is no physical reason to single out any other features
of the system as being relevant on the macroscopic level. Let’s assume that the value
of E can be determined with an uncertainty δE. We look at the quantum mechanical
number of microscopic states between E− δE and E (‘microcanonical partition sum’):

Ω(E) = ∑
n: E−δE≤En≤E

1

Later we will see that the exact value of δE does not matter, so we do not include any
dependance on it. For a classical multiparticle system, one has to correct not only for the
microscopic box size as explained above for a single particle, but also for the fact that
in quantum mechanics particles are indistinguishable (the wavefunction is invariant
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under particle exchange) - which yields a factor of 1/N! due to N! being the number of
possible permutations:

Ω(E) =
1

h3N N!

∫
E−δE≤H(~q,~p)≤E

d~q d~p

if we count the number of microscopic states in classical phase space (counting from
quantum mechanics is straight forward and does not need any further comments).
What is the probability density ρ for the microcanonical ensemble? First we know that
ρ has to vanish outside the energy hypersurface in phase space. Second we expect that
the system smears out its presence in phase space as it goes towards equilibrium. Sev-
eral reasons have been evoked for this expectation, including deterministic chaos and
spreading of the wavefunction in a system that is not perfectly isolated. Also one can
use Liouville’s and von Neumann’s equations to motivate this (see below). Here how-
ever we take this expectation as our fundamental postulate and show that the whole
machinery of statistical mechanics and thermodynamics follows from this one postu-
late:

For an isolated system at equilibrium, all microstates are equally probable.

⇒ pi(E) =


1

Ω(E)
= const E− δE ≤ Ei ≤ E

0 otherwise

Due to its huge success, there is no doubt that the fundamental postulate is correct.
We immediately note that the homogeneous distribution maximizes entropy

S = −kB

Ω

∑
i=1

pi ln pi = kB ln Ω

This is ‘Boltzmann’s postulate’ after whom the physical constant kB is named which we
introduce here such that later it gives us a temperature scale. Thus the fundamental
postulate immediately suggests an extremum principle, which in many physics theo-
ries is the most convenient and elegant way to solve problems (e.g. Hamilton’s prin-
ciple of least action in mechanics or Fermat’s principle in optics). Note that the max-
imum entropy principle does not require any more physical reasoning, it is simply a
mathematical consequence of the fundamental postulate, as shown in the section on
information entropy in the first chapter.

Examples for the microcanonical ensemble

1 three spin- 1
2 particles

Possible states are:
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n m1 m2 m3 energy E

1 + + + −3 µH

2 + + - −1 µH

3 + - + −1 µH

4 - + + −1 µH

5 + - - +1 µH

6 - + - +1 µH

7 - - + +1 µH

8 - - - +3 µH

If we know that E = −µ H, then the corresponding microcanonical ensemble is

{(+ +−), (+−+), (−++)} ⇒ Ω = 3.

Each state is equally likely with

pn =
1
Ω

=
1
3

2 ideal gas

Ω(E) =
1

h3N N!

∫
E−δE≤H(~q,~p)≤E

d~q d~p︸ ︷︷ ︸
6N-dimensional integral

H =
N

∑
i=1

~pi
2

2mi
=

~p2

2m
!
= E

⇒ Ω =
1

h3N N!
VN f (R, δR)

where f (R, δR) is the volume of a spherical shell with radius R =
√

2mE and
thickness δR = 1

2

√
(2m)/E δE in 3N-dimensional space. (D = 3N)

From analysis we know the expression for the volume of a sphere with radius R
in D-dimensional space:

V(R) =
πD/2

(D/2)!
RD
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Taking D = 3 we recover the well known formula:

V =
4π

3
R3

because (3/2)! = Γ(5/2) = 3
√

π/4.

⇒ f (R, δR) = V(R)−V(R− δR)

=
πD/2

(D/2)!

RD − (R− δR)D︸ ︷︷ ︸
RD [1−(1− δR

R )D]


For D = const, we could expand this expression in δR

R and got DδR
R for the square

bracket. Here however we are interested in the limit D → ∞ for δR
R � 1:

(1− δR
R

)D = eD ln(1− δR
R ) ≈ e−D δR

R
D→∞→ 0

⇒ f (R, δR) =
πD/2

(D/2)!
RD = V(R)

δR drops out; in high dimensions the volume of the sphere is mainly at its surface.

⇒ Ω(E, V, N) =
VN π3N/2 (2mE)3N/2

h3N N! ( 3N
2 )!

microcanonical partition sum for an ideal gas

The entropy of an ideal gas then becomes:

S(E, V, N) = kB ln Ω = kB

N ln V +
3N
2

ln(
2πmE

h2 )− ln N!− ln(
3N
2

)!︸ ︷︷ ︸
:= expression A


Considering N � 1 and applying two times Stirling’s formula, expression A be-
comes:

− ln N!− ln(
3N
2

)! = −
[

N (ln N − 1) +
3N
2

(ln
3N
2
− 1)

]
= −N

[
−5

2
+

3
2

ln
3
2
+

5
2

ln N
]

= N

[
5
2
− ln

((
3
2

)3/2

N5/2

)]

⇒ S = kB N

{
ln

[(
V
N

) (
4πmE
3h2N

)3/2
]
+

5
2

}
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Comments

1 S, V, E, N are all extensive and occur only in the combinations s = S
N , v = V

N ,
e = E

N (‘specific quantities’).

2 The exponent 3
2 reflects the fact, that each particle has 3 degrees of freedom.

3 With λ :=
(

3h2

4πme

) 1
2

(‘thermal de Broglie’ wavelength) we get:

s = kB
{

ln
( v

λ3

)
+ 5

2

}
4 This first non-trivial result from statistical physics has been known before in

thermodynamics as ‘Sackur-Tetrode-equation’. It has been impressively veri-
fied in experiments.

2.5 Equilibrium conditions

We consider two isolated systems to form a composite isolated system. The entropy
then is given as:

S = kB ln(Ω1 ·Ω2)

= kB ln Ω1 + kB ln Ω2

= S1 + S2

The quantities E, V and N are also additive (‘extensive’).

Thermal contact

We next bring the systems in thermal contact, such that they can exchange energy, but
not volume or particles:

Figure 2.6: Thermal contact allows for heat exchange between the two systems.

In the new equilibrium state, energy will be E′1 and E′2, with:

E = E1 + E2 = E′1 + E′2

44



In equilibrium, S = kB ln Ω must be maximal:

⇒ dS =
∂S1

∂E′1
dE′1 +

∂S2

∂E′2
dE′2︸︷︷︸

=−dE′1

!
= 0

=

(
∂S1

∂E′1
− ∂S2

∂E′2

)
︸ ︷︷ ︸

=0

dE′1 = 0

We define a new state variable T (‘temperature’) by:

∂S(E, V, N)

∂E

∣∣∣∣
V,N

:=
1

T(E, V, N)

⇒
(

1
T1
− 1

T2

)
dE′1 = 0

⇒ T1 = T2

The two systems exchange energy until their temperatures are the same.
Usually the number of states Ω and therefore entropy S = kB ln Ω increases with energy
E and therefore 1/T and with this also T will be positive (e.g. S ∼ ln E3/2 for the ideal
gas, see above). There are, however, completely reasonable models in statistical physics
in which Ω can go down with E, namely if the number of states has an upper limit, e.g.
in a finite-sized spin system or the two-state system from below. Then we formally get
a negative temperature. Although this does not agree with our everyday life intuition
about temperature, there is nothing wrong with such a result.
S(E) usually flattens with increasing energy (e.g. S ∼ ln E3/2 for the ideal gas, see
above). This implies that high energy corresponds to high temperature, in agreement
with our everyday life intuition about temperature.
In general, temperature T describes the coupling between energy and entropy. Inverse
temperature is the cost in entropy when buying a unit of energy from the environment.
Due to the equipartition theorem (compare the chapter on the canonical ensemble),
temperature is often identified with kinetic energy; however, the temperature definition
of statistical physics from above is much more general.
Before equilibrium is reached, entropy grows:

dS =

(
1
T1
− 1

T2

)
dE1 > 0

T1 > T2 ⇒ dE1 < 0

Hence we see that energy flows to the cooler system. Temperature defined this way
agrees with our intuitive understanding of temperature.
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If the two systems only exchange energy, then:

dEi = Ti dSi

⇒ dS2 =
dE2

T2
= −dE1

T2
= −T1

T2
dS1

⇒ dS = dS1 + dS2

= dS1

(
1− T1

T2

)
> 0 before equilibrium is reached

T1 > T2 ⇒ dS1 < 0, dS2 > 0, |dS2| > |dS1|

The warmer system loses entropy, the cooler system gains entropy. Overall more en-
tropy is generated.

⇒ entropy is not conserved (unlike energy E)

Contact with volume exchange

We now assume that the wall is also mobile, thus volume can be exchanged:

dS =
∂S1

∂E′1
dE′1 +

∂S2

∂E′2
dE′2︸︷︷︸

=−dE′1

+
∂S1

∂V1
dV1 +

∂S2

∂V2
dV2︸︷︷︸

=−dV1

We define another new state variable (‘pressure’) by:

∂S(E, V, N)

∂V

∣∣∣∣
E,N

=
p(E, V, N)

T(E, V, N)

⇒ dS =

(
1
T1
− 1

T2

)
︸ ︷︷ ︸

=0

dE1 +

(
p1

T1
− p2

T2

)
︸ ︷︷ ︸

=0

dV1
!
= 0

T1 = T2, p1 = p2

Volume is exchanged until the pressures are the same.

If temperatures are equal:

dS =
p1 − p2

T
dV1 > 0

The system with larger pressure increases its volume.
This definition of pressure might seem a bit odd to you because it relates to entropy
and not to energy, as you might have expected. Therefore we aim to rewrite it in terms
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of energy. We start with a mathematical identity for any smooth function f (x, y) that is
explained in the appendix:

∂ f
∂x

∣∣∣∣
y

∂x
∂y

∣∣∣∣
f

∂y
∂ f

∣∣∣∣
x
= −1

Note that this result might look odd if you like to think about differentials as real num-
bers that you can cancel like in fractions. This result teaches you not to do this, and
reflects the fact that for two positive changes you need one negative change to close a
loop in ( f , x, y)-space. We now apply this formula to S(E, V, N):

∂S
∂V

∣∣∣∣
E,N

∂V
∂E

∣∣∣∣
S,N

∂E
∂S

∣∣∣∣
V,N

= −1

⇒ p
T

(
∂E
∂V

∣∣∣∣
S,N

)−1(
∂S
∂E

∣∣∣∣
V,N

)−1

= −1

Noting that the last term simply gives T, we finally have

p = − ∂E
∂V

∣∣∣∣
S,N

Therefore pressure p can also be interpreted as the increase in energy when reducing
volume. This is closer to our intuition on pressure, but note that this should be done at
constant entropy, which basically means without heat flux.

Contact with exchange of particle number

Finally let’s assume a permeable membrane and define a new state variable µ (‘chemical
potential’) by:

∂S(E, V, N)

∂N

∣∣∣∣
E,V

= −µ(E, V, N)

T(E, V, N)

The equilibrium condition becomes:

µ1(E1, V1, N1) = µ2(E2, V2, N2)

Assume T1 = T2, but µ2 > µ1:

⇒ dS = (−µ1 + µ2)
dN1

T
> 0

dN1 > 0 ⇒ µ2 > µ1

⇒ particles flow from large to small chemical potential
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Again it might be more intuitive to rewrite the definition of chemical potential in terms
of energy rather than entropy. We now apply our mathematical relation to S(E, N, V):

∂S
∂N

∣∣∣∣
E,V

∂N
∂E

∣∣∣∣
S,V

∂E
∂S

∣∣∣∣
N,V

= −1

⇒ −µ

T

(
∂E
∂N

∣∣∣∣
S,V

)−1(
∂S
∂E

∣∣∣∣
V,N

)−1

= −1

The last term again cancels the T in the first term and we thus get the final result

µ =
∂E
∂N

∣∣∣∣
S,V

This means that the chemical potential is the energy cost when increasing particle num-
ber (at constant S and V, that is without heat flux and with a constant volume).

Equations of state

We note that the three newly introduced variables:

T = T(E, V, N), p = p(E, V, N), µ = µ(E, V, N)

defined by

dS =
1
T

dE +
p
T

dV − µ

T
dN

are intensive, that is their values do not change if the system is doubled, because other-
wise S could not be extensive.

Rearranging the equation above for dE gives:

dE = T dS− p dV + µ dN

The pairs (T, S), ((−) p, V) and (µ, N) are ‘conjugate’ variables in regard to energy. We
identify the three types of energies as heat, mechanical energy and chemical energy.

S = S(E, V, N) is the ‘fundamental equation’, containing the complete information on
the system. The three equations for T, p and µ are ‘equations of state’. Each by itself
contains only incomplete information on the system. Typically the equations of state
are experimentally accessible and thus ground our theory in experiments. If only some
of them are known, the others have to be guessed based on some additional information
(e.g. a model). Moreover thermodynamic relations give strong additional constraints
on possible equations of state (see other chapter).
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2.6 Equations of state for ideal gas

S = kB N
[

ln
(

V
Nλ3

)
+

5
2

]
fundamental equation

λ ∝
(

N
E

) 1
2

⇒ 1
T

=
∂S
∂E

∣∣∣∣
V,N

= kB N
∂

∂E
ln E

3
2 =

3
2

kB N
1
E

⇒ E =
3
2

N kB T caloric equation of state

⇒ e =
E
N

=
3
2

kB T

Hence each degree of freedom carries energy 1
2 kB T. We also note for the specific heat:

cv =
dE
dT

=
3
2

NkB

thus the specific heat is independent of temperature. In fact this result is the classical
high-temperature limit for the quantum mechanical fluids we are discussing later.

p
T

=
∂S
∂V

∣∣∣∣
E,N

= kB N
1
V
⇒ p V = N kB T thermal equation of state

The thermal equation of state is also known as the ideal gas law (combining the two laws
of Gay-Lussac and Boyle-Mariotte).

−µ

T
=

∂S
∂N

∣∣∣∣
E,V

= kB

[
ln
(

V
Nλ3

)
+

5
2

]
+ kB N

∂

∂N
ln N−

5
2

⇒ µ = kB T ln
(

Nλ3

V

)
equation of state for chemical potential

Defining density ρ = N
V , p becomes:

p = ρ kB T

[p] =
J

m3 =
N
m2 = Pa

Pressure can be interpreted as force per area or as energy density. For the chemical
potential we can write

µ = kB T ln ρλ3 = kB T ln
p
p0

with p0 =
kB T
λ3
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Thus for an ideal (=dilute) gas chemical potential is grows logarithmically with pres-
sure.
The following numbers are quite instructive:

At room temperature: T ≈ 300K.

⇒ kB T = 4.1 · 10−21 J = 4.1 pN · nm =
1

40
eV = 25 meV thermal energy

p0 =
4.1 · 10−21 J
(10−10 m)3 = 4.1 GPa

Because ambient pressure p = 1atm = 105 Pa, the chemical potential µ is usually
negative. We calculate the volume of one mole ideal gas at ambient pressure:

V =
N kB T

p
=

6.022 · 1023 · 4.1 · 10−21 J
105 Pa

≈ 24 · 10−3 m3 = 24 l

2.7 Two-state system

We now consider other important examples for the microcanonical ensemble. We first
consider an ’atom’ which can either be in its ground (zero energy) or excited state (en-
ergy ε).

ε

0

Figure 2.7: Two state system with corresponding energies Eground = 0 and Eexcited = ε.

As the total energy E and the number of particles N are fixed, we know exactly how
many atoms are in the excited state:

Nε =
E
ε

number of atoms in excited state

N0 = N − Nε atoms in ground state

The number of microstates is the number of ways one can choose Nε out of N:

Ω =
N!

Nε! (N − Nε)!

The entropy then becomes, using Stirling’s formula:
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S = kB ln Ω
≈ kB [(N ln N − N)− (Nε ln Nε − Nε)− ((N − Nε) ln(N − Nε)− (N − Nε))]

= kB

[
−Nε ln

Nε

N
− (N − Nε) ln

(
1− Nε

N

)]
⇒ s = −kB [ρε ln ρε + (1− ρε) ln(1− ρε)]

where ρε = Nε
N = E

ε N , 0 ≤ ρε ≤ 1 is the density of the excited state and 1− ρε = N−Nε
N

is the density of the ground state. Note that this result make a lot of sense. It basically
is Shannon’s formula, S = −∑i pi ln pi with i running over the two possible states,
ground and excited. We note that the fundamental equation is independent of volume
and depends only on E and N.
Thermal equation of state:

1
T

=
∂S
∂E

∣∣∣∣
N
= −kB N

[
1

ε N
ln

E
ε N

+
1

ε N
− 1

ε N
ln
(

1− E
ε N

)
− 1

ε N

]
=

kB

ε
ln
(

N ε

E
− 1
)

⇒ E =
N ε

1 + eε/(kB T)
=

N ε

1 + eβ

where we have introduced a dimensionless inverse temperature β = ε/(kB T).
We consider the two limits:

1 High T, small β:

E =
N ε

2
, ρε =

E
ε N

=
1
2

, 1− ρε =
1
2

⇒ both states have equal density.

2 Low T, large β:
E = 0, ρε = 0, 1− ρε = 1

⇒ only the ground state is populated.

Here we see a very general principle of statistical physics: at low T, energy wins (ev-
erybody is in the ground state), and at high T, entropy wins (all states are equally
populated).
Interestingly at high temperature we only reach half of the maximally possible energy.
If we push more energy into the system, then formally temperature jumps from ∞ to
−∞ (negative temperature, see above) and then approaches 0 from below.
We finally calculate the specific heat:

cv =
dE
dT

= N ε
1

(1 + eβ)2 eβ ε

kB

1
T2

= NkBβ2 1
(e−β/2 + e+β/2)2
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E

T T

c
v

Figure 2.8: Energy and specific heat of the two-state model as a function of tempera-
ture. The energy approaches N ε

2 asymptotically. The capacity peaks at the
temperature Tmax = 0.42 ε

kB
.

We see that the heat capacity vanishes both for low and high T. It peaks at a finite
temperature T = 0.42 ε

kB
. Such a ‘Schottky hump’ reveals the existence of two low lying

energy states in a spectrum.

Alternative derivation

We consider an alternative way to calculate Ω(E). For each atom we introduce an
occupation (or occupancy) number nj ∈ {0, 1} for the external state:

Ω(E) =
1

∑
n1=0

...
1

∑
nN=0︸ ︷︷ ︸

sum over 2N states

δ

(
E− ε

N

∑
i=1

ni

)

=
1

∑
n1=0

...
1

∑
nN=0

∫ dk
2π

eik(E−ε ∑N
i=1 ni)

=
∫ dk

2π
eikE


1

∑
n=0

e−ikεn

︸ ︷︷ ︸
=1+e−ikε


N

=
∫ dk

2π
exp

N

ik
E
N

+ ln
(

1 + e−iεk
)

︸ ︷︷ ︸
:= f (k)




In the limit N → ∞, we solve this integral with the ‘saddle point approximation’:

Ω(E) =
1

2π

∫
dk eN f (k) =

1
2π

eN f (k0)
∫

dk eN 1
2 f ′′(ko)(k−k0)

2
=

1
2π

eN f (k0)

(
2π

N f ′′(k0)

)1/2
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where f (k) has a maximum at k0.
We define γ = E

N :

f ′(k) = iγ +
e−ikε(−iε)
1 + e−ikε

= iγ− iε
eikε + 1

!
= 0

⇒ k0 =
1
iε

ln
ε− γ

γ

⇒ f (k0) =
γ

ε
ln

ε− γ

γ
− ln

ε− γ

ε

f ′′(k0) =
(iε)2 eik0ε

(eik0ε + 1)2 = (γ− ε) γ

⇒ Ω(E) = eN f (k0)

(
1

2π N f ′′(k0)

) 1
2

= exp

N f (k0)︸ ︷︷ ︸
∝ N

− 1
2

ln
(
2πN f ′′(k0)

)
︸ ︷︷ ︸

∝ ln N → neglect in limit N → ∞


⇒ Ω(E) = eN f (k0)

⇒ S = kB N f (k0) = kB N

ρε ln
(

1
ρε
− 1
)

︸ ︷︷ ︸
=− ln ρε+ln(1−ρε)

− ln(1− ρε)


because ρε = γ/ε.

⇒ s = −kB [ρε ln ρε + (1− ρε) ln(1− ρε)]

Thus we recovered the same result as above with the combinatorial approach.

2.8 Einstein model for specific heat of a solid

In 1907, Einstein introduced a simple model for the vibrational modes in a crystal. From
this, we can calculate the specific heat of a solid, which is one of the central questions
in solid state physics. Later this model was improved by Debye as we will see later.
The Einstein model is also of fundamental importance because it is the microcanoncial
treatment of a collection of harmonic oscillators. It assumes that each atom in the crystal
vibrates with a natural frequency ω around its equilibrium position. Thus for NA atoms
in three dimensions, we have a collection of N = 3NA harmonic oscillators, each with
two degrees of freedom. In quantum mechanics, each harmonic oscillator is quantized
and can carry an integral number of quanta h̄ω. Together with the zero energy we have

E = h̄ω(
N
2
+ Q)
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where Q is the overall number of quanta. Therefore

Q = (
E

h̄ω
− N

2
)

These Q quanta are distributed over N states. That’s the same as distributing Q marbles
over N boxes or as placing Q marbles and N − 1 ≈ N match sticks in a row:

Ω(E, N) =
(Q + N)!

Q!N!

There is no role for V in this model.
We calculate the entropy using Stirling’s formula:

S = kBΩ = kB [(Q + N)(ln(Q + N)− 1)−Q(ln Q− 1)− N(ln N − 1)]

= kB

[
Q ln

Q + N
Q

+ N ln
Q + N

N

]
= kBN

[
(e +

1
2
) ln(e +

1
2
)− (e− 1

2
) ln(e− 1

2
)

]
with e = E/E0 and E0 = Nh̄ω. We next calculate temperature:

1
T

=
∂S
∂E

=
1
E0

∂S
∂e

=
kBN
E0

ln

(
e + 1

2

e− 1
2

)

We define β = h̄ω/kBT and invert this equation:

2e =
eβ + 1
eβ − 1

⇒ E =
Nh̄ω

2
eβ + 1
eβ − 1

= Nh̄ω(
1
2
+

1
eβ − 1

)

For T → 0, E → Nh̄ω/2, the zero energy. For T → ∞, E → NkBT = 6NA(kBT/2), the
classical limit for 6NA degrees of freedom. We also calculate the specific heat:

cv =
dE
dT

= NkBβ2 1
(eβ/2 − e−β/2)2

For T → 0, cv vanishes. It then rises exponentially and plateaus at 3NAkB for T → ∞.
This classical limit is also known as the law of Dulong-Petit. The crossover takes place
at T = h̄ω/kB.
It is very instructive to compare this results with the two-state system, for which we
found

cv =
dE
dT

= NkBβ2 1
(eβ/2 + e−β/2)2

where we now define dimensionless inverse temperature as β = ε/kBT. Thus the
result is essentially the same, except for the minus sign, which however makes a huge
difference. Later we will see that this is typical for the difference between fermionic
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systems (each state can be occupied either once or not at all) and bosonic systems (each
state can be filled with arbitrarily many quanta, like the harmonic oscillator).
The theoretical curve fits the experimental data qualitatively, but if one zooms in around
T = 0, one finds that the experimental curve rises as T3 rather than exponentially. The
reason for this discrepancy is that atoms do not vibrate by themselves at a fixed fre-
quency, but in groups of variable frequencies. We will consider this important fact later
in the Debye model.

E

T T

c
v

Figure 2.9: Energy and specific heat of the Einstein model as a function of temperature.

Alternative derivation

Again we consider an alternative way to calculate Ω(E) by using occupation numbers:

Ω(E) =
∞

∑
n1=0

...
∞

∑
nN=0

δ

(
E− h̄ω

N

∑
i=1

(ni +
1
2
)

)

=
∞

∑
n1=0

...
∞

∑
nN=0

∫ dk
2π

eik(E−h̄ω ∑N
i=1(ni+

1
2 ))

=
∫ dk

2π
eikE

∞

∑
n1=0

...
∞

∑
nN=0

e−ikh̄ω ∑N
i=1(ni+

1
2 )

=
∫ dk

2π
eikE

(
e−ikh̄ω/2

∞

∑
n=0

e−ikh̄ωn

)N

=
∫ dk

2π
eikE

(
e−ikh̄ω/2

1− e−ikh̄ω

)N

=
∫ dk

2π
eN[ik E

N−ln(2i sin(kh̄ω/2))]

Note that this time the occupation number is not restricted, but runs over all possible
numbers. Therefore in the last step we have used the geometrical sum to achieve a
closed formula. It is a non-trivial question why this series converges in our case. Be-
cause the Delta-function is a distribution, in principle one has to apply the formula
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above to a test function. If this test function is sufficiently well-behaved, then one can
regularize the exponent by adding a small and real ε to the exponent. Then the series
converges and one can send ε to zero in the end.
The remaining integral can again be solved using the method of steepest decent with

f (k) = ikE/N − ln(2i sin(kh̄ω/2))

Again the Gaussian integral can be neglected and only the first term in the Taylor ex-
pansion matters, with

k0 =
1

2ih̄ω/2
ln

E/N + h̄ω/2
E/N − h̄ω/2

After a lengthy calculation, one then gets the same result as above.

2.9 Entropic elasticity of polymers

We consider a chain-like polymer molecule consisting of N monomers of size a in one
dimension.

L

a

Figure 2.10: A one-dimensional polymer consisting out of monomers of size a. The
sequences to the right and left are indicated by arrows. L is the effective or
projected length and L0 = Na the contour length.

N+ : #segments to right

N− : #segments to left
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⇒ N+ − N− =
L
a

N+ + N− = N

⇒ N+ =
1
2

(
N +

L
a

)
N− =

1
2

(
N − L

a

)
⇒ Ω =

N!
N+! N−!

⇒ S = −kB

(
N+ ln

N+

N
+ N− ln

N−
N

)
⇒ S = −kB N (ρ+ ln ρ+ + ρ− ln ρ−)

Here we defined ρ± = N±
N = 1

2

(
1± L

L0

)
with the ‘contour length’ L0 = Na in the last

step.

We have a look at two limits:
1 ρ+ → 1, ρ− → 0 ⇒ S→ 0

There is only one possible configuration for the polymer.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.7

1

x =
L

L0

S

k
B
N

=
−

1
+
x

2
·
ln

1
+
x

2
−

1
−
x

2
·
ln

1
−
x

2

Figure 2.11: S/(kBN) as a function of x. For x0 = 0 the function is maximal with f (x0) =
ln 2 ≈ 0.7.

2 L→ 0, ρ+ → 1
2 , ρ− → 1

2 ⇒ S→ N kB ln 2
We see that the entropy is maximal for L = 0, hence the polymer coils up ( 2.3).
Stretching the polymer decreases its entropy. Therefore an entropic restoring force
exists which pulls against an external stretching force.

Note that we cannot define temperature in the usual way, 1/T = ∂S/∂E, because
S(N, L) does not depend on E. However, there should be a conjugate quantity to length
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L, and this should be a force F and at the same time defines temperature T:

− F
T

=
∂S
∂L

x=L/L0⇒ 1
L0

∂S
∂x

= −N kB

L0

{
1
2

ln
(

1 + x
2

)
+

1
2
− 1

2
ln
(

1− x
2

)
− 1

2

}
= −N kB

2L0
ln
(

1 + x
1− x

)
︸ ︷︷ ︸

≈2x

≈ −N kB L
L2

0

L0=N a⇒ F =
kB T L
N a2

0 1
0

1

2

3

4

5

6

x

ln
(

1
+
x

1
−
x

)

divergence 

linear 

Figure 2.12: f (x) = ln
( 1+x

1−x

)
as a function of x.

The entropic restoring force corresponds at small extension to a harmonic potential:

U =
kB T L2

2 N a2

Most materials expand with temperature (eg ideal gas: pV = NkBT). For the polymer,
in contrast, increasing temperature causes a raise in restoring force and thus the system
contracts. Note that this is a purely entropic effect (our polymer has no energy). In
analogy with mechanics, k = kB T

N a2 is called the ‘entropic spring constant’ and it increases
with T.

2.10 Statistical deviation from average

For two systems in thermal contact, our equilibrium condition T1 = T2 followed from
the maximal entropy principle. We now investigate how sharp this maximum is. As an
instructive example, we consider two ideal gases in thermal contact:

Si =
3
2

kB Ni ln Ei + terms independent o f Ei (i ∈ {1, 2})
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S = S1 + S2

Maximal entropy:

dS = 0 ⇒ ∂S1

∂E1
=

∂S2

∂E2

⇒ 3
2

kB
N1

Ē1
=

3
2

kB
N2

Ē2
corresponding to T1 = T2

⇒ Ē1 =
N1

N2
Ē2 =

N1

N − N1
(E− Ē1) ⇒ Ē1 =

N1

N
E

We check for maximum:

∂2S
∂E2

1
= −3

2
kB

(
N1

Ē1
2 +

N2

Ē2
2

)
< 0

We now consider a small deviation:

E1 = Ē1 + ∆E, E2 = Ē2 − ∆E

⇒ S(Ē1 + ∆E) =
3
2

kB

[
N1 ln

(
Ē1

(
1 +

∆E
Ē1

))
+ N2 ln

(
Ē2

(
1− ∆E

Ē2

))]

≈︸︷︷︸
∆E
Ēi
�1

3
2

kB

N1 ln Ē1 + N2 ln Ē2 +

N1

E1
− N2

E2︸ ︷︷ ︸
=0 at equil.

 ∆E− N1

2

(
∆E
Ē1

)2

− N2

2

(
∆E
Ē2

)2


Ei =

Ni

N
E

⇒ Ω = Ω̄ exp

[
−3

4

(
∆E
E

)2

N2
(

1
N1

+
1

N2

)]
Plugging in a typical number Ni = 1027:

⇒ Ω drops dramatically away from the maximum Ē1

∆E
E e−

3
4 (

∆E
E )

2
N2

(
1

N1
+ 1

N2

)

10−10 e−600 ≈ 10−260

10−11 e−6

10−12 e−0.06 ≈ 1

We see that macrostates with Ē1(1± 10−12) and Ē2(1∓ 10−12) are equally likely. Fluc-
tuations in energy are of the order 10−12, hence tiny.
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2.11 Foundation of the fundamental postulate

There is a long and twisted history of justifying the fundamental postulate. The main
problem here is that on a microscopic basis, dynamics is governed by time-reversible
equations (Newton’s equation or Schrödinger equation), while macroscopic systems
decay irreversibly into a unique equilibrium state. A rigorous derivation of the drive
towards equilibrium from microscopic principles does still not exist (Boltzmann sug-
gested the famous H-theorem for this, but it turns out that his assumptions includes
something that has an irreversible nature) and several mechanisms are discussed that
somehow smooth out phase space density (e.g. deterministic chaos or quantum me-
chanical mixing with the states of the environment), such that a homogeneous distribu-
tion over the energy shell is achieved, but there is no general consensus what a rigorous
proof would be. Thus one has to state clearly that statistical mechanics works very well
for most physical systems of interest, but it is notoriously difficult to establish a micro-
scopic derivation. This is why we still have to speak of a fundamental postulate.
A very instructive approach to this question is to consider Hamiltonian dynamics. In
classical systems with N particles, each microstate is a point in 6N-dimensional ‘phase
space’ (~r1, ..., ~rn︸ ︷︷ ︸

positions

, ~p1, ..., ~pn︸ ︷︷ ︸
momenta

) = (~q,~p). In statistical mechanics, we consider many particle

systems and therefore cannot say in which state the system is exactly located, but rather
use a statistical ensemble of states. The probability distribution is continuous and the
probability that the system is in state (~q,~p) is

ρ(~q(t),~p(t), t) d~q d~p

where ρ is the phase space probability density. For initial conditions (~q(0),~p(0)) the
system evolves according to Hamilton’s equations:

ṗi = −
∂H
∂qi

, q̇i =
∂H
∂pi

For an isolated system at rest, energy is conserved due to the time invariance (Noether
theorem):

H = const = E

The solutions to the system of ordinary differential equations are unique and do not
intersect. Energy conservation reduces phase space to a (6N − 1)-dimensional hyper-
surface, the energy surface or energy shell.
We now define a phase space velocity

~v := (~̇q, ~̇p)

and the corresponding current
~j = ρ ~v

For an arbitrary region of phase space, we have a balance equation:
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∫
∂V

d~A ·~j = − ∂

∂t

∫
V

d~q d~p ρ(~q,~p, t)

⇒︸︷︷︸
Gauss theorem

∫
V

d~q d~p
[

∂ρ

∂t
+∇ ·~j

]
= 0

⇒︸︷︷︸
V arbitrary

∂ρ

∂t
+∇ · (ρ~v) = 0 continuity equation

Thus the system evolves like a hydrodynamic system, with a probability fluid stream-
ing through state space. We now use Hamilton’s equation to show that

0 =
∂ρ

∂t
+

3N

∑
i=1

(
∂

∂qi
(ρq̇i) +

∂

∂pi
(ρ ṗi))

=
∂ρ

∂t
+

3N

∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi) + ρ

3N

∑
i=1

(
∂q̇i

∂qi
+

∂ ṗi

∂pi
)︸ ︷︷ ︸

∂2H
∂qi ∂pi

− ∂2H
∂pi ∂qi

=0

=
dρ

dt
= 0 Liouville’s theorem

The total derivative of the probability density vanishes. The probability fluid is ‘incom-
pressible’ and ρ(~q(t),~p(t), t) = ρ(~q(0),~p(0), 0).
Let V0 be the volume of some initial region R0 of phase space. At some time t after-
wards, this region can have evolved to some region Rt with complicated shape, but its
volume is unchanged: Vt = V0 (Figure 2.13).

p

q

R0

Rt

Vt = V0

V0

Figure 2.13: The phase space volume stays constant, although its shape may change.

At this point, we can draw two important conclusions. First the number of occupied
microstates does not change, because phase space volume is conserved. More general,
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entropy does not change, because the system evolves deterministically and thus infor-
mation content is not changed. This seems to speak against the fundamental postulate,
which requires some kind of dispersion and increase in entropy. However, you can
interpret this results also in another manner. Especially because the Hamiltonian sys-
tem does not relax into some subset of phase space, it keeps continuing to explore all
of phase space in a similar manner and this contributes to the fact that all states are
equally likely to be visited.
Secondly, the fact that the phase space volume is conserved does not mean that its
shape does not change. In fact for many systems of interest, one finds that a well-
defined region of phase space quickly distorts into a very complex shape, especially
for chaotic systems. When viewed from a coarse-grained perspective (like in a real
world experiment with limited resolution), we will see a smooth distribution. This has
been compared with the stirring of oil and water, which keep distinct domains on the
microscale (oil and water do not mix), but appear to be uniform on a macroscopic scale.
A more rigorous way to deal with the coarse-graining issue in a classical framework
is the BBGKY-hierarchy (after Bogoliubov, Born, Green, Kirkwood, Yvon). Mixing in
phase space is possible even in completely classical systems as proven by deterministic
chaos. On the quantum level, one also could argue that completely isolated systems
never exist and that coupling to the environment, even if very weak, will eventually
lead to smoothing in state space. This aspect seems to suggest how the fundamental
postulate might arise.
In order to learn more about the equilibrium state, we next rewrite Liouville’s theorem:

∂ρ

∂t
= −

3N

∑
i=1

[
q̇i

∂ρ

∂qi
+ ṗi

∂ρ

∂pi

]
= −

3N

∑
i=1

[
∂H
∂pi

∂ρ

∂qi
− ∂H

∂qi

∂ρ

∂pi

]
= −{H, ρ} Liouville’s equation

Here we used the notation of ‘Poisson brackets’ in the last step. Liouville’s equation is
also known as the collisionless Boltzmann equation because it describes the streaming
part for the probability fluid in phase space.
Let us now assume that ρ(~q,~p, t) only depends on the conserved value of energy E.

ρ(~q,~p, t) = Φ(E),
dE
dt

= 0
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We now get

∂ρ

∂t
= −{H, ρ}

= −
3N

∑
i=1

[
∂H
∂pi

∂ρ

∂qi
− ∂H

∂qi

∂ρ

∂pi

]
= −

3N

∑
i=1

[
∂H
∂pi

∂E
∂qi
− ∂H

∂qi

∂E
∂pi

]
︸ ︷︷ ︸

{H,H}= dE
dt =0

∂Φ
∂E

= 0

This result is also known as Jean’s theorem. Thus in this case the state space probability
density is constant and has the same value for a given energy. We conclude that once
the microcanonical equilibrium state is reached, the system will stay there for ever.
We next consider an observable A which depends on time only through phase space:

A(t) = A( ~q(t), ~p(t))

⇒ dA
dt

=
3N

∑
i=1

[
∂A
∂qi

q̇i +
∂A
∂pi

ṗi

]
= {H, A}

In equilibrium the ensemble average of an observable

〈A〉 =
∫

d~q d~p ρ(~q,~p) A(~q,~p)

will be time-independent. In particular we expect this to apply to all state variables.
Equivalent results can be derived for quantum mechanical systems. However, in this
case we cannot use a scalar probability density, because phase space coordinates do not
commute. Instead we need to introduce a density operator.
For a given state |Ψ〉, the observable has the average (projection):

〈A〉 = 〈Ψ| A |Ψ〉

We define the density operator or density matrix:

ρ = |Ψ〉 〈Ψ|

This then yields

〈A〉 = 〈Ψ| A |Ψ〉 = ∑
n
〈Ψ| A |n〉 〈n|Ψ〉

= ∑
n
〈n|Ψ〉 〈Ψ| A |n〉 = ∑

n
〈n| ρA |n〉

= tr {ρA} average over quantum mechanical distribution of states

If we now turn to statistical mechanics, we superimpose a second layer of probability
over the quantum mechanical probabilities. We call the states that follow the Schrödinger
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equation pure states and then consider mixed states by adding up several of the pure
states in an incoherent manner (no superposition, so probability is not tranfered from
one qm state to the other and the weights stay constant).
Using an extended definition of the density matrix:

ρ = ∑
i

pi |Ψi〉 〈Ψi|

⇒ 〈A〉 = ∑
i

pi 〈Ψi| A |Ψi〉

= ∑
n

∑
i

pi 〈Ψi| A |n〉 〈n|Ψi〉

= ∑
n

∑
i

pi 〈n|Ψi〉 〈Ψi| A |n〉

= ∑
n
〈n| ρA |n〉 = tr(ρA)

Again stationary distributions result if ρ is a function of the stationary ensemble in
energy representation:

H |n〉 = En |n〉

0 = ∂tρ = [H, ρ]

⇒ 0 = 〈m| Hρ− ρH |n〉 = (Em − En) ρmn

⇒ ρmn = 0 f or Em 6= En

without degeneracy: ρ = ∑
n

ρ(En) |n〉 〈n|

We now derive the quantum mechanical analogue of Liouville’s equation:

Schrödinger equation: ih̄ ∂t |Ψ〉 = H |Ψ〉
adjoint Schrödinger equation: − ih̄ ∂t 〈Ψ| = 〈Ψ| H

⇒ ih̄ ∂tρ = ih̄ ∑
i

pi
(∣∣Ψ̇i

〉
〈Ψi|+ |Ψi〉

〈
Ψ̇i
∣∣)

= ∑
i

pi (H |Ψi〉 〈Ψi| − |Ψi〉 〈Ψi| H)

= [H, ρ] commutator

∂tρ = − i
h̄

[H, ρ] von Neumann equation

Like Liouville’s equation, von Neumann’s equation (also called the quantum Liouville
equation) suggests that in equilibrium, probability distributions and state variables are
constant.
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In summary, the fundamental postulate cannot be proven rigorously and thus stays a
postulate. Generations of physicists and mathematicians have tried to improve on the
conceptual basis of statistical physics, e.g. trying to prove that certain model systems
are ergodic, but usually this created only more riddles, e.g. in dynamical systems the-
ory. The general idea however is clear: microscopic dynamics leads to a smearing out
of correlations and if one does not resolve all of these details, entropy increases. In this
sense, the increase of entropy is in fact a matter of the observer. Despite this somehow
shaky foundation, the fundamental postulate has proven itself beyond doubt due to its
success in explaining the physics of many particle systems.
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3 The canonical ensemble

3.1 Boltzmann distribution

We consider a system in contact with a ‘thermal reservoir’ or ‘heat bath’. Then it is tem-
perature T rather than energy E that is fixed. A simple example would be a bottle of
beer in a large lake, which eventually will cool down to the temperature of the lake.
To qualify as a thermal reservoir, the surrounding system has to be much larger such
that its temperature does not change as energy is exchanged with the system of interest.
Together the two systems form an isolated system for which energy is fixed at Etot.

1

2

Figure 3.1: Two systems in thermal contact. System 2 is considerably larger than system
1 and serves as a ‘thermal reservoir’. Together the two systems are again a
microcanoncial ensemble.

We now consider one specific microstate i in system 1. This microstate comes with an
energy Ei. Its probability to occur is

pi =
# favorable outcomes
# possible outcomes

=
Ωres(Etot − Ei)

Ωtot(Etot)
=

eSres(Etot−Ei)/kB

eStot(Etot)/kB

Here we used that the composite system is microcanonical and that we have fixed the
microstate in system 1; then the number of accessible microstates is determined by
system 2 (the reservoir) only.
We next introduce the average energy of system 1 as the reference energy:

U = 〈E〉 = ∑
i

piEi

We now Taylor-expand the entropy of the heat bath:

Sres(Etot − Ei) = Sres(Etot −U + U − Ei) = Sres(Etot −U) +
U − Ei

T
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Here we have used ∂S/∂E = 1/T. Note that higher order terms do not appear because
a reservoir has a constant temperature (first derivative constant, thus the second and
the higher order derivatives vanish). We also can use additivity of the entropy to write

Stot(Etot) = S(U) + Sres(Etot −U)

Defining the inverse temperature

β :=
1

kB T

we thus get

pi =
eβUe−βEi eSres(Etot−U)/kB

eS(U)/kB eSres(Etot−U)/kB
= eβFe−βEi

where F = U − TS and where the terms with Sres have canceled out. We note that
pi ∼ e−βEi and that the prefactor eβF has the role of a normalization factor. In order to
normalize, we use ∑i pi = 1 to write

pi =
1
Z

e−βEi Boltzmann distribution

with
Z = ∑

i
e−βEi partition sum

We conclude that the probability for a microstate decreases exponentially with its en-
ergy. The newly defined quantity Z is the central concept of the canonical ensemble
and plays a similar role as the phase space volume Ω in the microcanonical ensemble.

Comments:
1 We note that the expansion around Etot −U is not required to get the Boltzmann

factor e−βEi . We would have obtained this result also by expanding simply around
Etot, because the derivative would also have given 1/T. The normalization is en-
sured anyway by the new quantity Z. The expansion used here becomes impor-
tant later because only in this way we get the prefactor eβF. As we will discuss
below in more detail, this leads to the important relation F = −kBT ln Z connect-
ing thermodynamics (F) and statistics (Z).

2 For classical Hamiltonian systems we have

p(~q,~p) =
1

Z N! h3N e−β H(~q,~p)

with the Hamiltonian H and the partition sum (or, better, the partition function)
is

Z =
1

N! h3N

∫
d~q d~p e−βH(~q,~p)
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3 From Liouville’s theorem it follows that the Boltzmann distribution is a stationary
distribution as ρ = ρ (H). Like for the microcanonical distribution, it is reasonable
to associate it with equilibrium.

4 The Boltzmann distribution can also be motivated by information theory. In chap-
ter 1 we showed that it maximizes entropy under the condition that:

U = 〈E〉 = const

3.2 Free energy

The Boltzmann factor e−βEi means that a microstate is the less likely the higher its en-
ergy. However, if we ask for the probability that the system has energy E, we have to
consider all microstates with energy E:

p(E) =
1
Z

Ω(E) e−βE =
1
Z

e−βE+S(E)/kB

=
1
Z

e−
E−TS
kBT =

1
Z

e−βF

This probability is maximal, if the quantity:

F(E, V, N) = E− T S(E, V, N)

has a minimum with respect to E. This is the case when:

0 =
∂F
∂E

= 1− T
∂S
∂E︸︷︷︸
= 1

T1

that is when the system is at the temperature of the heat bath.
We conclude that not the smallest energy (like for vanishing T) or the highest entropy
(like for very high T) is achieved in equilibrium, but the smallest F, which is a combi-
nation of energy and entropy with the relative importance determined by temperature.
The smaller weight of the Boltzmann factor for higher energy is compensated by the
fact that the number of microstates usually increases with energy. For example, for the
ideal gas we have Ω ∼ E3N/2 and therefore S ∼ ln E. Therefore F = E− TS(E) diverges
logarithmically at low E and linearly at high E, with a minimum somewhere inbetween
(note that for this argument, we have to keep T fixed and cannot replace it be E, because
this is the temperature of the heat bath given from outside).
Because in the canonical ensemble we fix T rather than E, we actually should write
F(T, V, N) using the caloric equation of state to convert E into T. This quantity is called
the ‘Helmholtz free energy’ or simply the ‘free energy’. Its appearance in the canonical
ensemble provides a direct link to thermodynamics, which derives the extremum prin-
ciple for the free energy soley from macroscopic arguments. We conclude:
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In the canonical ensemble, equilibrium corresponds to the minimum
of the free energy F(T, V, N).

We can costruct F(T, V, N) from S(E, V, N) (entropy representation of the microcanon-
ical ensemble) in the following way:

1 introduce a new variable 1
T = ∂S(E,V,N)

∂E

2 eliminate E in favor of T by solving for E = E(T, V, N)

3 construct F(T, V, N) = E(T, V, N)− T S(E(T, V, N), V, N)

Alternatively we can start from the energy representation of the microcanonical ensem-
ble:

1 T(S, V, N) = ∂E
∂S

2 S = S(T, V, N)

3 F(T, V, N) = E(S(T, V, N), V, N)− T S(T, V, N)

Mathematically, such procedures are known as ‘Legendre transformations’, when a func-
tion is rewritten such that it becomes a unique function of its derivative. Legendre
transforms also occur in analytical mechanics:

L = L(q, q̇, t)︸ ︷︷ ︸
Lagrangian mechanics

→ H = H(q, p, t)︸ ︷︷ ︸
Hamiltonian mechanics

= −(L− q̇ p) with p =
∂L
∂q̇

where the Legendre transform of the (negative) Lagrange function gives the Hamilto-
nian function. The free energy F is in fact the Legendre transform of energy E with the
argument changing from entropy S to temperature T, which is defined as a derivative
of E.
We now consider the total differential of F(T, p, V):

dF = dE + d(TS) = TdS− pdV + µdN − TdS− SdT = −SdT − pdV + µdN

This is the fundamental equation of the canonical ensemble and leads to three equations
of state:

S = − ∂F
∂T

p = − ∂F
∂V

µ =
∂F
∂N
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How do we calculate F? In principle, we can start from the microcanonical ensemble
and calculate it as explained above. However, this will be quite tedious or even impos-
sible for many cases. There is a much simplier way to do it. We recall that

pi = eβFe−βEi =
1
Z

e−βEi

and therefore we simply have

⇒ F(T, V, N) = −kB T ln Z(T, V, N)

Thus the free energy follows directly from the partition sum and there is no need to go
through the microcanonical ensemble.
A similar comment applies to the average energy U = 〈E〉. In principle, it follows from
the microcanoncial ensemble. However, if we work in the canonical ensemble, we can
calculate it directly from the partition sum:

〈E〉 = ∑
i

pi Ei =
1
Z ∑

i
Ei e−βEi

=
1
Z

(−) ∂β ∑
i

e−βEi = − ∂β ln Z(β) = 〈E〉

We can check consistency with the definition of the free energy:

〈E〉 = − ∂β ln Z(β) = ∂β(βF) = F + β
∂F
∂β

= F− kBT2

kBT
∂F
∂T

= F + TS

as it should.
For the variance of the energy we find:

σ2
E =

〈
(E− 〈E〉)2〉 = 〈E2〉− 〈E〉2

=
1
Z

∂2
βZ−

(
1
Z

∂βZ
)2

= ∂β

(
1
Z

∂βZ
)
= ∂2

β ln Z

= −∂β 〈E〉 = kB T2 ∂T 〈E〉
= kB T2 cv(T)︸ ︷︷ ︸

specific heat

Thus the second moment is related to a material property. Note that this implies cv(T) ≥
0. We note that this equation connects to physical quantities that naively are unre-
lated: a measure for fluctuations on the left hand side and a material property or re-
sponse function on the right hand side. Such surprising relations constitute the big
success of thermodynamics. In the context of statistical physics, they are examples of
the fluctuation-dissipation theorem.
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We finally comment on the sharpness of the energy distribution. For the microcanonical
ensemble, we showed that in the macroscopic limit N → ∞ the distribution becomes
very sharp around the value E. For the canonical ensemble, the same holds true for 〈E〉.
We note that cv ≈ NkB and 〈E〉 ≈ kBTN and therefore

σE

〈E〉 =
1√
N

= 10−10

for a macroscopic system with 1020 particles. In contrast, the single particle with N = 1
experiences very strong fluctuations.

<E> ~ N
E

f(
E

)

σE

〈E〉 ∝ 1√
N

Figure 3.2: The energy distribution of a canonical system. 〈E〉 scales with N while
σE/ 〈E〉 is proportional to 1/

√
N.

3.3 Non-interacting systems

The canonical formalism is especially convenient if the energy of the system is a sum
over the energies of N independent elements (eg atoms in a gas or solid). We denote by
εij the jth energy state of the ith element:

Z = ∑
ji

∑
j2

... ∑
jN︸ ︷︷ ︸

microstate

e−β ∑N
i=1 εiji

=

(
∑
j1

e−βε1j1

)(
∑
j2

e−βε2j2

)
...

(
∑
jN

e−βεNjN

)

= z1 · z2 ... · zN =
N

∏
i=1

zi

⇒ F = −kB T
N

∑
i=1

ln zi = −kB T ln Z
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Thus the partition sum factorises and the free energy is additive over the elements. For
N identical elements we simply have:

Z = zN , F = −kB T N ln z

where z is the ‘single particle partition sum’ .

Example:

1 Two-state system
We consider a two state system as discussed above. As all particles are identical,
we only have to calculate the single particle partition sum.

z = 1 + e−βε ⇒ E = −∂β ln zN =
N e−βε ε

1 + e−βε
=

N ε

1 + eβε

This is exactly the result we obtained in two complicated calculations from the
microcanonical ensemble.
Remember: c = dE

dT gives the Schottky-hump.

Consider again the two limits:

1 T → ∞ (βε� 1) : z→ 2

p0 =
1
z
=

1
2

pε =
e−βε

z
=

1
2

Both states are equally likely.

2 T → 0 (βε� 1) : z→ 1

p0 =
1
z
= 1

pε =
e−βε

z
= 0

Only the ground state is occupied.

2 Harmonic oscillator (Einstein model)

En = h̄ ω (n +
1
2
), n = 0, 1, ...
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Again we only need the single particle partition sum:

z =
∞

∑
n=0

e−βEn = e−
1
2 βh̄ω

(
1 + e−βh̄ω + e−2βh̄ω + ...

)
= e−

1
2 βh̄ω 1

1− e−βh̄ω
using the geometrical sum

⇒ E = −∂β ln zN = N
{

h̄ω

2
− e−βh̄ω h̄ω

1− e−βh̄ω

}
= N h̄ ω

{
1

eβh̄ω − 1
+

1
2

}
Again this is the same result as the one we obtained from microcanonical calcula-
tions.

T → 0 (βh̄ω → ∞) : E→ Nh̄ω

2
Each oscillator is in its ground state.

T → ∞ (βh̄ω → 0) : E→ NkBT → ∞ Each of the two modes carries energy kBT/2.

0.5

kBT

h̄ω

E

h̄
ω
N

ground state limit

"classical limit"

Figure 3.3: Harmonic oscillator: For T large, the energy of an harmonic oscillator (blue
curve) increases linearly with temperature as in the classical case.
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kBT

h̄ω
c

Figure 3.4: Harmonic oscillator: The heat capacity c asymptotically approaches a con-
stant value at high temperature.

3 Ideal gas

Z =
1

N! h3N

∫
d~q d~p e−βp2/(2m)

=
1

N! h3N VN
(

2π m
β

) 3N
2

⇒ F = −kB T ln Z

= −kB T N
[

ln V +
3
2

ln
(

2πmkBT
h2

)
− ln N!

N

]
≈︸︷︷︸

Stirling

−kB T N
[

ln
(

V
N

)
+

3
2

ln
(

2πmkBT
h2

)
+ 1
]
= F(T, V, N)

〈E〉 = −∂β ln Z =
3N
2

1
β
=

3
2

N kB T = E caloric equation of state

We see that we get the same result as for the microcanonical ensemble.

p = − ∂F
∂V

= kB T N
1
V

⇒ p V = N kB T thermal equation of state (ideal gas law)

S = − ∂F
∂T

= kB N
[

ln
(

V
N

)
+

3
2

ln
(

2πmkBT
h2

)
+ 1 +

3
2

]

Replacing T = 2E
3NkB

and using the thermal wavelength λ =
(

3h2 N
4πmE

) 1
2
, we recover

the result form the microcanonical ensemble:

S = kB N
{

ln
(

V
Nλ3

)
+

5
2

}
One can easily check that F(T, V, N) also follows as Legendre transform from this
expression for S(E, V, N).
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4 Maxwell distribution

For a classical gas with H = p2

2m + V(~q), we ask for the probability dW to find
some particle, eg i = 1, in the momentum interval

p ≤ |p1| ≤ p + dp.

Thus we simply integrate out all other degress of freedom: ~p2, ... , ~pN , ~q1, ... , ~qN .

⇒ dW =
1
Z̃

4π e−βp2/(2m) p2 dp

p

ρ
(p
)

Figure 3.5: Maxwell distribution: The probability density ρ as a function of p.

The normalization constant is

Z̃ = (2π m kB T)
3
2

such that
∫

dW = 1. This result is valid for any type of gas (arbitrary interaction
potential V). For an ideal gas, the average energy is the average kinetic energy:

E = N
〈

p2

2m

〉
=

3
2

N kB T

as expected.

One can easily calculate that the most likely velocity is vmax =
√

2kBT/m. For air,
we use the mass of an oxygen molecule, 32 g / NA with the Avogadro number
NA = 6 1023 (nitrogen or a mixture of oxygen and nitrogen would give us the
same order of magnitude, because their molecular weights are so similar). With
kBT = 4 10−21 J, we then get vmax =

√
2kBT/m = 400m/s. However, the mean

free path length is only 10−7 m and the mean collision time 2x10−10 s, so the
molecules do not get far. One also can calculate that the coefficient of variation
σv/ 〈v〉 ≈ 0.67, which shows that the distribution is very broad.
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5 Barometric formula

For an ideal gas in the gravitational field of the earth we have

H =
N

∑
i=1

{
p2

i
2m

+ m g hi

}
where hi is the height of particle i. To get the probability that a particle is at
height h, we arbitrarily choose one particle and integrate out all other degress of
freedom:

⇒ dW =
e−mgh/(kBT)

Z̃
dh

Thus the density will decrease exponentially with distance. The length scale for
this will be (kBT)/(mg). Using the mass of oxygen molecules, 32g/NA with the
Avogadro number NA = 6 1023, gravitational acceleration g = 9.8m/s2, and
kBT = 4 10−21 J, we get 7.5 km, in good agreement with the experimental scale.
Because of the ideal gas law, the pressure will also decay exponentially on the
same scale. Note that this model neglects the fact that temperature decreases
with height (typically one degree by 100 m).

h

ρ
(h
)

Figure 3.6: Barometric formula: The probability density ρ as a function of h. Assuming
constant T, the density decays exponentially. For T ↓ the particles come
down, while for T ↑ they go up.

3.4 Equipartition theorem

We define f to be the degrees of freedom (DOFs) that can be excited by thermal energy.
We have a look at the heat capacities for the harmonic oscillators and the ideal gas:

1 harmonic oscillator: f = 2N, each oscillator has kinetic and potential energy

T → ∞ : cv = N kB = f
1
2

kB
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2 ideal gas: f = 3N, each particles has three degrees of translation, but there is not
interaction potential

cv =
3
2

N kB = f
1
2

kB

Such a result was not obtained for the two-state system. Obviously it is related to
harmonic terms in the Hamiltonian.
Consider a harmonic Hamiltonian with f = 2:

H = A q2 + B p2

z ∝
∫

dq dp e−βH

=

(
π

Aβ

) 1
2

·
(

π

Bβ

) 1
2

∝
(

T
1
2

) f

We conclude:

For sufficiently high temperature (classical limit), each quadratic term in the
Hamiltonian contributes a factor T

1
2 to the partition sum (‘equipartition

theorem’).

This then leads to the following terms in other quantities:

free energy : F = −kBT ln z = − f
2

kB T ln T

entropy : S = − ∂F
∂T

=
f
2

kB (ln T + 1)

internal energy : U = −∂β ln z =
f
2

kB T

heat capacity : cv =
dU
dT

=
f
2

kB


all extensive, scale with f

Examples

1 monoatomic ideal gas A monoatomic ideal gas has three translational (kinetic)
degrees of freedom.

⇒ cv =
3
2

N kB

The positional degrees of freedom do not have quadratic energy. However, spe-
cial wall potentials can give similar contributions. For the ideal gas, the wall only
leads to the volume term.
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2 diatomic ideal classical gas (eg H-H)
The molecule has 6 modes, but different modes have different degrees of freedom.
We consider a classical Hamiltonian in the center of mass system and look at
relative rotational motions:

H =
1

2M

(
p2

x + p2
y + p2

z

)
︸ ︷︷ ︸

translation: ft=3

+
1
2I

(
p2

Φ

sin2 Θ
+ p2

Θ

)
︸ ︷︷ ︸

rotation: fr=2

+

(
p2

r
2µ

+
µω2r2

2

)
︸ ︷︷ ︸

vibration: fv=2

Here I denotes moment of inertia and µ the reduced mass. The total number of
degrees of freedom then is

f = ft + fr + fv = 7

cv =
7
2

N kB

By only measuring the heat capacity cv, we can already infer some far-reaching
statements about the architecture of the molecule. Note that this measurement
does not work at room temperature, when the vibrational modes are not popu-
lated yet. At room temperature, one only measures cv = (5/2)NkB.

3 Triatomic molecules
Here one has to differ between triangular and linear shaped molecules. Each have
3x3 = 9 modes, but the degrees of freedom f are different. For the triangular
shaped molecules, we have three rotational modes and three vibrations, giving
f = 3 + 3 + 2x3 = 12. For the linear molecule, we have only two rotational
modes but four vibrational ones, giving f = 3 + 2 + 2x4 = 13.

Virial theorem

We consider a classical Hamiltonian system. Let xi = qi, pi be position or momentum.

〈
xi

∂H
∂xj

〉
=

1
Z

∫
dΓ

(
xi

∂H
∂xj

)
e−βH

︸ ︷︷ ︸
=xi

∂
∂xj
(e−βH) 1

−β

= kB T
1
Z

∫
dΓ

∂xi

∂xj︸︷︷︸
δij

e−βH = kB T δij =

〈
xi

∂H
∂xj

〉

Here we used partial integration and considered no contributions at infinity.

Specify to position and harmonic potential:

Vi =
1
2

m ω2 q2
i
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⇒
〈

qi
∂V
∂qi

〉
=
〈
qi
(
mω2qi

)〉
= 2 〈Vi〉

⇒ 〈Vi〉 =
kBT

2

Application to momentum and kinetic energy instead yields:

Ti =
p2

i
2m

⇒
〈

pi
∂Ti

∂pi

〉
=
〈

pi
pi

m

〉
= 2 〈Ti〉 = kB T

⇒ 〈Ti〉 =
kBT

2

Thus we obtain the same results as from the canonical ensembles. In classical mechan-
ics, we derived a virial theorem for time rather than ensemble average:

〈T〉 = 1
2
〈~q · ∇V〉 = 〈V〉

where the last step only works for harmonic systems and the average denote time av-
erages.

3.5 Molecular gases

Each molecule can be thermally excited in many ways. Apart from the three transla-
tional modes, there are vibrational, rotational, electronic and nuclear ones. Often one
can assume that they are independent:

Z = Ztrans · Zvib · Zrot · Zelec · Znuc

With respect to the N molecules in a gas we have:

Zx = zN
x

where x stands for the different mode types. Ztrans is special, because it includes the
effect of interaction potential, but we will postpone this for now and treat it later in
relation to phase transitions. For a vanishing interaction potential or dilute gas, Ztrans is
the one of the ideal gas, with a factor 1/N! accounting for exchange of particle identi-
ties. Only Ztrans depends on volume and thus contributes to pressure. In the following
we mainly discuss diatomic molecules like molecular hydrogen H2. Important applica-
tions include plasma physics (fusion) and astrophysics (star formation from interstellar
clouds).
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Vibrational modes

Intermolecular vibrations are often described by the ‘Morse potential’:

V(r) = E0

(
1− e−α (r−r0)

)2

r

E

Morse−potential

harmonic approximation

E0

r0

Figure 3.7: The Morse potential (blue) and its harmonic approximation (red) as a func-
tion of the interatomic distance r.

An exact solution of the Schrödinger equation gives

En = h̄ ω0

(
n +

1
2

)
− h̄2ω2

0
4E0

(
n +

1
2

)2

ω0 =
α

2π

√
2E0

µ
, µ =

m
2

reduced mass

For h̄ω0 � E0 (small anharmonic contribution, valid for E0 large or α small) we can use
the harmonic approximation (anharmonic corrections can be calculated with perturba-
tion theory):

zvib =
e−βh̄ω/2

1− e−βh̄ω0

Excitation of this mode occurs at:

Tvib ≈
h̄ω0

kB
≈ 6.140 K for H2

Rotational modes

The standard approximation is the one of a rigid rotator. The moment of inertia for a
rotator is given as

I = µ r2
0
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c

T

kB

Tvib

Figure 3.8: The heat capacity cv as a function of temperature T. Around T = Tvib the
capacity increases and then levels off at kB.

T

c

3kB

Tvib,1 Tvib,2 Tvib,3

Figure 3.9: For Nvib vibrational modes, the heat capacity raises in a step-wise manner.
Here the heat capacity cv is plotted as a function of T for Nvib = 3.

The rotation around the horizontal axis does not matter, because the corresponding
quantum mechanical wave function is rotationally symmetric. The eigenfunctions ob-
tained from the Schrödinger equation are the spherical harmonics Yml .

⇒ El =
h̄2

2I
l(l + 1)

with degeneracy gl = 2l + 1 .

The internal rotation contributes to the heat capacity of the diatomic molecule as shown
in Figure 3.10 (small bump before the plateau). For H2, the rise occurs for 85.4 K. To-
gether with the vibrational contribution, this yields a specific heat with two rising parts
as schematically shown in Figure 3.11. Below 20 K, the gas condensates into a liquid.
Around 10.000 K, it starts to dissociate into atoms.
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c

T

kB

Trot

Figure 3.10: Rigid rotator: Sketch showing the contribution of internal rotation to the
heat capacity of a diatomic molecule. For eg H2: Trot = h̄2/(I kB) ≈ 85.4 K.

c

TTrot

2kB

Tvib

Figure 3.11: Sketch showing the specific heat of a diluted gas of H2 as a function of
temperature.

Nuclear contributions: ortho- and parahydrogen

Due to the existence of a covalent bound, the spins of the electrons are coupled to Selec =
0. However, the spins of the protons can have variable coupling. The two protons are
fermions (spin- 1

2 particles). For spin coupling S = 1 (parallel spins), there are three
possible spin states:

|↑↑〉 ,
1√
2
(|↑↓〉+ |↓↑〉) , |↓↓〉 triplet state with degeneracy 3:‘orthohydrogen’

For spin coupling S = 0 (anti-parallel spins), there is only one possible spin state:

1√
2
(|↑↓〉 − |↓↑〉) singlet state, no degeneracy:‘parahydrogen’
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Under exchange of the two protons, the total wave function has to be anti-symmetric:

Ψ(1, 2) = Ψ0(r) Ylm(Θ, Φ) |SSz〉

⇒ P12 Ψ(1, 2) = (−1)l+S+1 Ψ(1, 2) !
= −Ψ(1, 2)

⇒ S = 1 (ortho) : l = 1, 3, 5... only odd l are allowed
S = 0 (para) : l = 0, 2, 4... only even l are allowed

As for low T (T � Trot) only the ground state (l = 0) is occupied, we conclude that
only parahydrogen can exist at low temperatures.
For high temperatures (T � Trot), all four spin states are equally likely and ortho- and
parahydrogen hence exist in a ratio of 3 : 1.
Importantly, the relaxation time to equilibrium is one year due to a very weak inter-
action energy. Below this time scale, the system has a memory and the specific heat
depends on the preparation history.

Restricted partition sums:

zortho = ∑
l=1,3,5,...

(2l + 1) e−
l(l+1)Trot

T

zpara = ∑
l=0,2,4,...

(2l + 1) e−
l(l+1)Trot

T

After a long time, we have zrot = 3zortho + zpara. Figure 3.12 shows schematically how
the two different contributions to cv and their equilibrium mixture behave as a function
of temperature.

c

T

parahydrogen
= preparation at low T

orthohydrogen

3:1 preparation at high T

Figure 3.12: Heat capacity as a function of temperature for ortho- and parahydrogen
(blue). The red curve indicates the equilibrium ratio as obtained at high
temperature.
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3.6 Specific heat of a solid

We consider a crystal to be a collection of masses and springs (harmonic crystal). The
springs represent the harmonic approximations to more complicated interactions po-
tentials. We only focus on the 3N vibrational modes and disregard electronic or nuclear
modes (see discussion below on the electronic degrees of freedom). Translational and
rotational modes of the overall object are disregarded because the total mass is much
larger than the mass of its constituents.
As we discussed before, the simplest approach is the so-called ‘Einstein solid’, consist-
ing of 3N oscillators with frequency ω0 vibrating around their equilibrium positions.
However, this model does not predict the experimentally measured low temperature
dependence correctly (c ∝ T3). What is missing here is the fact that the atoms do not
oscillate by themselves, but collectively. The corresponding model was suggested by
Debye.

Figure 3.13: Simple model of a crystal: The regularly distributed atoms (here a simple
cubic lattice) are connected by springs forming a large coupled system.

Debye model (1912)

We first consider a one-dimensional crystal (linear chain).

κ: spring constant

qn+1 qn-1qn

Figure 3.14: Mechanical waves in one dimension: the atoms are arranged in a linear
chain and coupled with springs. qi denotes the elongation away from equi-
librium for the i-th atom.

Each atom is deplaced by qn(t) from its equilibrium position xn = n a. We write down
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the equation of motion:

m q̈n = Fn = κ (qn+1 − qn)− κ (qn − qn−1)

= κ (qn+1 + qn−1 − 2qn)︸ ︷︷ ︸
discretized second derivative

Here κ is the spring constant (we cannot use k because this will be the wavenumber
later). In the continuum limit, this gives a wave equation q̈− c2

s q′′ = 0 with the wave
velocity cs = (κa2/m)1/2 (velocity of sound). We stay in the discrete picture but use the
fact that we expect wave-like solutions:

qn(t) = A ei(ωt+kna)

ω =
2π

T
frequency, k =

2π

λ
wave number

⇒ −mω2 = κ
[
eika + e−ika − 2

]
= −2κ [1− cos(ka)] = −4κ sin2

(
ka
2

)

⇒ ω(k) =
(

4κ

m

) 1
2

|sin
(

ka
2

)
|

The frequency is not constant, but depends on the wave number. Since the solution
is 2π-periodic, we restrict it to the interval −π/a < k < +π/a (first Brillouin zone).
We note that for k = 0 (center of Brillouin zone), the phase difference between two
neighbors is eka = 1 and they oscillate in phase. For k = π/a (boundary of Brillouin
zone), we have a phase difference of eπ = −1 and neighbors oscillate against each other.
The oscillation at small frequency defines the same velocity of sound as identified above
because both cases correspond to the continuum limit:

cs =
dω

dk

∣∣∣∣
k=0

=

√
κ

m
a

We next consider a finite system size, that is N atoms and a chain length L = N a . We
choose periodic boundary conditions (Born-von Karman boundary conditions):

qn = qn+N

⇒ eikNa = 1 ⇒ k j =
2π

aN
j, j = 0,±1, ...,±N

2
Only discrete k−values are allowed in the first Brillouin zone. As a result we have N
degrees of freedom, thus only N oscillators are possible. Their k−values are separated
by:

∆k =
2π

L
which is the density of states in k−space.
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Figure 3.15: The dispersion relation of a linear chain (blue) and its linear approximation
for small values of k (red). The Debye model uses the linear dispersion
relation.

Going to a three-dimensional system, waves are now written as:

~Aei(~k·~r+ωt)

with wave vector~k. In addition to the longitudinal wave discussed in one dimension,
we also have two transversal waves. The number of modes then becomes:

#modes = ∑
~k

3 = 3 ∏
i=x,y,z

∫ π/a

−π/a

dki

∆k

= 3
(

2π

a
L

2π

)3

=
3V
a3 = 3N

Here we introduced the volume V = L3 and then used V/a3 = N. This result makes a
lot of sense: the overall number of modes has to be the same both in real and in wave
space.
We now transfer the summation over modes from ~k-space to ω-space. This implies
that we now switch from Cartesian to spherical coordinates. As an approximation we
assume a linear dispersion relation:

ω = cs |k|

We also assume that longitudinal and transversal modes have the same velocity and
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and that all directions are equally probable.

⇒ #modes = 3
∫ d3k

(∆k)3 =
3V

(2π)3

∫ kmax

0
4π k2 dk

=
3V

2π2 c3
s

∫ ωD

0
dω ω2 =

V
2π2c3

s
ω3

D
!
= 3N

The maximal or Debye frequency follows as:

ωD = cs

(
6π2N

V

) 1
3

≈ 3.9
cs

a

where we used V = N a3. This agrees approximately with our earlier statement:

kmax =
ωD

cs
=

π

a

The Debye frequency as frequency cutoff makes sure that we count the number of
modes in the correct manner and it reflects that fact that in a periodic crystal, waves
cannot have a wavelength smaller than the lattice constant.
In summary, the Debye model assumes the following (normalized) density of states in
ω−space:

D(ω) =

3
ω2

ω3
D

for ω ≤ ωD

0 for ω > ωD

3

ωD

ωDω

D

Figure 3.16: The density of states D for the Debye model as a function of ω.

We now know how to count modes in frequency-space:

∑
modes

(...) = 3 ∑
k
(...) = 3N

∫ ωD

0
dω D(ω) (...)
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The essential assumption of the Debye model is that each allowed k-mode is one har-
monic oscillator that is quantized according to the rules of quantum mechanics (which
means that the Schrödinger equation is implicitly used here). The ultimate justifica-
tion for this choice is that it correctly predicts the experimental results for the specific
heat. The Debye model is so popular that even a temperature-dependent Debye fre-
quency ωD(T) is used to present experimental results as deviations from the ideal De-
bye behaviour, although in reality these deviations show that the Debye model (which
assumes constant ωD) is not good enough to describe the details of the experimental
data; for this one has to use more complicated densities of state.
We now use the single particle partition sum for each k-mode:

z(ω) =
e−βh̄ω/2

1− e−βh̄ω

⇒ Z = ∏
modes

z(ω)

⇒ E = −∂β ln Z = ∑
modes

h̄ω

(
1

eβh̄ω − 1
+

1
2

)
= E0 + 3N

∫ ωD

0
dω

h̄ω

eβh̄ω − 1
3ω2

ω3
D

cv(T) =
∂E
∂T

=
(−1)
kBT2

∂E
∂β

=
h̄2

kBT2 ∑
modes

eβh̄ω ω2(
eβh̄ω − 1

)2

=
3h̄2N
kBT2

∫ ωD

0
dω

3ω2

ω3
D

eβh̄ω ω2(
eβh̄ω − 1

)2

The constant contribution E0 from the rest energy drops out for the specific heat. We
change the integration variable to u = β h̄ ω:

⇒ cv(T) =
9NkB

u3
m

∫ um

0

eu u4

(eu − 1)2 du

Unfortunately this integral cannot be solved analytically.

We consider two limits:

1 kBT � h̄ ωD, u� 1:

⇒ u2 eu

(eu − 1)2 ≈ 1⇒ cv(T) = 3 N kB classical limit for 6N degrees of freedom
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2 kBT � h̄ ωD, u� 1:
⇒ um → ∞

The integral becomes a constant and the only temperature dependence comes
from the factor 1/u3

m.

⇒ cv(T) =
12π4

5
N kB

(
T

TD

)3

Here we defined the ‘Debye temperature’ TD = h̄ωD/kB. Note that if you replace
TD by ωD and then ωD by the formula derived for it above, then N drops out and
cv scales simply as V, as it should as an extensive quantity.

c

 

 

Einstein model

Debye: high T limit

Debye: low T limit

3NkB

TTD

∝ T
3

Figure 3.17: The heat capacity as a function of temperature for two limits of the Debye
model (blue) compared with the Einstein model (red), which increases only
exponentially at low T. For the Debye model cv(T) ∝ T3 at low tempera-
tures in agreement with experimental results.

Typical experimental values are:

cs = 5.000
m
s

a = 2 Å

ωD ≈
4cs

a
= 1014 Hz

TD =
h̄ωD

kB
=≈ 10−34 Js 1014 Hz

3
2 10−23 J

K

≈ 700 K

As a matter of fact, most metals have Debye temperature in the range of hundreds of
degrees of Kelvin. This shows that metals are in the quantum regime even at room
temperature when it comes to their specific heats.
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Summary

1 At high T, we have the classical limit:

3N oscillators × 2 degrees o f f reedom each × kBT
2

energy

2 At low T, all modes with h̄ω ≤ kBT are excited.

⇒ #modes ∝
∫

d~k ∝ k3 ∝ ω3 ∝ T3

Final comments on solid state physics

1 The Debye model belongs to the field of solid state physics. Classical textbooks
are Solid state physics by Neil Ashcroft and David Mermin (2nd edition 1976) and
Introduction to Solid State Physics by Charles Kittel (8th edition 2011). Yes, these
books are old, but they are simply the best.

2 The excitations of the lattice can be considered as quasi-particles with energy h̄ω
(‘phonons’) in analogy to photons, which have similar statistics (Bose statistics, see
black body radiation below). The three polarities of a wave with wave vector~k
can be interpreted as spins (0,±1).

3 The excitations discussed here are known as acoustic modes. The two transversal
and the one longitudenal modes typically have different dispersion relations, so
there are three branches for a monoatomic unit cell. All of them have vanishing
frequency at k = 0. They are called acoustic because the define the velocity of
sound. Moreover there can be also optical modes which have a finite frequency
value at k = 0. These modes arise if the unit cell of the crystal contains several
atoms. They are called optical because they can interact with light. For a diatomic
unit cell, there can be three acoustic and three optical modes, but often some of
them are degenerate.

4 The Debye model works so well because at a given temperature the average en-
ergy is fixed and much higher energies (which correspond to higher frequencies)
do not matter. Thus the optical modes usually can be neglected and the linear
approximation is good.

5 The standard way to measure the dispersion relation (or phonon spectrum) of
a crystal is neutron scattering. X-rays also work, but this is much harder. One
typically works around k = 0 in the Brillouin zone, which also satisfies the Bragg
criterion for a strong reflection. One then looks for small side peaks (Stokes and
anti-Stokes lines) that either come from acoustic phonons (Brillouin scattering) or
from optical phonons (Raman scattering).
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6 Experiments show that at very low temperatures, there is also a linear contribu-
tion to the specific heat of crystals. This comes from the Fermi fluid formed by the
delocalized electrons and we will deal with this in the chapter on quantum fluids.

7 The "band" structure of the dispersion relations with their k-dependance and the
different branches should not be mixed up with the band structure of the elec-
tronic degrees of freedom. The delocalized electrons have their own Schrödinger
equation and due to the Bloch theorem wave vectors appear there as parameters.
The eigenvalue problem leads to discrete energy levels n and the parameter ~k
spreads them out into bands En(~k). If the different bands do not overlap, a band
gap emerges. Depending on whether this gap can be bridged by thermal excita-
tions or not, the crystal is either a semi-conductor or an insulator, respectively.

w(k)

k

En(k)

k

DE

(a) (b)

Figure 3.18: (a) Dispersion relation of the photons for a diatomic basis. The frequency
ω depends on the wave number k. There can be three acoustic (red) and
three optical (green) branches, if there is no degeneracy. (b)Band structure
arising from the Schrödinger equation for the electrons. The band gap ∆E
describes the energy difference that electrons need to get to hop to a higher
energy level. In both cases, there is a dependance on wavenumber k run-
ning over the first Brillouin zone. Otherwise however the physics behind
the branches in the dispersion relation and the bands in the electronic struc-
ture comes from very different physics and should not be mixed up with
each other.

3.7 Black body radiation

The black body is a cavity filled with electromagnetic radiation in equilibrium with a
thermal reservoir of temperature T. In the particle picture of quantum mechanics, we
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deal with a gas of photons. The dispersion relation for photons is

ε(k) = h̄ω(k) = h̄ck

with the velocity of light c ≈ 3 · 108 m/s. This relation is linear in k as for the Debye
model. In contrast to the Debye model, however, there is no cutoff in the frequency
spectrum. Moreover there are only two possible polarizations (dictated by Maxwell
equations - in contrast to lattice vibrations there is no longitudinal mode).
Like for the Debye model, each k-mode is a quantum mechanical oscillator:

ε~k,m = h̄ω(k)
(

n~k,m +
1
2

)
⇒ E = ∑

~k,m

ε~k,m = 2 ∑
~k

ε(k)n~k + E0

While for the Debye model the ground state contribution E0 is finite, this is not the case
for photons. We disregard it as it is an unobservable constant.

⇒ E = 2
(

1
∆k

)3 ∫
d~k

ε(k)
eβε(k) − 1

=
2V

(2π)3 4π
∫

k2 dk
h̄ck

eβh̄ck − 1

=
V

π2β4h̄3c3

∫ ∞

0
du

u3

eu − 1︸ ︷︷ ︸
=∑∞

n=1
∫ ∞

0 du u3e−nu=6 ∑∞
n=1

1
n4 =

π4
15

⇒ E =
4σ

c
VT4 with Stefan-Boltzmann constant σ =

π2k4
B

60h̄3c2

For the heat capacity of a black body this implies:

cv =
16σ

c
VT3

The cV ∝ T3 scaling is the same as for the low temperature limit of the Debye model.
However, for the photon gas this result is rigorous as no linearization of the dispersion
relation is required. Furthermore it is valid for all temperatures.
How much power P (energy/time) is emitted by a black body cavity with an opening
of size A (Figure 3.19)? The energy flux J

( energy
time·area

)
in direction of a photon is

J =
E

A ∆t
=

E ∆x
(A ∆x)∆t

=
Ec
V
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Θ 

area A

Figure 3.19: A block body cavity with opening of size A.

Photons move in all directions, but only the component perpendicular and outward to
the opening contributes.

⇒ P =
Ec
V

A
1

4π

∫ 2π

0
dΦ︸ ︷︷ ︸

=2π

∫ 1

0
d(cos Θ) cos Θ︸ ︷︷ ︸

= 1
2

⇒ J =
P
A

= σT4 Stefan-Boltzmann law

We return to the energy integral and note that it can be written as an integral over
frequencies:

E
V

=
∫ ∞

0
dω u(ω)

Here we defined:

u(ω) :=
h̄

π2c3
ω3

eh̄ω/(kBT) − 1
Planck’s law for black body radiation

Figures 3.20 and 3.21 show the spectral radiance as a function of frequency and wave-
length respectively.
The Planck distribution has a maximum at

du
dω

∣∣∣∣
ω=ωm

!
= 0 ⇒ βh̄ωm = 3

(
1− e−βh̄ωm

)
⇒ h̄ωm = 2.82 kBT Wien’s displacement law

For example, heating an iron from 1.000 to 2.000 K shifts its spectrum from red to white
due to a larger contribution in the blue range.
The Planck distribution and the Stefan-Boltzmann law are very general and usually
apply if matter and radiation are in thermodynamical equilibrium. The Planck distri-
bution and Wien’s displacement law can be used to extract the temperature of such a
system:
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∝ e−ω
: Wien approximation

∝ ω2
: Rayleigh− Jeans limit

Figure 3.20: The spectral radiance u as a function of ω. For small or large ω Planck’s law
can be approximated by the Rayleigh-Jeans or Wien limits, respectively.
Both limits were known to Max Planck when he derived his formula in
1900. For higher temperatures the spectral maximum is shifted to higher
frequencies.
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Figure 3.21: The spectral radiance u as a function of wavelength λ. For higher temper-
atures the spectral maximum is shifted to shorter wavelengths.

1 sun: T = 5.800 K ⇒ λm in the visible und UV range

2 earth or human body: T = 300 K ⇒ λm in the infrared range; this is why we can
see people and heated houses so well with infrared cameras.

3 cosmic background radiation: T = 2, 73 K ⇒ λm ≈ cm (microwaves) discovered
by Penzias and Wilson 1964 (Nobel Prize in physics 1978)

The ideal photon gas depends on volume only through its dispersion relation (no par-
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ticle interactions):

ε(k) = h̄ck ∝
1
L
=

1

V
1
3

E = 2 ∑
~k

ε(k)n~k

p = − ∂E
∂V

=
1
3

E
V

=
1
3

1
c

cE
V

=
J

3c

J ≈ 1
kW
m2 ⇒ p ≈ 10−6 N

m2 = 10−11 bar

We note that the sun’s radiation pressure on earth is much smaller than the atmospheric
pressure.

Solar energy and the greenhouse effect

Our earth is heated by the sun. Because we know its temperature, radius and distance,
we can calculate how much energy should arrive here and how much it should warm
up the earth. The sun radiates an energy flux J = σT4 due to its temperature T =
5.800 K. We have to multiply this by 4πR2

s with Rs = 696.000 km being the radius
of the sun to get the overall output. Because of energy conservation, at the distance
r = 1.5 108 km where the earth is located, we have to divide by 4πr2 to get the flux onto
the earth:

Jin = σT4
s (

Rs

r
)2 = 1.37 kW/m2

which is known as the solar constant. Note that not all of this reaches the surface of
the earth, approximately 30 percent of the sun’s radiation is actually reflected by the
atmosphere (albedo), so only 70 percent reach the surface.
In thermal equilibrium, the earth should emit as much as it receives:

Jin = Jout = 4σT4
e

where the factor 4 represents the fact that while the sun is so far away that it appears
to be an emitter with parallel rays to us, the earth radiates in all directions, see the
calculation above between the factor 4 difference between radiation in all directions
and in one direction only. We conclude

Te = Ts(
Rs

2r
)1/2 = 280K = 7°C

If we take the albedo into account, this value gets even worse:

Te = Ts0.71/4(
Rs

2r
)1/2 = 256K = −17°C

Thus everything should be frozen and life was not possible on earth.
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The explanation for the discrepancy to the observed temperature is the famous green-
house effect. Because the earth has a temperature of the order of 300 K, it emits in the
infrared according to Planck (see above). While being relatively transparent in the vis-
ible and UV range, water vapor, CO2 and CH4 in the atmosphere strongly absorb in
the infrared. Therefore they let radiation from the sun in but absorb radiation from
the earth (ozone O3 absorbs in the UV and therefore protects us from excessive DNA-
damage). 40% of the outgoing radiation is absorbed, so only 60% is radiated away. A
better estimate therefore is

Te = Ts
0.71/4

0.61/4 (
Rs

2r
)1/2 = 290K = 17°C

which agrees well with our observations.

Figure 3.22: The effect of different atmospheric gases on the radiation coming from the
sun, which has a perfect Planck spectrum before it hits the earth (source:
wikipedia).

Without any atmosphere, the earth would be around 30 degrees Celsius colder. Without
clouds, it would be colder by 10-15 degrees. Interestingly, the power radiated by the
sun was 25% weaker when life started on earth 4.5 billion years ago. Thus it is hard to
understand why the earth was sufficiently warm to allow for life to evolve (faint young
sun problem). However, while the sun got stronger, the amount of CO2 in the atmosphere
decreased because life started to generate oxygen (especially during the great oxidation
event around 2 billion years ago) and luckily the two effects balanced each other such
that a relatively constant average temperature of 15 degrees Celsius and a pressure of 1
atm was maintained on earth.
Today, the amount of CO2 increases again because we burn so much coal and gas, thus
freeing carbon stored in the earth. Other reasons for the increasing CO2 levels are the
destruction of forest and increased land use. In 2016 average atmospheric CO2 con-
centrations have surpassed 400 parts per million, a level that has been last reached 3
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million years ago, when temperatures were 2− 3°C warmer and sea levels 10-20 me-
ters higher; even more recently this concentration has in fact shown in increasing rate
of change, which is very alarming.
On Venus, which has a similar size and composition as the earth, but is closer to the sun
and therefore always had higher temperatures, no ocean formed and the greenhouse ef-
fect with too much CO2 in the atmosphere led to very high temperatures. Life is not
possible there with 470 degrees Celsius and a pressure of 90 atm. This scenario can not
happen on earth, where we started with lower temperatures and developed oceans that
now protect us from a run-away climate: if it becomes hotter, water evaporates, acts as
green house gas and cools, thus counteracting the increase in temperature (negative
feedback). However, many of our subearth systems (including the ice sheets on Green-
land and West Antarctica, the Atlantic thermohaline circulation, the Arctic sea ice, the
alpine glaciers and the Arctic ozone depletion) are currently in the process of passing
tipping points into instability1. For example, the snow of ice sheets and glaciers melts
with increasing temperature, the brown earth below absorbs more radiation energy and
local temperature rises even more (positive feedback).
Eruptions of volcanos release sulphur dioxide into the atmosphere that absorb sun light
and therefore cool the earth. 74.000 years ago the eruption of Toba in Indonesia pos-
sibly triggered a new ice age. Only thousands of humans survived as evidenced from
their small genetic diversity at that time. When Tambora erupted in Indonesia in 1815,
the following year was without summer in Europe and the population suffered from
hunger. In 1991, Pinatubo erupted in the Philippines and temperature went down by
half a degree for two years. In principle these effects could be used for climate engi-
neering, by spraying vapor or sulphur dioxide into the atmosphere, but this might be
very difficult to control, as we all know from the netflix series Snowpiercer.
Finally some history on climate research. Joseph Fourier in 1824 published his "Remar-
ques Generales Sur Les Temperatures Du Globe Terrestre Et Des Espaces Planetaires",
in which he concluded that the atmosphere must somehow isolate the earth. In 1859
John Tyndall found that water vapor and CO2, but not oxygen or nitrogen in the atmo-
sphere absorb and gives away heat. Climate research finally started fully in 1896 when
Svante Arrhenius (Nobel Price 1903 for Physical Chemistry) published his treatise "On
the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground". He
even calculated that temperature increases logarithmically with CO2 concentration in
the atmosphere, correctly predicting that a doubling leads to in increase of tempera-
ture of a few degrees. He already concluded that us burning fossil fuel will lead to a
warmer earth, but thought that this will be favorable for agriculture, because he could
not anticipate the massive scale on which we are doing this today.

1For a discussion of tipping points in climate compare Lenton, Timothy M., et al. "Tipping elements in the
Earth’s climate system." Proceedings of the national Academy of Sciences 105.6 (2008): 1786-1793; and
Levermann, Anders, et al. "Potential climatic transitions with profound impact on Europe." Climatic
Change 110.3 (2012): 845-878.
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4 The grandcanonical ensemble

4.1 Probability distribution

We now consider a reservoir for both energy and particle number. In this ‘grandcanonical
ensemble’ the equilibrium conditions are T1 = T2 and µ1 = µ2. Thus now temperature
T and chemical potential µ are fixed. An example would be a open bottle lying on the
ground of a lake. Now not only heat, but also particle number can be exchanged with
the environment.
The derivation of the corresponding probability distribution is similar as for the canon-
ical ensemble. We consider one specific microstate i that then comes with an energy Ei
and a particle number Ni. Then its probability to occur is

pi =
# favorable outcomes
# possible outcomes

=
Ωres(Etot − Ei, Ntot − Ni)

Ωtot(Etot, Ntot)
=

eSres(Etot−Ei ,Ntot−Ni)/kB

eStot(Etot,Ntot)/kB

We next introduce the average energy E and the average particle number N as reference
values and Taylor-expand the entropy of the reservoir:

Sres(Etot−E+E−Ei, Ntot−N + N−Ni) = Sres(Etot−E, Ntot−N)+
E− Ei

T
− µ(N − Ni)

T

Here we have used ∂S/∂E = 1/T and ∂S/∂N = −µ/T. Note that higher order terms
do not appear for a reservoir. We also can use additivity of the entropy to write

Stot(Etot, Ntot) = S(E, N) + Sres(Etot − E, Ntot − N)

Together we therefore get
pi = eβΨe−βEi+βµNi

where
Ψ = E− TS− µN

Thus the overall structure of the result is similar as for the canonical ensemble: there is
a Boltzmann-factor e−βEi+βµNi for the weight of the microstate as a function of its energy
Ei and its particle number Ni, and there is a normalization factor eβΨ.
We can make this derivation shorter if we make the normalization only at the end. In
this case we do not even have to specify around which reference values we expand. We
simply write

pi ∝ eSres(Etot−Ei ,Ntot−Ni)/kB ∝ e−βEi+βµNi
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where now the expansion could also be around Etot, Ntot for simplicity. We therefore
get

pi =
1

ZG
e−β(Ei−µNi) grandcanonical prob. distribution

where
ZG = ∑

i
e−β(Ei−µNi) grandcanonical partition sum

Note that we could have derived the same result through information theory by max-
imizing Shannon entropy with the two constraints of given average energy and given
average particle number. From above we also can conclude that

Ψ = −kBT ln ZG

must be the relevant thermodynamic potential.
Obviously our result is closely related to the canonical result. To make this clearer, we
write i = (N, j), where j are all quantum numbers besides N:

ZG =
∞

∑
N=0

(
∑

j
e−βEj

)
eβµN

=
∞

∑
N=0

Z(T, V, N) eβµN

Thus ZG follows by another summation from the canonical partition sum Z.

4.2 Grandcanonical potential

The probability to have a macroscopic value (E, N) is:

p(E, N) =
1

ZG
Ω(E, N) e−β(E−µN)

=
1

ZG
e−β(E−TS−µN) =

1
ZG

e−β Ψ(T,V,µ)

Here we defined the ‘grandcanonical potential’ that also appeared above: Ψ(T, V, µ) :=
E− TS− µN.

p is maximal, if Ψ is minimal. We note:

microcanonical ensemble: S maximal

canonical ensemble: F minimal

grandcanonical ensemble: Ψ minimal
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Ψ = E [T, µ] is the two-dimensional Legendre transform of energy from the extensive
variables (S, N) to the intensive variables (T, µ).

Total differential:

dΨ = d(E− TS− µN)

= TdS− pdV + µdN − d(TS + µN)

= −SdT − pdV − Ndµ

Equations of state:

S = −∂Ψ
∂T

, p = −∂Ψ
∂V

, N = −∂Ψ
∂µ

4.3 Fluctuations

Average and variance of the internal energy E can be calculated as before for the canon-
ical ensemble. We now calculate average and variance of the particle number N:

〈N〉 = ∑
i

pi Ni =
1

ZG
∑

i
Ni e−β(Ei−µNi)

=
1

ZG

1
β

∂µ ∑
i

e−β(Ei−µNi)

=
1
β

∂µ ln ZG

σ2
N =

〈
N2〉− 〈N〉2

=
1
β2

1
ZG

∂2
µZG −

(
1
β

1
ZG

∂µZG

)2

=
1
β

∂µ 〈N〉 =
1
β2 ∂2

µ ln ZG

One can show with thermodynamic considerations (Maxwell relations):

∂N
∂µ

∣∣∣∣
T,V

= −N3

V2
∂v
∂p

∣∣∣∣
N,T

(
v =

V
N

)
⇒ κT := −N

V
∂v
∂p

∣∣∣∣
N,T

=
V

N2kBT
σ2

N ≥ 0 as σ2 ≥ 0

Here we defined the ‘isothermal compressibility’ κT.
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Like for the canonical ensemble, where we found

cv =
σ2

E
kBT2 ≥ 0

again the variance is related to a material property:

σ2
N =

N2kBTκT

V
κT intensive→ σ2

N ∝ N

⇒ σN

〈N〉 ∝
1

N
1
2

Particle fluctuations are small for large systems as expected based on the law of large
numbers.
Note that calculation of the average enery is a bit more tricky now than in the canonical
ensemble because there are two terms related to β. If we want to get only the energy
part, we have to keep the chemical potential part constant:

〈E〉 = − ∂ ln ZG

∂β

∣∣∣∣
βµ

A simpler solution is to do the derivative for β without constraint and then to subtract
the part which is not wanted:

〈E〉 = −∂β ln ZG + µ 〈N〉 = −∂β ln ZG +
µ

β
∂µ ln ZG

4.4 Ideal gas

For the canonical partition sum we had:

Z(T, V, N) =
1

N!

(
V
λ3

)N

with λ =
h

(2πmkBT)
1
2

ZG =
∞

∑
N=0

Z(T, V, N) eβµN =
∞

∑
N=0

1
N!

(
eβµ V

λ3

)N

= ez V
λ3 with fugacity z := eβµ

⇒ 〈N〉 = 1
β

∂µ ln ZG

=
1
β

∂µ

(
zV
λ3

)
=

V
λ3 eβµ

µ = kBT ln
(

Nλ3

V

)
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This result is identical with the one we derived from the microcanonical ensemble. The
variance then becomes:

σ2
N =

1
β

∂µ 〈N〉 =
1
β

∂µ

(
eβµV

λ3

)
= N

κT =
VN

N2kBT
=

1
p

which also follows from pV = NkBT

4.5 Molecular adsorption onto a surface

We consider a gas in contact with a solid surface (e.g. argon on graphene or molecular
nitrogen on iron, as in the Haber-Bosch synthesis). The gas molecules can be adsorbed
at N specific adsorption sites while one site can only bind one molecule. The energies
of the bound and unbound state are ε and 0, respectively. ε can be negative or positive.
The gas acts as a reservoir fixing T and µ.
The partition sum is:

ZG = zN
G

where we considered a non-interacting system with single particle partition sum:

zG = 1 + e−β(ε−µ)

The mean number of absorbed particles per site follows as:

〈n〉 = 0 + 1 · e−β(ε−µ)

ZG
=

1
e−β(µ−ε) + 1

T,µ 

solid

Figure 4.1: A gas at (T, µ) in contact with a solid surface. The solid contains N specific
adsorption sites each able to bind one or none gas molecule.

The mean energy per site is:

〈ε〉 = 0 + ε · e−β(ε−µ)

ZG
= ε 〈n〉

This model can be easily generalized to more complicated situations, e.g. if more than
one molecule can be adsorbed.
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Figure 4.2: The mean number of absorbed particles 〈n〉 as a function of the chemical
potential µ. Half-occupancy occurs at µ = ε.

If the adsorbate is an ideal gas:

µ = kBT ln
p
p0

⇒ eβµ =
p
p0

⇒ 〈n〉 = p
p0eβε + p

The number of adsorbed particles first rises linearly with pressure (or, equivalently,
with concentration) and then plateaus. This is known as the Langmuir isotherm.

4.6 Chemical reactions

The grandcanonical ensemble is also the appropriate framework to deal with chemical
reactions: because particles number can change, the chemical potential becomes the
central quantity. Chemical reactions are the basis of (bio)chemistry and the law of mass
action is at the heart of any chemical reaction. An important example is the decompo-
sition of water

H2O 
 H2 +
1
2

O2

which is at the heart of a potential hydrogen economy, when this process might be
fueled by regenerative energy and then the hydrogen might be stored in tanks or some
type of porous material (to avoid explosions). The reverse process would release lots of
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Figure 4.3: The mean number of absorbed (ideal gas) particles 〈n〉 as a function of pres-
sure p.

energy, but only produce water, no carbon dioxide. Another important example is the
production of ammonia (NH3)

3 H2 + N2 
 2 NH3

whose industrial importance cannot be underestimated, e.g. for the production of fertil-
izer or explosives. Actually the invention of the industrial process to produce ammonia
by Fritz Haber and Robert Bosch earned both of them a Nobel Prize in chemistry (in
1918 and 1931, respectively); moreover in 2007 Gerhard Ertl earned the Nobel Prize in
chemistry because he explained the underlying molecular processes, in particular the
role of iron as catalyst. Each year 180 million tons of ammonia are produced with the
help of the Haber-Bosch process, which uses pressures of 200 bar and temperatures
of 500 degrees Celsius. Today you can learn more about this history by visiting the
Bosch museum at Heidelberg, close to the villa Bosch (now used by the Klaus Tschira
Foundation), where Robert Bosch lived while running the chemical company BASF at
Ludwigshafen. In front of the museum you can see the high pressure pipes invented
by Robert Bosch. While N2 is taken from the air, H2 is obtained from natural gas (CH4).
This step leads to a lot of CO2-production (1.5 tons of CO2 for one ton of ammonia);
as a matter of fact ammonia production contributes one percent to our greenhouse gas
emissions.
Usually chemical reactions are carried out at constant temperature T and constant pres-
sure p. Therefore the relevant TD-potential is the Gibbs free energy G(T, p, Ni) =
E − TS + pV. The index 1 ≤ i ≤ r is used to number the r different components of
the reaction mixture. The internal energy E = TS− pV + ∑ µiNi. We therefore have the
fundamental equation

dG = −SdT + Vdp + ∑ µidNi

At equilibrium, dG = 0 = ∑ µidNi at constant T and p. Each chemical reaction of
interest has a fixed ratio of how the mole numbers change (e.g. −1 : +1 : +1/2 for
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water decomposition and −3 : −1 : +2 for ammonia production). We therefore write

0 
 ∑ νi Ai

where the vi are the stoichiometric coefficients and the Ai are the symbols for the chem-
ical components. We now note that

dNi

νi
= const = dN

because the relative changes are fixed by the stoichiometric coefficients and therefore
the requirement dG = 0 becomes

∑ µiνi = 0

The essential aspect here is that we have effectively only one reaction coordinate over
which we can minimize G. Our result is completely general and allows to determine the
mole numbers at equilibrium given the initial mole numbers, the relations µi(T, p, Ni),
as well as T and p.
We now apply this result to a mixture of ideal gases. Before we do this, however, we
make some general comments on these systems. Because the different species do not
interact, for each of them we have for the internal energy

Ei =
3
2

NikBT ⇒ E = ∑ Ei =
3
2
(∑ Ni)kBT =

3
2

NkBT

where for simplicity we have used the factor 3/2 for a monoatomic ideal gas. We con-
clude that the internal energy is the same as the one for an ideal gas of N molecules.
This however is different for entropy. We next turn to entropy which for one species
can be written as

Si = Nisi0 + NikB ln

[(
T
T0

)3/2 V
V0

N0

Ni

]

⇒ S = ∑ Si = ∑ Nisi0 + (∑ Ni)
3
2

kB ln
(

T
T0

)
+ ∑ NikB ln

(
V
V0

N0

Ni

N
N

)
= ∑ Nisi0 +

3
2

NkB ln
(

T
T0

)
+ NkB ln

(
V
V0

N0

N

)
− NkB ∑ xi ln xi

where xi = Ni/N is the mole fraction of species i. The last term is the entropy of mixing.
If a collection of separate gases each at the same temperature T and the same density
ρ = N/V (or, equivalently, at the same pressue P) is allowed to mix, then it will gain
entropy because the mole fractions obey 0 ≤ xi ≤ 1 and therefore the entropy gain will
be positive.
We are now ready to discuss the chemical reactions. From the discussion of mixtures,
we understand that the chemical potentials are simply the ones of the separate gases:

µi = kBT ln
(

Niλ
3

V

)
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where the thermal wavelength λ ∼ T−1/2. We rewrite this equation as

µi = kBT ln
(

Niλ
3

V
N
N

)
= kBT [φi(T) + ln p + ln xi]

using the ideal gas law. Here φi(T) is a function of T only. We insert these relations into
the general result ∑ µiνi = 0:

∑ νi ln xi = −(∑ νi) ln p−∑ νiφi(T)

We define the last term as ln K(T) where K(T) is called the equilibrium constant. After
exponentiation we then have

∏ xνi
i = p−(∑ νi)K(T) = K(p, T)

This is the famous law of mass action (Massenwirkungsgesetz in German). On the left we
have a product of mole fractions and on the right we have a constant that depends on
T and p. If one wants to suppress the pressure-dependance, one can write K(T, p) for
the complete right hand side.

Examples

1 Dissociation of water: as initial conditions we take 2 moles of water. We take
p = 1MPa and T = 2000K. Then the equilibrium constant K(T) = 0.088Pa1/2.
The law of mass action now reads

xH2 x1/2
O2

xH2O
= p−1/2K(T)

To solve this scalar equation, we have to introduce a reaction coordinate ∆N. Then

NH2O = 2− ∆N, NH2 = ∆N, NO2 = ∆N/2

and thus

xH2O =
2− ∆N

2 + ∆N/2
, xH2 =

∆N
2 + ∆N/2

, xO2 =
∆N/2

2 + ∆N/2

If we insert this into the law of mass action, we get a polynomial equation that we
cannot solve easily:

(∆N)3/2
√

2(2− ∆N)(2 + ∆N/2)1/2
= p−1/2K(T)

A numerical solution however is easy to get:

xH2O = 0.996, xH2 = 0.003, xO2 = 0.001

Thus the reaction is very much on the side of the water. Decreasing pressure
pushes it slightly away from there, but not much. In fact this reaction has ∆G0 =
+237kJ/mol and therefore does not occur spontaneously.
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2 Ammonia production: this reaction is in principle favorable and should work
well (∆G0 = −10.9kJ/mol at ambient conditions). High pressure favors the reac-
tion because it has a negative volume balance. In practise, there is a high kinetic
reaction barrier (not described by statistical physics, this needs a quantum me-
chanical calculation, the main problem is the high stability of N2), therefore iron
catalysts are required. Note that nature takes a similar route. Many soil-dwelling
bacteria use the metalloenzyme nitrogenase containing iron atoms to convert N2
from air into ammonia.

Mass action kinetics

In (bio)chemistry, one often wants to understand also the time-dependance of the chem-
ical reaction. If the reaction is determined mainly by collisions, then this is easy. Con-
sider the bimolecular reaction

A + B 
 C

with a forward rate constant k+ (also called on-rate or association rate) and a backward
rate constant k− (also called off-rate or dissociation rate). Assuming a homogeneous
mixture (no spatial effects), we write the ordinary differential equation

dA
dt

= k−C− k+A B

The gain term results from a simple "radioactive" decay and the loss term results from a
collision between one A- and one B-molecule. At equilibrium, dA/dt = 0 and therefore

Ceq

AeqBeq
=

k+
k−

= KA =
1

KD

where we have defined the association constant KA and its inverse, the dissociation
constant KD. Obviously we have recovered the law of mass action and KA = K(T, p)
(except for the different dimensions, here we use concentrations and above we used
mole fractions for the left hand side). Note that the dimensions of k− and k+ are 1/s
and 1/(s mol), respectively, such that the dimension of KD is mol.
We next note that A + C = const = A0 and therefore we have

KD =
(A0 − Ceq)Beq

Ceq
⇒ Ceq = A0

Beq

KD + Beq

Interestingly, this law has the same form as the Langmuir isotherm discussed above
(number of adsorbed particles as a function of pressure). We conclude that we reach
half binding (Ceq = A0/2) if Beq = KD. Therefore KD is a measure for how strong the
two partners react: the smaller KD, the weaker dissociation compared to association
and the less Beq is required to achieve the same amount of binding (high affinity).
It is important to note that the law of mass action only makes a equilibrium statement
and that mass action kinetics is only valid if the reaction is determined mainly be col-
lisions. In fact this argument might not work at all if the reaction in addition has to
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cross some transition state barrier which slows down the time for reaction. The law
of mass action connecting the initial and final states would still be valid, but the time
for this process to occur might be very large. In such cases, one typically looks for cata-
lysts to speed up the reaction (e.g. iron in the case of the famous Haber-Bosch-synthesis
of ammonia, which in addition uses very high pressure; living systems have evolved
enzymes for this purpose).
A small value of KD also means that there is a large gain in Gibbs free energy G during
the course of the reaction. For one mole of ideal gas, we have

Gi = Gi0(T, P) + RT ln xi

⇒ ∆G = ∑ νiGi = ∆G0 + RT ln
(
∏ xνi

i

)
= ∆G0 + RT ln K

At equilibrium, ∆G = 0 and therefore

∆G0 = RT ln KD , KD = e∆G0/RT

The more negative ∆G0, the smaller KD and the stronger the reaction is driven to the
right.
Living systems have singled out a few central biochemical reactions that have a very
high gain in Gibbs free energy and therefore those are used to drive other reactions.
The two most important examples are:

1 oxidation of food (glucose):

C6H12O6 + 6O2 
 6CO2 + 6H2O

has ∆G0 = −2890kJ/mol. This is the gradient which essentially drives our metabolism.
If you use divide by Avogadro’s number and the usual value for kBT, you see that
this free energy gain is around 1000 kBT per molecule, which is huge and only
possible because glycose is a complicated molecule with many bonds. In fact
metabolism uses many enzymes to completely digest glycose (part of this is the
famous Krebs cycle) and to get as much free energy out of it as possible.

2 ATP-hydrolysis:
ATP 
 ADP + Pi

has ∆G0 = −35kJ/mol. Per molecule, this is around 10 kBT, which is a large
amount for such a small molecule in which basically only one bond is cleaved.
As this was not enough, nature makes sure that this reaction is very favorable by
additionally keeping the relevant concentrations out of equilibrium: with ATP =
Pi = mM and ADP = 10µM, we have

∆G = ∆G0 + RT ln
ADP Pi

ATP 1M
= −60kJ/mol

thus the reaction becomes even more favorable (here 1M is used as reference con-
centration). ATP-hydrolysis drives many processes in our cells, including the
movement of our muscle.
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5 Quantum fluids

5.1 Fermions versus bosons

For multi-particle systems, experiments have shown that the rules of single-particle
quantum mechanics have to be extended by one more principle (generalized Pauli prin-
ciple):

Particles with half-integer (integer) spin are called fermions (bosons). Their
total wave function (space and spin) must be antisymmetric (symmetric)
under the exchange of any pair of identical particles.

Comments
1 For electrons (spin = 1

2 , fermions), we get the Pauli principle (antisymmetric wave
function) and the Pauli exclusion principle (no two electrons can occupy the same
state). If two electrons have opposite spins (singlet), their spin wave function is
antisymmetric ( 1√

2
(|↑↓〉 − |↓↑〉) ) and the spatial wave function can be symmet-

ric. If two elections have the same spin (triplet), their spin wave function is sym-
metric ( |↑↑〉, |↓↓〉, 1√

2
(|↑↓〉+ |↓↑〉) ) and the spatial wave function hence has to

be antisymmetric:
Φ(1, 2) = a(1)b(2)− a(2)b(1)

Since a = b for identical particles and thus Φ(1, 2) = 0, two electrons can not be
at the same position. This is the basis of atomic stability. Note that this argument
does not really need positions, but just position-dependent wave functions, so it
is not contradicted by Heisenberg’s uncertainty principle that we cannot exactly
know the positions of the particles.

2 Fermions are the quantum mechanical analogues of classical particles (matter can
not penetrate itself). Bosons, in contrast, are the quantum mechanical analogue of
classical waves, which can be superimposed freely and thus transfer lots of infor-
mation. The standard example are photons which can be freely created and an-
nihilated and which are the exchange particles of the electromagnetic interaction.
Thus the dichotomy between fermions and bosons is not really new in quantum
physics, but also present in classical physics.

3 The fact that there are two possible kinds of particles comes from the fact that two
permutations lead back to the initial situation, so there can be a sign in the wave-
function (−1× −1 = 1) or not (1× 1 = 1). The relation between this property
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and the spin is described by the spin-statistics theorem from relativistic quantum
theory, thus it is a genuinely relativistic effect.

Consequences for counting

We consider a system of two identical particles, each of which can exist in either of two
states.

1 2

1

2

1

2

2 1

classical
ʹBoltzmannʹ

statistics

Fermi
statistics

Bose
statistics

22=4 states 1 state 3 states

corrected quantity:
4/2! = 2 states

Figure 5.1: Table of states for a system of two identical particles from a point of view of
different statistics. Each particle can be either in state one or two.

We see from Figure 5.1 that all cases differ in their outcome for the number of states:
four for classical counting, two for corrected classical counting, one for fermions and
three for bosons. Correct are the results for fermions and bosons. Both ‘classical’ and
‘corrected classical’ counting are incorrect. The rules of quantum mechanics imply
more than simply saying that identical particles cannot be distinguished. They actually
mean that we have to do the calculation separately for fermions and bosons. However,
at high temperature the particles are distributed over all states due to entropy and the
probability of two particles being in one state becomes very small. As one can see from
Figure 5.1, in this limit, fermionic, bosonic and corrected classical counting all give ex-
actly one state. All quantum fluids become ideal gases at high temperature.

Canonical ensemble

We now formalize the differences in terms of partition sums. In the canoncial ensemble,
we consider two particles that are distributed over two states with energies 0 and ε
(two-state system) as shown in Figure 5.1. For Fermi-Dirac statistics we have only one
state and the partition sum is

ZF = e−βε
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For Bose-Einstein statistics, we have three different states:

ZB = 1 + e−βε + e−2βε

For classical Maxwell-Boltzmann statistics, we have four states, where the two mixed
ones have the same energies. In addition we have the factor 2! for corrected counting:

ZM =
1 + 2e−βε + e−2βε

2

One sees that each kind of statistics leads to a different result. However, at high temper-
atures only the mixed case is relevant and then all three statistics give the same result.

Grand canonical ensemble

Quantum fluids are best treated in the grand canonical formalism. Thus we fix T and µ.
For a non-interacting system, the partition sum for a single energy state for a fermion
(only two states in regard two occupancy) is:

zF = 1 + e−β(ε−µ)

We have called this quantity the single particle partition sum before, but note that in the
grandcanoncial ensemble, the number of particles is not fixed, so we might also call it
the single unit partition sum or single state partition sum.
The average occupation number nF becomes:

⇒ nF =
0× 1 + 1× e−β(ε−µ)

1 + e−β(ε−µ)
=

1
β

∂µ ln zF =
e−β(ε−µ)

1 + e−β(ε−µ)

⇒ nF =
1

eβ(ε−µ) + 1
Fermi function

nF(ε = µ, T) =
1
2

nF(ε, T) (compare Figure 5.2) is symmetric under inversion through the point ε =
µ , nF = 1

2 . For T → 0, the Fermi function approaches a step function:

nF =

{
1 ε < µ

0 ε ≥ µ

}
= Θ(µ− ε)

Here Θ is the Heaviside step function. For vanishing temperature, the fermions fill up
all energy states up to the chemical potential µ.
For bosons we have:

zB = 1 + e−β(ε−µ) + e−β(2ε−2µ) + ...

=
∞

∑
n=0

(
e−β(ε−µ)

)n
=

1
1− e−β(ε−µ)
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Figure 5.2: The Fermi function as a function of ε/µ for different temperature values.
For T0 → 0 the function becomes step-like with the ‘Fermi edge’ at ε = µ.
At this point the probability for one state to be occupied is 1

2 . µ at T = 0 is
called the ‘Fermi energy’.

The average occupation number is:

nB =
e−β(ε−µ) + 2e−β(2ε−2µ) + ...

zB
=

1
β

∂µ ln zB =
e−β(ε−µ)

1− e−β(ε−µ)

⇒ nB =
1

eβ(ε−µ) − 1
Bose distribution

The result differs only by a minus sign from the fermion result, but this difference has
dramatic consequences because this distribution diverges at ε = µ (Figure 5.3). For
T → 0, the Bose-Einstein function vanishes everywhere except for the lowest energy
state.

In summary we have found a dramatic difference between fermions and bosons at low
temperature:

⇒ Fermions tend to fill up energy states one after the other (horizontal stacking).
⇒ Bosons tend to condense all into the same low energy state (vertical stacking).

We finally compare the three statistics in form of the occupation number (Figure 5.4). If
we define x := β(ε− µ), then Fermi, Bose and classical statistics correspond to distri-

112



ǫ

n
B
(ǫ
,T

)

 

 

n
B
(ε, T

2
)

n
B
(ε, T

1
)

µ

T1 > T2

Figure 5.3: These curves are schematic with T1 > T2 and µ1 < µ2. They diverge as
ε → µ. For a system with a finite number of particles, we therefore must
have µ ≤ ε. At low temperature, all particles accumulate in the state of
lowest energy.

bution functions nF = 1/(ex + 1), nB = 1/(ex − 1) and nM = 1/ex, respectively. Ob-
viously they all agree with each other for large x, which is the classical limit in which
fugacity z = eβµ = λ3/v � 1 (using the result for the ideal gas) and the chemical po-
tential becomes very negative, meaning that density is low (specific volume is large),
the wavefunctions do not overlap and there are no quantum effects.

n

1/2

εμ 

1

Bose-Einstein
Maxwell-Boltzmann

Fermi-Dirac

Figure 5.4: A schematic sketch of the occupation number n for the three statistics: Bose-
Einstein (blue), Fermi-Dirac (red) and Maxwell-Boltzmann (black).

Examples of physical fluids

1 Fermi fluids

a) electrons in a metal or in a white dwarf

b) neutrons in the atomic nuclei or in neutron stars
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c) helium three (3He: 2 protons, 1 neutron, 2 electrons, half-integer spin)

2 Bose fluids

a) photons (black body radiation)

b) quasi-particles like phonons (lattice vibrations), polarons (polarization waves),
magnons (spin waves)

c) helium-four (4He: 2 protons, 2 neutrons, 2 electrons, integer spin)
4He becomes ‘superfluid’ below the critical temperature Tcrit = 2.17 K.

d) BCS-theory: Two electrons can form a bosonic pair in certain materials due to
the interaction with the crystal lattice of ions. These become ‘superconducting’
below Tcrit.

e) 87Rb-atoms are bosons. In 1995 rubidium atoms have been used to realize
a ‘Bose-Einstein condensate’ in atomic traps at very low temperatures (Tcrit ≈
10−7 K).

5.2 Calculating with occupation numbers

Above we have presented simple arguments that counting has to be very different for
fermions versus bosons. If we now look into the differences in the formalism, we will
see that it is mainly in an innocently looking and strategically placed minus sign, but
that this minus sign has dramatic consequences. For non-interacting, non-relativistic
particles of mass m in a volume V, we only have kinetic energy

H =
N

∑
i=1

p2
i

2m

From solving Schrödinger’s equation, the momentum vector has the shape

~p = h̄~k =
2πh̄

L
(n1, n2, n3)

where ni ∈ Z. In addition each particle can have a spin quantum number mS. For
spin S and without an external magnetic field, this number leads to a degeneracy gS =
2S + 1. For example, for an electron we have S = 1/2, gS = 2 and mS = ±1/2. The
wavefunction for the overall system now follows as

|Ψ〉 = N ∑
P
(±1)|P|P

N

∏
i=1
|~p〉 |mS,i〉

where P are the permutations allowed for the system (symmetric for bosons, anti-
symmetric for fermions) and N is some normalization factor.
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In the next and decisive step, we switch from this wavefunction picture to a picture
in which we only consider occupation numbers n~ps. Then the equations for particle
number and energy look very simple:

N = ∑
~p

∑
mS

n~ps , E = ∑
~p

∑
mS

n~psε~p

with ε~p = p2/(2m). The grandcanonical partition sum follows as

ZG =
∞

∑
0

∑
{n~ps},Nfixed

e−βE+µN = ∑
{n~ps}

e−β ∑~p,ms (εp−µ)n~ps = ∏
~p,ms

∑
n~ps

e−β(εp−µ)n~ps

For fermions, we have only two possible occuptation numbers and thus

ZG = ∏
~p,ms

(1 + e−β(εp−µ))

For bosons, we get the geometrical sum as above

ZG = ∏
~p,ms

1
(1− e−β(εp−µ))

The essence of these manipulations is that particle number N drops out. Later we can
use µ to calculate back to a desired N. The grandcanonical potential now reads

Ψ = −kBT ln ZG = ∓kBT ∑
~p,ms

ln(1± e−β(εp−µ))

From here we get the average particle number N and the internal energy E by partial
derivatives. For the particle number in particular we have

N = ∑
~p,ms

1
eβ(εp−µ) ± 1

Thus the essential difference here is indeed a minus sign: plus for fermioins and minus
for bosons.

5.3 The ideal Fermi fluid

We consider N particles with mass m, that is we now go to the canonical ensemble, but
our starting point are the results from above for the grandcanonical ensemble, because
this is mathematically much more simple and equivalent. The spatial states are charac-
terized by the wave vector~k of the wave function. The spin of each particle can be up
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or down (mS = ± 1
2 ). Considering no additional interaction apart from the intrinsic one

due to the particles being fermions, this implies:

ZG = ∏
~k,mS

z~k,mS

z~k,mS
= 1 + e−β(ε~k,mS

−µ)

n~k,mS
=

1

eβ(ε~k,mS
−µ)

+ 1

For the dispersion relation, we have the classical relation for a massive particle com-
bined with the de Broglie relation:

ε~k,mS
=

p2

2m
=

h̄2k2

2m

In the following we will use a factor 2 for the spin degrees and replace the sums by
integrals:

∑
~k,mS

... = 2
V
h3

∫
d~p ... = 2

V
h3

∫
dpp24π ...

= 2
V
h3

∫ ∞

0
dε 4π m

3
2 (2ε)

1
2 ...

= N
∫ ∞

0
dε

V
2π2N

(
2m
h̄2

) 3
2 √

ε︸ ︷︷ ︸
density of states D(ε)

...

The concepts used here are the same ones as used before for the Debye solid and the
black body radiation. While here D ∝

√
ε, for the phonons and photons we had D ∝ ε2

due to the linear dispersion relation.

Fermi energy

For given particle number N, the chemical potential µ has to be determined from:

N = ∑
~k,mS

n~k,mS
= N

∫ ∞

0
dε D(ε)

1
eβ(ε−µ) + 1︸ ︷︷ ︸

n(ε)

We first consider the limit T → 0:

n(ε)→ 1−Θ(ε− µ) = Θ(µ− ε)

The value of µ at T = 0 is called ‘Fermi energy’:

εF =
p2

F
2m

= µ

(
T = 0, v =

V
N

)
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⇒ N = ∑
~k,mS f or p≤pF

1 = 2
V
h3

∫
p≤pF

d~p =
2V
h3

4π

3
p3

F

Here we integrated over the ‘Fermi sphere’.

⇒ εF =
(
3π2) 2

3 h̄2

2mv
2
3
=
(
3π2) 2

3 h̄2ρ
2
3

2m

Typical values for the Fermi energy:

εF =


10−4 eV 3He

10 eV electrons in metal
1 MeV electrons in white dwarf

35 MeV neutrons in atomic nucleus

Since kBTR = eV
40 , for electrons in metals at room temperature TR we typically have

εF � kBTR. We evaluate the occupancy around the Fermi-edge (compare Figure 5.5):

n(ε) = 0.5± 0.23 for ε = µ∓ kBT

n(ε) = 0.5± 0.45 for ε = µ∓ 3kBT

We see that the width of the step at finite T is only a few kBT. Therefore only a few of
the N electrons in the ‘Fermi sea’ are thermally excited above εF.

−0.5

0

0.5

1

n(
)

 

 

µ

Figure 5.5: The occupation number n as a function of ε at finite temperature (blue) and
the difference of the curve with respect to the one at T = 0 (red and red-
dashed above blue).
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Specific heat

We use this result to calculate the specific heat based on the ‘Sommerfeld method’. We
consider an arbitrary function f (ε) (eg f (ε) = ε

1
2 ):

I =
∫ ∞

0
dε f (ε) n(ε) =

∫ µ

0
dε f (ε) +

∫ ∞

0
dε f (ε) [n(ε)−Θ(µ− ε)]︸ ︷︷ ︸

6=0 only in small region around µ

Expansion of f (ε) around the Fermi edge:

f (ε) = f (µ) + f ′(µ)(ε− µ) +
1
2

f ′′(µ)(ε− µ)2 + ...

We introduce x = β(ε− µ):

⇒ η(x) = n(ε)−Θ(µ− ε) =
1

ex + 1
−Θ(−x)

=

(
1

ex + 1
− (1−Θ(x))

)
= −

(
1

e−x + 1
−Θ(x))

)
= −η(−x)

η(x) being odd in x implies that all even terms on the Taylor expansion vanish.

⇒ I =
∫ µ

0
dε f (ε) +

1
β

∫ ∞

−βµ
dx

[
f (µ) + f ′(µ)

x
β
+ ...

]
η(x)

For low temperatures: βµ→ ∞ :

=
∫ µ

0
dε f (ε) +

f ′(µ)
β2

∫ ∞

−∞
dx x η(x)︸ ︷︷ ︸

=2
∫ ∞

0 dx xη(x)=2
∫ ∞

0 dx x
ex+1=

π2
6

=
∫ µ

0
dε f (ε) +

π2

6β2 f ′(µ)

We now apply this result to our normalization condition:

1 =
∫ ∞

0
dε D(ε)n(ε)

with D(ε) ∝ ε
1
2 (compare Figure 5.6) to determine the chemical potential µ(T, v).

1 =
∫ µ

0
dε D(ε)︸ ︷︷ ︸

=
∫ εF

0
dε D(ε) +

∫ µ

εF

dε D(ε)

= 1 + (µ− εF) D(ε̃)

+
π2

6β2 D′(µ)
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0.5

1

1.5

2

2.5

ǫ

n
(ǫ
)

 

 

n(ε)

D ∝  ε0.5

µ

Figure 5.6: The average occupancy n (blue) as a function of ε and the density of states
D ∝ ε

1
2 (red).

Here 1 is the result for T = 0 and ε̃ some value between µ and εF according to the mean
value theorem.

⇒ µ− εF = − π2

6β2
D′(µ)
D(ε̃)

≈ − π2

6β2
D′(εF)

D(εF)︸ ︷︷ ︸
= 1

2
1

εF

using µ− εF ∝ T2

⇒ µ = εF

[
1− π2

12

(
kBT
εF

)2
]

for T � εF

kB
(Figure 5.7)

0

T

µ(
T

,v
)

ǫF

ǫF

kB

Figure 5.7: The chemical potential µ(T, v) decreases with increasing temperature. For
T � εF

kB
it can be taken to be µ = const = εF.
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We note that in general the chemical potential µ has to go down with temperature
because for fixed particle number the joint integral with the density of states has to
stay constant, compare Figure 5.8. Therefore higher order term in this expansion are
not expected to change the general picture.

ǫ

n
F
,
D

µ(T1)µ(T2)

T2 > T1

nF (T1)nF (T2)

D ∝ ǫ
1
2

Figure 5.8: The fermionic occupation number nF as a function of ε for different temper-
atures (blue and red curves) and the density of states D (green). Because
increasing T moves more particles into the high energy tail, one has to de-
crease chemical potential µ to keep the overlap integral determining N con-
stant. Thus the curves shift to the left with increasing T.

We next evaluate the energy:

E
N

=
∫ ∞

0
dε D(ε) ε︸ ︷︷ ︸

f (ε)∝ε
3
2

n(ε)

=
∫ εF

0
dε D(ε)ε + (µ− εF)ε̃D(ε̃) +

π2

6β2

[
µD′(µ) + D(µ)

]
≈ E0

N
+ (µ− εF)︸ ︷︷ ︸
− π2

6β2
D′(εF)
D(εF)

εFD(εF) +
π2

6β2

[
εFD′(εF) + D(εF)

]

⇒ E = E0 + N
π2

6
D(εF) (kBT)2

⇒ cV =
∂E
∂T

∣∣∣∣
V
= N

π2

3
k2

BD(εF)T

The specific heat of an electron gas at T � εF
kB

is linear in temperature T.
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We use D(ε) = A ε
1
2 to write

1 =
∫ εF

0
dε D(ε) = A

∫ εF

0
dε
√

ε

=
2
3

Aε
3
2
F =

2
3

D(εF)εF

⇒ D(εF) =
3

2εF

⇒ cV = N
π2

2
kBT
εF

kB

Disregarding the numerical prefactor, this result is easy to understand: a fraction kBT
εF

of
the electrons from the Fermi sea is thermally excited, each contributing around kB.
Our calculation is only valid for T � εF

kBT . At high temperature, we have to recover the
classical limit:

cV =
3
2

NkB

Therefore the complete result schematically has to look like shown in Figure 5.9.

~ T

constant

T

cV

3/2

T0

Figure 5.9: Two regime behaviour of the specific heat at constant volume: While for
T � T0 = εF

kB
cV ∝ T, cV is approximately constant for T � T0.

We also comment on the role of lattice vibrations. From the Debye model we know that
lattice vibrations contribute a term ∝ T3.

⇒ cV = a T + b T3

One can measure a and b experimentally and thus extract the Fermi energy εF and the
Debye frequency ωD. With these two values, we know the most important numbers for
a given solid.

Full solution

Until now we have worked in an expansion around the T = 0-case. We can also write
the full solution for arbitrary T, however we will end up with integrals that cannot be
solved but rather lead to definitions of new functions.
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We start with the grandcanonical potential and use the same concepts as above:

Ψ(T, V, µ) = −kBT ln ZG

=
−kBT

h3 2V(4π)
∫ ∞

0
p2dp ln

(
1 + eβ(ε−µ)

)
=
−2kBTV

λ3 f5/2(z)

where we have defined a new function

f5/2(z) :=
4√
π

∫ ∞

0
x2dx ln

(
1 + ze−x2

)
=

∞

∑
1
(−1)α+1 zα

α5/2

and where we have used the dimensionless momentum x defined by x2 = βp2/2m and
fugacity z = eβµ.
Particle number can be written in a similar manner:

N =
2V(4π)

h3

∫ ∞

0
p2dp

(
1

eβ(ε−µ) + 1

)
=

2V
λ3

4√
π

∫ ∞

0
x2dx

(
z

ex2 + z

)
=

2V
λ3 f3/2(z)

with another new function

f3/2(z) :=
4√
π

∫ ∞

0
x2dx

(
z

ex2 + z

)
=

∞

∑
1
(−1)α+1 zα

α3/2

As a function of z, both functions increase monotonously from 0 with a decreasing
slope.
One can easily check that the two formula are consistent:

N =
1
β

∂µ ln ZG =
1
β
(βz)∂z ln ZG =

2V
λ3 (z∂z) f5/2(z) =

2V
λ3 f3/2(z)

One can also calculate the variance as σ2
N = (1/β)∂N/∂µ. For low temperature, we

would get the same results as above.

Fermi pressure

We consider the definition of pressure:

p = − ∂E
∂V

∣∣∣∣
T,N

= − ∑
~k,mS

∂ε~k,mS

∂V
n~k,mS

where in the last step we have neglected any temperature-dependent change in the
occupation level (second order effect, a more rigorous treatment would again start from

the grandcanoncial ensemble). Since ε~k =
(h̄k)2

2m and ki ∝ 1

V
1
3

, we have

ε~k ∝
1

V
2
3
⇒

∂ε~k,mS

∂V
= −2

3

ε~k,mS

V
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⇒ p =
2
3

E
V

=
2E0

3V
+

π2

6
NkBT

V
kBT
εF︸ ︷︷ ︸

→0 for T→0 like for the ideal gas

Interestingly, this contribution to the pressure is always positive, showing that the
Fermi gas is effectively like a gas with repulsive interactions. There is also a temperature-
independent term:

E0

N
=
∫ εF

0
dε D(ε)ε =

3
5

εF

⇒ p T→0→ 2
5

N
V

εF =

(
3π2) 2

3

5
h̄2

mv
5
3

The ‘Fermi pressure’ in a Fermi fluid at very low temperature accounts for the incom-
pressibility of matter and essentially results from the Pauli principle. For example, it
prevents that the earth collapses under gravitation. This is also true for white dwarfs
(electrons) or neutron stars, but not for the sun. In the latter case classical ideal gas
pressure at T = 5 · 107 K (temperature in the center of the sun) balances gravitational
attraction.

5.4 The ideal Bose fluid

We now turn to Bose fluids with

ε =
h̄2k2

2m
and conserved particle number N.

Example:

A fluid of 4He, which in contrast to 3He is a boson. Both types of helium have the
same weak van der Waals interaction and the same chemistry, but one is a bosonic,
the other a fermionic fluid. We demonstrate now that the bosonic system undergoes a
‘Bose-Einstein condensation’ at a critical temperature Tc.
ε = p2

2m has two main consequences for Bose fluids:

1 D(ε) ∝ ε
1
2 : like for Fermi fluids

2 ε ≥ 0 ⇒ µ ≤ 0 : otherwise the mode with ε = µ would have an infinite
occupation number

µ = 0 is allowed as the contribution to nB at ε = µ vanishes in a continuum framework:

nB =
1

eβ(ε−µ) − 1
µ=0→ 1

e
βp2
2m − 1

p→0→ 2m
βp2 ⇒ d~p nB ∝ p2 dp

1
p2 ∝ dp→ 0
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For µ > 0, one can use a Taylor expansion to see that now the divergence is not canceled
by the Jacobian and that the weight would diverge.
We consider the particle number N for spin-0 bosons (degeneracy g = 1):

N =
V
h3

∫
d~p

1
eβ(ε−µ) − 1

=
V

(2π)3

(
2m
h̄2

) 3
2 ∫ ∞

0
dε

ε
1
2

eβ(ε−µ) − 1

For fixed µ, increasing T shifts nB to higher values. In order to keep N constant, µ must
decrease (as for the Fermi fluid).

ǫ

n
B
,
D

µ(T1)

D ∝ ǫ
1
2

T2 > T1

µ(T2)

nB(T2)

nB(T1)

Figure 5.10: The bosonic occupation number nB as a function of ε for different temper-
atures (blue and red curves) next to the density of states D (green).

For T → ∞, µ→ −∞ we recover the classical limit. Compare with the ideal gas result:

µ = kBT ln ρλ3 = kBT ln
p
p0

with p0 =
kBT
λ3 ≈ GPa, atmospheric pressure 0.1 MPa → µ < 0

We now consider the integral for N:

N =
V
h3

∫
d~p

1
eβ(ε−µ) − 1︸ ︷︷ ︸

=∑∞
l=1(e−β(ε−µ))

l

=
V
h3

∞

∑
l=1

eβµl
∫

d~p e−β
p2
2m l

= V
∞

∑
l=1

eβµl

l
3
2

1
h3

∫
d~x e−β x2

2m︸ ︷︷ ︸
= 1

λ3

=
V
λ3

∞

∑
l=1

zl

l
3
2︸ ︷︷ ︸

=g 3
2
(z)

⇒ N =
V
λ3 g 3

2
(z)
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Here we used the substitution x2 = p2l, identified the fugacity z and the thermal wave-
length λ

z = eβµ, λ =
h

(2πmkBT)
1
2

and the generalized Riemann Zeta function

gν(z) =
∞

∑
l=1

zl

lν

g 3
2
(z) = z +

z2

2
√

2
+

z3

3
√

3
+ ...

0,2 0,4 0,6 0,8 1
z

 

 

z

g 3
2
(z) = z +

z
2

2
√

2
+

z
3

3
√

3

Figure 5.11: The generalized Riemann Zeta function g 3
2

plotted against fugacity z. In
contrast to the function f 3

2
required for fermions, it is only defined up to z =

1, reflecting that the chemical potential for bosons cannot become positive.

For high temperatures:

λ→ 0, g 3
2
(z)→ 0, z→ 0, µ→ −∞

⇒ N =
V
λ3 eβµ classical result (with corrected counting)

Upon lowering temperature, z approaches 1, where

g 3
2
(1) = ζ

(
3
2

)
= 2.612

with the Riemann Zeta function ζ(ν) = gν(1) = ∑∞
l=1

1
lν .

The maximal value µ = 0 is reached when

λ3ρ = ζ

(
3
2

)
= 2.612 where ρ =

N
V
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surprisingly, this happens at a finite temperature Tc:

Tc =
2π(

ζ
( 3

2

)) 3
2

h̄2ρ
2
3

kBm
Einstein 1924

Tc is the critical temperature for the ‘phase transition’. At this point the system changes
its state characteristics.

T

µ
(T

)

 

 

Tc

0

Figure 5.12: The chemical potential µ as a function of temperature. Below T = Tc, µ
equals zero.

In the case of 4He we estimate

v =
V
N
≈ 46 Å3, m = 4 u ⇒ Tc = 3.13 K

Experimentally one finds Tc = 2.17 K for the so-called λ-transition to superfluidity. The
difference comes from direct interactions which we neglected here (ideal gas of point
particles).

Below Tc, the chemical potential µ must be identical zero and we get a plateau in the
value for µ. The problem here is that as we lower T below Tc, we cannot satisfy any-
more the condition to keep N constant by increasing µ. This might indicate that the
theory fails, but in fact it is the other way around, the theory immediately suggests a
way out: we can rescue the theory by decreasing the number of particles while lower-
ing temperature. The main idea is that we remove particles from the system and put
them into another phase, namely a condensate of particles with cero energy (vanishing
momentum). Because for a finite sized system the momenta are discretized anyway, we
also can consider this ground state to be a discrete state into which the excited states
can disappear. The range of excited states is treated as continuum as before.
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nB

N0

ε

Figure 5.13: The occupation number nB as a function of ε. In the continuum description
the ground state does not contribute. Therefore we introduce it here as an
additional degree of freedom (black box at ε = 0) into which particles from
the excited states can disappear, thus allowing us to satisfy the equation
for particle number while still lowering temperature and keeping chemical
potential constant.

At T below Tc, some particles condense into the ground state for which we introduce
an extra particle number:

N0: number of atoms in the ground state, Ne: number of atoms in the excited state

⇒ Ne =
V
λ3 ζ

(
3
2

)
=

λ3
c

λ3
V
λ3

c
ζ

(
3
2

)
︸ ︷︷ ︸

=N

= N
(

T
Tc

) 3
2

for T < Tc

N = N0 + Ne ⇒ N0 = N(1−
(

T
Tc

) 3
2

)

This result is plotted in Figure 5.14.

At T = 0, all N particles have condensed into the ground state. For 0 ≤ T ≤ Tc, a finite
fraction is condensed. For T > Tc, all particles are excited.
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N
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e

 

 

N0

Ne

Tc

N

Figure 5.14: The number of atoms in ground (N0) and excited state (Ne) as a function
of temperature. Above T = Tc all atoms are in the excited state. The more
one goes below Tc, the more particles condense into the groundstate of the
condensate.

Next we calculate the energy of the ideal Bose fluid:

E = N0ε0︸︷︷︸
=0 since ε0=0

+
V
h3

∞

∑
l=1

eβµl
∫

d~p
p2

2m
e−β

p2
2m l︸ ︷︷ ︸

=− 1
β ∂l

∫
d~p e−β

p2
2m l

= V
∞

∑
l=1

eβµl
(
− 1

β
∂l

)
1

λ3l
3
2

E =
3
2

kBT
V
λ3 g 5

2
(z) =

3
2

kBTNe
g 5

2
(z)

g 3
2
(z)

This result (Figure 5.16)is valid for all temperatures.
Next we calculate the specific heat for T ≤ Tc:

⇒ µ = 0, z = 1, λ ∝ T−
1
2 , E ∝ T

5
2

⇒ cV =
dE
dT

=
3
2

kBN
d

dT
T
(

T
Tc

) 3
2 ζ
( 5

2

)
ζ
( 3

2

)
⇒ cV =

15
4

kBN
(

T
Tc

) 3
2 ζ
( 5

2

)
ζ
( 3

2

) T ≤ Tc
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For T > Tc we get

cv =
dE
dT

=
15
4

kB
V
λ3 g 5

2
(z) +

3
2

kBT
V
λ3 g′5

2
(z)

dz
dT

The chemical potential µ is determined by

N =
V
λ3 g 3

2
(z)

⇒ 0 =
3
2

V
Tλ3 g 3

2
(z) +

V
λ3 g′3

2
(z)

dz
dT

⇒ dz
dT

= −3
2

g 3
2
(z)

Tg′3
2
(z)

⇒ cV =
15
4

kBN
g 5

2
(z)

g 3
2
(z)
− 9

4
kBN

g′5
2
(z)

g′3
2
(z)

T > Tc

⇒ cV =
15
4

kBN
g 5

2
(z)

g 3
2
(z)
− 9

4
kBN

g 3
2
(z)

g 1
2
(z)

T > Tc

Here we used
dgν(z)

dz
=

∞

∑
l=1

lzl−1

lν
=

1
z

∞

∑
l=1

z
lν−1 =

1
z

gν−1(z)

in the last step.

High temperature limit : z→ 0, gν(z)→ z

⇒ cV =

(
15
4
− 9

4

)
kBN =

3
2

kBN classical limit

T = Tc : z→ 1, g 1
2
(1) = ∞

⇒ cV =
15
4

kBN
ζ
( 5

2

)
ζ
( 3

2

) = 1.925 kBN

The specific heat has a unique cup at T = Tc (Figure 5.15). A similar behaviour has
been experimentally observed for 4He. The energy E and its first derivative cV are
continuous; only the second derivative has a jump.
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T

c
V
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Figure 5.15: The specific heat cV as a function of temperature has a unique cup at T =
Tc.

3/2

T

E

 

 

Tc

∝ T 5/2

∝ T
 classical limit 

Figure 5.16: The energy E of the ideal Bose fluid as a function of temperature. For low
temperatures (quantum regime), E ∝ T

5
2 while E ∝ T for high temperatures

(classical limit).

Ultracold atoms

Bosonic atoms like 87Rb or 23Na can be captured in magnetic traps because they have
unpaired electrons that interact with magnetic fields. To first order, this is a harmonic
oscillator with frequency ω.

εnx ,ny,nz = h̄ω

(
nx + ny + nz +

3
2

)
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For µ = µc = ε000 = 3
2 h̄ω, N0 atoms condensed into a BEC:

N = N0 +
∞

∑
nx=0

∞

∑
ny=0

∞

∑
nz=0

1
eβh̄ω(nx+ny+nz) − 1

Here the contribution ε000− µ = 0 vanishes from the exponential. Converting the three
sums into integrals, using the geometrical sum and performing the integrals gives

N = N0 + ζ(3)
(

kBT
h̄ω

)3

T ≤ Tc

The critical temperature follows from N0 → 0:

Tc =
h̄ω

kB

(
N

ζ(3)

) 1
3

For h̄ω ≈ 10−8 kBK and N = 4 · 104 this gives

Tc ≈ 3 · 10−7 K

In 1995 such a Bose-Einstein condensate was achieved for the first time (Nobel Prize
2001 for Ketterle, Cornell and Wieman). Usually they are demonstrated by the expan-
sion following shutoff of an atomic trap. In 2010 a BEC was achieved for photons (Weitz
group, Bonn).

5.5 Classical limit

As we have seen above, both for Fermi and Bose fluids the classical limit emerges as
µ → −∞. Then the two grandcanonical distribution functions become the same classi-
cal Maxwell-Boltzmann distribution:

nF/B =
1

eβ(ε−µ) ± 1
→ eβµe−βε

In this limit, all occupied states are in the tail of the distributions, which is the same for
both. The normalization condition now becomes, using ε = p2/2m, which is valid for
both cases and therefore give the same density of states:

N = g
V

(2π)2 (
2m
h̄2 )3/2eβµ

∫
dεε1/2e−βε = g

V
λ3 eβµ

where degeneracy g = 2 for electrons and g = 1 for spin-0 particles. For the average
energy we get

E = g
V

(2π)2 (
2m
h̄2 )3/2eβµ

∫
dεε3/2e−βε =

3
2

kBTg
V
λ3 eβµ =

3
2

kBTN
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which is simply the caloric equation of state of the classical ideal gas. The boundary
to the quantum regime occurs at fugacity eβµ = z ≈ 1, which from the first equation
corresponds to v ≈ λ3. When the density is sufficiently high or the temperature is suf-
ficiently low that the specific volume approaches the volume defined by the thermal
wavelength, then quantum effects will dominate. Note that the classical limit corre-
sponds to the calculation with corrected counting. Without this factor N!, we would
not have achieved agreement with the full quantum calculations (and also not with the
thermodynamic result).
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6 Ising model

6.1 History and definition

Until now we have only discussed so-called non-interacting systems. Of course fermions
and bosons feel each other through the exchange rules, but we did not consider yet the
possibility of a direct interaction between particles. As we will see, such interactions
typically lead to phase transitions. We first discuss this for lattice models and then for
classical fluids. While lattice models are abstract, they allow us to introduce the rele-
vant concepts and methods. Moreover some lattice models can be solved exactly. The
classical fluids are more directly related to experiments, but here exact solutions are
more challenging.
The most famous lattice model is the Ising model. In fact it is the most important model
in statistical physics anyway, both historically and conceptually. It is one of the few
analytically solvable models with interactions and a phase transition. In 1920 it was
invented by Wilhelm Lenz as an exercise in ferromagnetism and given to his PhD stu-
dent Ernst Ising, who solved the one-dimensional case (publication Z. Phys. 31, 253-
258, 1925), which has a phase transition only at T = 0 (some textbooks like Landau and
Lifshitz therefore state that it has no phase transition at all, which is true as a statement
on finite temperature). In 1933 Rudolf Peierls used indirect arguments to show that
the 2D version must have a phase transition at finite temperature. In 1944 Lars On-
sager solved the two-dimensional Ising model in vanishing magnetic field by mapping
it onto a fermionic problem using a transfer matrix method (publication Phys. Rev. 65,
117, 1944). Later several other and less difficult proofs have been reported, often focus-
ing more on the geometrical aspects of random walks, as also suggested by the Peierls
argument. One of these proofs is by Vdovichenko (publication N. V. Vdovichenko, J.
Exptl. Theor. Phys. (USSR) 47, 715 (1964);English translation: Soviet Physics JETP 20,
477 (1965)) and has become very popular through the textbook by Landau and Lifshitz.
Generations of theoretical physicists worked on the Ising model and related models (in-
cluding the Heisenberg, Potts, n-vector and XY-models), leading to the developments
of concepts such as spontaneous magnetization, symmetry breaking and universality,
and methods such as perturbation theory, transfer matrix, renormalization group (RG)
theory and Monte Carlo computer simulations. The two-dimensional Ising model with
magnetic field and the three-dimensional Ising model are still not solved today and this
is one of the greatest challenges in theoretical physics (like solving the Navier-Stokes
equation). However, it has been extensively studied with numerical methods, so that
we can say that in principle, we know everything about it. Overall the Ising model is
for statistical physics what the harmonic oscillator is for mechanics, the hydrogen atom
for quantum physics and the fruit fly for biology: the most important reference system
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both in terms of concepts and methods.

Figure 6.1: Ising lattice examples in two dimensions: cubic (# neighbours z = 4, left),
triangular (z = 6, center) and hexagonal (honeycomb) (z = 3, right).

The Ising model is defined on a lattice of given connectivity and dimension (e.g. 1D
Ising chain, 2D square lattice Ising model, Ising model on a Cayley tree, Ising model on
a small network, etc), thus in principle, there are infinitely many versions of the Ising
models. Figure 6.1 shows some examples in two dimensions. Usually however one
studies it on a simple cubic lattice.
The Ising model is an example for a lattice spin model. In each lattice site i, we consider a
spin Si with two possible states: Si = ±1 (corresponding to |↑〉 and |↓〉). Nearest neigh-
bours interact with an energy scale J. In addition there might be an external magnetic
field B giving a preference for one direction. Note that although we talk about spins
and the cartoon show vectors, we really have only a scalar degree of freedom, which is
binary; this makes it the simplest model possible, like the flip of a coin in probability
theory. More advanced models like the XY- or Heisenberg models considers spins as
vectors with a scalar product between them.
The Hamiltonian of the Ising model reads

H = −J ∑
〈ij〉

Si Sj − Bµ ∑
i

Si

Here 〈ij〉 indicates summation over nearest neighbours and µ is the magnetic moment
of a spin. In non-dimensional units we write

βH = −K ∑
〈ij〉

Si Sj − H ∑
i

Si

where now both the coupling constant K = βJ and the external field H = βBµ depend
on temperature. The H used here should not be confused with the H of the magnetic
field in the macroscopic Maxwell equations, which sometimes is used in the same sense
as we use B here. Many books also use h for the H we use here.
For J > 0 the symmetric configurations ↑↑ and ↓↓ are favorable and ↑↓ and ↓↑ are
unfavorable. Thus the system wants to avoid grain boundaries between regions with
up and down spins, at least at low temperature. At high temperature, grain boundaries
will proliferate because they correspond to a lot of entropy.
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For B = 0 the system is invariant under Si → −Si. If B > 0, ↑-spins are favored, and
for B < 0, ↓-spins are favored. Using the canonical formalism the partition sum for N
spins reads:

ZN(K, H) = ∑
S1=±1

∑
S2=±1

... ∑
SN=±1︸ ︷︷ ︸

2N states

e−βH = ∑
{Si}

e−βH

In practice one often uses periodic boundary conditions for lattice models to avoid
boundary effects, or finite size scaling to get rid of boundary effects by making the
system larger and larger.
Due to its history, usually the Ising model is treated in magnetic language. However,
today it is used in many other ways. Here are a few examples of important applications
of the Ising model:

1 ferromagnetism:
The Ising model is the scalar version of the three-dimensional ‘Heisenberg model’
for ferromagnetic systems:

H = −J ∑
〈i,j〉

~Ji~Jj − µ~B ∑
i

~Ji

2 binary alloys and lattice gases:
Each lattice site is occupied either by an atom A or B. Nearest neighbour interac-
tions are tAA, tBB and tAB. We identify A with Si = 1 and B with Si = −1. The
Hamiltonian then is:

H = −∑
〈i,j〉

JijSiSj

with Jij = tAB − 1
2 (tAA + tBB). Thus the Ising model describes order-disorder

transitions in regard to composition.

3 spin glasses:
now each bond is assigned an individual coupling constant Jij and they are drawn
from a random distribution. E.g. one can mix ferromagnetic and anti-ferromagnetic
couplings. This is an example for a structurally disordered system, on top of
which we can have a thermal order-disorder transition.

4 conformations in biomolecules:
a famous example is the helix-coil transition from biophysics. Si = 1 a hydrogen
bond in a DNA-molecules is closed; Si = −1 the bond is open. The phase tran-
sition is between a straight DNA-molecule (helix) and a coiled DNA-molecule.
Other examples are the oxygen-binding sites in hemoglobin, chemotactic recep-
tors in the receptor fields of bacteria, or the molecules building the bacterial flag-
ellum, which undergos a conformational switch if the flagellum is rotated in the
other direction (switch from run to tumble phases).
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5 neural networks representing the brain:
Si = 1 a synapse is firing, Si = −1 it is resting. The Hopfield model for neural net-
works is a dynamic version of the Ising model (the coupling constants are learned,
with or without supervision) and Boltzmann machines recognise handwriting by
using the Ising model. Neural networks have recently become very important
again due to the huge success of deep learning (layered neural networks with an
intermediate number of layers) and artificial intelligence.

6 spread of opinions or diseases:
Spread of opinions, rumours or diseases in a society; these kinds of models are
used in socioeconomic physics and epidemiology. If nearest neighbour coupling
is sufficiently strong, the system gets ‘infected’. A lot of the spatial model efforts
in the context of COVID-19 are based on the Ising model.

In order to decide if the microscopic rules lead to a macroscopic change, one has to
introduce an order parameter. For a magnetic model like the Ising model, the natural
choice is the magnetisation:

M(K, H) =

〈
µ

N

∑
i=1

Si

〉
which is a measure for the averaged spin orientation. B > 0 will lead to M > 0. If for
B = 0 we find M 6= 0, then the system has spontaneously polarized itself (an example of
spontaneous symmetry breaking). In the following we will discuss two important results:

1 The one-dimensional Ising model shows a phase transition only at T = 0 (Fig-
ure 6.2).

2 The two-dimensional Ising model shows a phase transition at finite temperature
Tc (Figure 6.3).

0
T

M

Figure 6.2: 1D Ising model: Magnetisation M as a function of temperature T. For T 6= 0
M vanishes and shows a jumping behaviour at T = 0.
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T

M
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c
 

Figure 6.3: 2D Ising model: Magnetisation M as a function of temperature T. For values
T ≤ Tc M has a finite value.

If M changes in a smooth way at the transition (no jumps), we talk about a phase transi-
tion of second order or continuous phase transition. The 2D Ising model is the paradig-
matic case for such a transition at the critical temperature Tc. In the region around the
critical point, the system has very unusual properties (large fluctuations, universality,
scale invariance, critical slowing down). The Ising model below the critical tempera-
ture has a phase transition of first order as a function of the magnetic field (with jump
in M). The terms first and second order phase transitions go back to Paul Ehrenfest,
who suggested a classification of phase transitions in terms of jumps in the derivatives
of the chemical potentials; this idea has been discarded, but the two terms first and
second order phase transitions have persisted.
Although the 1D Ising model has a jump at T = 0. one should not consider it as
an example for a discontinuous or first order phase transition; rather it is a version
of the 2D Ising model that has been squished into one point. Because it is somehow
pathological, some authors prefer to say that it does not have a phase transition at all,
as mentioned above, but here we like to talk about one, because many of the relevant
signatures are here, like divergent suspectibilities (see below). Although T = 0 cannot
be reached in experiments, one therefore should see a signature of this change already
at finite T.

6.2 The 1D Ising model

In one dimension the Ising model is an ‘Ising chain’ of spins (Figure 6.4). With periodic
boundary conditions this chain becomes a ring.
Without periodic boundary conditions and considering the external field to vanish,
hence H = 0, ZN becomes:
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i

1 2 3 ... N

Figure 6.4: 1D Ising model: Ising chain of N spins.

ZN = ∑
S1=±1

∑
S2=±1

... ∑
SN=±1

eK(S1S2+S2S3+...+SN−1SN)

= ∑
S1=±1

... ∑
SN−1=±1

eK(S1S2+...+SN−2SN−1) ∑
SN=±1

eKSN−1SN

︸ ︷︷ ︸
=eK+e−K=2 cosh K

= ZN−1 2 cosh K

= (2 cosh K)N−1 Z1︸︷︷︸
=2

N�1≈ (2 cosh K)N = ZN

Another way to get rid of the boundary conditions would be to put the Ising chain on a
ring, thus we would have N sites and N bonds and the extra 2 from the last site would
not appear anyway. At any rate, the free energy expression in the TD-limit becomes,
remembering K = βJ:

F = −kBTN ln
(

2 cosh
J

kBT

)
Because this is an analytical function for finite temperature, one already expects that no
phase transition takes place at finite T. We show this by considering spin correlations:
For each spin pair we introduce a different coupling constant Ki :

βH = −K
N−1

∑
i=1

SiSi+1 → −
N−1

∑
i=1

KiSiSi+1

⇒
〈
SiSi+j

〉
=

1
ZN

∑
{Si}

(SiSi+j)e−βH

=
1

ZN
∑
{Si}

(SiSi+j)︸ ︷︷ ︸
= (Si Si+1)(Si+1 Si+2) ... (Si+j−1 Si+j)

= Si Si+1Si+1︸ ︷︷ ︸
=1

Si+2 .︸ ︷︷ ︸
=1

. . Si+j−1︸ ︷︷ ︸
=1

Si+j

= ∂Ki ∂Ki+1 ... ∂Ki+j−1

e−∑N−1
i=1 KiSiSi+1
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ZN then can be calculated iteratively as above:

ZN = 2N
N−1

∏
i=1

cosh Ki

⇒
〈
SiSi+j

〉
=

cosh K1 ... sinh Ki ... sinh Ki+j−1 ... cosh KN−1

cosh K1 ... cosh Ki ... cosh Ki+j−1 ... cosh KN−1
=

j

∏
k=1

tanh Ki+k−1

∀i : Ki = K ⇒
〈
SiSi+j

〉
= (tanh K)j

The resulting spin correlations are shown in Figure 6.6. Despite the short-ranged inter-
action - we only consider nearest neighbour interactions - a longer ranged correlation
emerge from the statistical average, which decays exponentially with distance:

〈
SiSi+j

〉
= (tanh K)j =

(
eln tanh K

)j
= ej ln tanh K = e−j/ξ

where we have defined the correlation length

ξ = −(ln(tanh(K)))−1

Because tanh(K) ≤ 1, the correlation length is positive and finite, except at K = ∞
(T = 0), where it diverges (in an exponential fashion with T in 1D, as a power law in
2D). This is one of the most important signatures of a critical point: the system becomes
correlated over its whole size.
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Figure 6.5: tanh(x) as a function of x. For x > 0 tanh(x) > 0; tanh(x) x→±∞→ ±1.

Because the system is homogeneous:

∀i : 〈Si〉 = 〈S〉
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Figure 6.6:
〈
Si, Si+j

〉
= (tanh(x))j as a function of j. As can be seen in Figure 6.5 ,

tanh(x) > 0 for x > 0. For the plot tanh(x) was taken to be 0.5. For T = 0,
this curve would not decay.

⇒ M = µN 〈S〉〈
SiSi+j

〉 j→∞→ 〈Si〉
〈
Si+j

〉
= 〈S〉2

M2 = µ2N2 lim
j→∞

〈
SiSi+j

〉
=

{
µ2N2 T = 0

0 T > 0

At finite T no spontaneous magnetisation occurs. At T = 0 we have a phase transition
(compare Figure 6.2). For T → 0 we have first made this limit and then the thermody-
namic limit N → ∞.
In summary, the exact solution of the Ising chain at cero magnetic field shows that it
has a critical phase transition at T = 0. At finite T, spontaneous magnetization does
not occur and correlations decay exponentially with distance. In the 2D Ising model,
the critical point will be at a finite temperature.

6.3 Transfer matrix

Next we investigate the case H 6= 0 using the transfer matrix method introduced by
Onsager for the 2D Ising model:

βH = −K ∑
〈ij〉

SiSj − H ∑
i

Si

We now use periodic boundary conditions: SN+1 = S1 (compare Figure 6.7). In the
thermodynamic limit N → ∞, boundaries become irrelevant.
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N
1

2

Figure 6.7: With periodic boundary conditions the one-dimensional Ising chain be-
comes a ring.

We define a ‘transfer function’ :

Ti,i+1 := eKSiSi+1+
1
2 H(Si+Si+1)

⇒ e−βH = T1,2 T2,3 ... TN,1

Each transfer function has four possible values which define a symmetric ‘transfer ma-
trix’:

T =

(
eK+H e−K

e−K eK−H

)
In quantum mechanical notation:

|Si = +1〉 =
(

1
0

)
|Si = −1〉 =

(
0
1

)
⇒ Ti,i+1 = 〈Si| T |Si+1〉

⇒ ZN = ∑
{Si}

e−βH

= ∑
{Si}
〈S1| T |S2〉 〈S2| T |S3〉 ... 〈SN | T |S1〉

= ∑
S1=±1

〈S1| TN |S1〉

=
(

TN
)

11
+
(

TN
)

22
= tr

(
TN
)

= λN
1 + λN

2

We note that solving the Ising model amounts to an eigenvalue problem with λi being
the eigenvalues of T. This implies:
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det
(

eK+H − λ e−K

e−K eK−H − λ

)
= 0(

eK+H − λ
) (

eK−H − λ
)
− e−2K = 0

λ2 − 2eK cosh H λ + e2K − e−2K = 0

⇒ λ1,2 = eK cosh H ±
√

e2K cosh2 H − 2 sinh 2K

= eK
[

cosh H ±
√

cosh2 H − 2e−2K sinh 2K
]

Thus we have arrived at an exact solution for the one dimension Ising model with
external field:

ZN = λN
1 + λN

2

In the thermodynamic limit, only the larger eigenvalue λ1 is relevant:

ZN = λN
1

(
1 +

(
λ2

λ1

)N
)

N→∞→ λN
1

For H = 0 we get:

λ1 = eK +
√

e2K − (e2K − e−2K) = eK + e−K = 2 cosh K

⇒ ZN = (2 cosh K)N for N � 1

like before from the solution by direct summation (but different boundary conditions).
With the full solution we now can calculate any thermodynamic quantity of interest.
The thermal equation of state describes the magnetisation:

M(T, B) =
1
Z ∑
{Si}

(
µ ∑

i
Si

)
e−βH

= µ∂H ln ZN =
µN
λ1

∂Hλ1

=
µN sinh H√

cosh2 H − 2e−2K sinh 2K

We note that M(T 6= 0, B = 0) = 0 and no spontaneous magnetisation at finite T occurs.
For strong fields, hence

M(T 6= 0, B→ ±∞)→ ±µN

magnetisation saturates. For T → 0 M turns into a step function (compare Figure 6.8).
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Figure 6.8: The magnetisation M as a function of magnetic field B plotted for different
temperatures.

Next we calculate the entropy for B = 0:

F = −NkBT ln (2 cosh K)

⇒ S = − ∂F
∂T

= NkB [ln (2 cosh K)− K tanh K] (Figure 6.9)

Considering the low and high temperature limits:

S T→∞, K→0→ NkB ln 2

S T→0, K→∞→ NkB(K− K) = 0

where we recovered the third law of thermodynamics.

From this we calculate the heat capacity in absence of a field:

cB = T
∂S
∂T

∣∣∣∣
B=0

= kB
K2

cosh2 K
(Figure 6.10)

Finally we consider the isothermal susceptibility (needs H):

χT =
1
N

∂M
∂B

∣∣∣∣
T
=

βµ

N
∂H M

=
βµ2

N
∂2

H ln ZN = βµ2∂2
H ln λ1

In the special case B = 0, χT becomes:

χT =
βµ2

(1− tanh K)
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NkB ln(2)

Figure 6.9: The entropy S as a function of temperature T. For high temperatures S ap-
proaches S0 = NkB ln 2 asymptotically.

0 T

c B

 

 

Figure 6.10: The heat capacity cB as a function of temperature shows a similar shape as
the one for the two state model (compare Fig. ??).

χT
T→∞→ 1

T
law of Curie

In Figure 6.11 χT is plotted as a function of temperature.
We also note an interesting relation between susceptibility (a response function like
viscosity) and spin correlations (describing thermally activated ‘fluctuations’):
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divergence stronger than ∝ 1/T

∝ 1/T

Figure 6.11: The susceptibility χT as a function of temperature. χT diverges for T → 0,
hence for T approaching the phase transition. In general this is a typical
signature of a phase transition. For large temperatures: χT ∝ 1/T (law of
Curie).

χT =
1
N

∂M
∂B

∣∣∣∣
T
=

βµ

N
∂H

{
1
Z ∑
{Si}

(
µ ∑

i
Si

)
eK ∑ SiSj+H ∑ Si

}

=
βµ2

N
1
Z ∑
{Si}

(
N

∑
i=1

N

∑
j=1

SiSj

)
e−βH

=
βµ2

N

(
N

∑
i=1

N

∑
j=1

〈
SiSj

〉)
= χT ‘fluctuation dissipation theorem’ for the Ising model

For the one-dimensional Ising model and the limit N → ∞ the result becomes:

χT =
βµ2

N
N

∞

∑
j=0

(tanh K)j = βµ2 1
1− tanh K

which is the same as above.

As −1 ≤
〈
SiSj

〉
≤ 1 this implies χT can only diverge when

1 N → ∞ (thermodynamical limit)

2 The range of the correlations must diverge, such that infinitively many terms give
a non-finite contribution. Therefore phase transitions are related to a divergence
of the ‘correlation length’. This implies that microscopic details become irrelevant
because the system becomes correlated on a macroscopic scale (‘critical fluctua-
tions’).
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6.4 Renormalization of the Ising chain

Above we have seen that the correlation length ξ diverges at the critical point at T = 0.
We turn this observation around and ask if we can identify a critical point by the fact
that there the correlation length has to diverge. This feature is also known as scale in-
variance: the system should look the same irrespective of on which scale we investigate
it. We therefore perform the following procedure: we coarse-grain the Ising model
step-by-step by decimating half of its spins in each step and adjusting the model and
its parameters (renormalization), as shown in Figure 6.12. We can do this infinitely many
times in the thermodynamic limits, because the number of spins stays infinite. We call
the set of all these scale transformations the renormalization group (RG), because it has
the group property of associativity (because strictly speaking there is no inverse ele-
ment, RG is actually only a semi-group and the name is a misnomer). Obviously, in
each RG-step the correlation length should decrease because we move spins closer to
each other, except at the critical point, where correlations should persist. Thus the crit-
ical point should be a fixed point under the RG-transformation. In detail, it should
be unstable or repulsive, because for all other cases, correlation should decay. These
ideas of real space renormalization goes back to Leo Kadanoff and later was refined
by Ken Wilson, who won the Nobel Prize for RG. Alternatively one can also perform
renormalization in momentum space by integrating out a momentum shell of small
wavelength modes and then follow the same arguments. This however first requires
a Fourier transform (either on the lattice or in a continuum version, like the φ4 field
theory), so for time reasons we do not discuss this version of RG here.
The RG of the Ising chain can be performed analytically and gives very good results.
We do this by separating spins with even and odd indices and integrating out the odd
ones:

ZN = ∑
S2=±1

∑
S4=±1

... ∑
SN=±1

(
∑

S1=±1
∑

S3=±1
... ∑

SN−1=±1
e−βH

)
where we assume N to be even, although this does not matter in the thermodynamic
limit. We put the Ising chain onto a ring, so that S1 has nearest neighbors SN and S2,
and integrate out this spin:

∑
S1=±1

eKS1(SN+S2)+HS1 = 2 cosh(K(SN + S2) + H)

If we now consider the remaining spins, we see that this term can have three different
outcomes, for the combination (SN , S2) = (+1,+1), (−1,+1)/(+1,−1) (the two mixed
cases give the same result) and (−1,−1). We now guess a new Hamiltonian which
should be as close as possible to the old one, but also has to accomodate these three
possible outcomes. The following three-parameter model works:

2 cosh(K(SN + S2) + H) = ζ0eK′SNS2+
δH
2 (SN+S2)

Here K′ is a renormalized coupling constant and δH is a new contribution to the mag-
netic field (the factor of 2 arises because the same contribution will also arise from the
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Figure 6.12: Kadanoff real space renormalization: b times b spins (here b = 3) are
grouped into a block and the new block is assigned a new spin, e.g. by
the majority rule. This coarse-graining procedure should decrease correla-
tion except at the critical point.

other side, that is when summing over SN−1 and S3, until now we only discuss S1).
Considering the three possible outcomes we get three equations:

2 cosh(2K + H) = ζ0eK′+δH

2 cosh(H) = ζ0e−K′

2 cosh(−2K + H) = ζ0eK′−δH

We rearrange each equation to

eδH = 2 cosh(2K + H)
e−K′

ζ0

ζ0 = 2 cosh(H)eK′

e−δH = 2 cosh(2K− H)
e−K′

ζ0

By taking product and quotient of the first and third equations, one can eliminate δH
and K′, respectively, and solve for the other (replacing ζ0 by the second equation). We
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also replace ζ0 by a new definition through (ζ0)1/2 = eg. We thus find:

K′ =
1
4

ln
cosh(2K + H) cosh(2K− H)

cosh2(H)

H′ = H + δH = H +
1
2

ln
cosh(2K + H)

cosh(2K− H)

g =
1
2

ln ζ0 =
1
8

ln(16 cosh(2K + H) cosh(2K− H) cosh2(H))

If we perform the same procedure with every odd spin, then we finally have

ZN = ∑
S2=±1

∑
S4=±1

... ∑
SN=±1

eNg+K′ ∑i S2iS2i+2+H′ ∑i S2i

By our definition of g, it now comes with a prefactor N and therefore has the meaning
of an absolute free energy gain per spin per transformation. The second part on the
RHS is simply the partition sum for a system in which have of the spins have been
eliminated, but with renormalized parameters. We thus have

ZN(K, H) = eNg(K,H)ZN/2(K′, H′)

Obviously this procedure can now be iterated infinitely many times, defining a RG-
flow of the model parameters, e.g. K′, K′′, etc (or K0 = K, K1 = K′, K2 = K′′, etc) for the
coupling constant. For H = 0, we see that H′ = 0, that is a cero field stays cero. The
coupling constant then flows as

K′ =
1
2

ln cosh(2K)

In Figure 6.13(a) we plot the function K′(K). Because this function is always smaller
than K (it starts ∼ K2 and asymptotically approaches K), the flow (shown by the stair
function) goes towards K = 0, which is a stable fixed point under the RG-transformation.
K = 0 corresponds to T = ∞ and therefore corresponds to an interaction-free system.
Importantly, there is another fixed point, namely at K = ∞. Because this corresponds to
T = 0, it is the critical point we already know from the exact solution. This fixed point
is repulsive as expected: in the moment we go away from T = 0, coarse-graining will
decrease correlations until they are gone. Thus the RG correctly predicts the existence
of a critical point at T = 0. In Figure 6.13(b) we also show the flow with non-cero field.
We see that the RG-flow increases H, which makes sense, because at the same time
K decreases, showing again that it goes away from the strongly interacting (critical)
system at K = ∞ to a non-interacting situation at K = 0.
The RG-procedure also gives as a neat way to calculate the free energy. We non-
dimensionalise and normalize for a single spin:

f =
−βF

N
=

1
N

ln ZN = g(K, H) +
1
N

ln ZN/2(K′, H′) =
∞

∑
i=0

(
1
2
)ig(Ki, Hi)
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(a) (b)
K‘

K K

H

Figure 6.13: (a) Iteration of the RG-transformation at H = 0 decreases K towards the
stable (attractive) K = 0 (T = ∞) fixed point without interactions. The
other fixed point at K = ∞ (T = 0) is the unstable (repulsive) critical point.
(b) For finite field, H increases under RG, again flowing away from the
critical point.

where the last expression is obtained by iteration. For H = 0, we have

g =
1
2

ln 2 +
1
4

ln cosh(2K)

where the second term can be neglected once K gets close to 0. The remainder of the
series is like a geometrical series and converges quickly. The overall result can be com-
pared with the exact value f = ln(2 cosh(K)) obtained above from the analytical solu-
tion of the Ising chain.

6.5 Renormalization of the 2D Ising model

For the 2D Ising model, many different RG-schemes have been invented. Here we
describe the most simplest one. The 2D square lattice is bipartite and we divide it into
two sublattices, each with a new lattice constant that is b =

√
2 times larger than the

old one, as shown in Figure 6.14(a). Spin S0 has four nearest neighbors S1, S2, S3 and
S4. Motivated by our procedure in 1D, where we were able to keep the same form of
the Hamiltonian, we would like to write

∑
S0=±1

ekS0(S1+S2+S3+S4) = 2 cosh(K(S1 + S2 + S3 + S4)) = e(K
′/2)(S1S2+S2S3+S3S4+S4S1)

where the factor of 2 takes into account that the same contribution will come from the
spin on the other side of these bonds. Unfortunately, this is impossible, because now
there are too many possibilities for the outcomes. The only way to proceed is to consider
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Figure 6.14: (a) The 2D square lattice can be separated into two sublattice. We integrate
out S0 which has nearest neighbors only in the other sublattice. (b) RG-flow
of the coupling constant K. This time we have a (unstable, repulsive) fixed
point at finite K. Smaller and larger K-values flow away from this fixed
point. Thus RG predicts a critical point at finite temperature, in agreement
with the exact solution by Onsager.

new types of interactions, that is to make the space of the Hamiltonian larger. We now
write

2 cosh(K(S1 + S2 + S3 + S4)) = ζ0e(K
′/2)(S1S2+S2S3+S3S4+S4S1)eK1(S1S3+S2S4)eL(S1S2S3S4)

where the K1-interaction is a next nearest neighbor interaction and the L-interaction is
a four-spin interaction. Like in the 1D case, we consider all possible outcomes. There
are four cases one has to distinguish (e.g. (+,+,+,+), (+,+,+,-), (+,+,-,-) and (+,-,+,-)),
justifying the four model parameters and leading to four equations:

2 cosh(4K) = ζ0e2K′e2K1 eL

2 cosh(2K) = ζ0e−L

2 = ζ0e−2K1 eL

2 = ζ0e−2K′e2K1 eL

(6.1)
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By combining these equations we find the flow equations:

K′ =
1
4

ln cosh(4K)

K1 =
1
8

ln cosh(4K)

L =
1
8

ln cosh(4K)− 1
2

ln cosh(2K)

ζ0 = 2(cosh(2K))1/2(cosh(4K))1/8 (6.2)

The problem is that we cannot iterate these equations because our starting point was
more simple. We therefore neglect the four-spin interaction and project the next nearest
neighbor interactions on the nearest neighbor interactions by assuming the case that all
spins are parallel:

K′∑
nn

SiSj + K1 ∑
nnn

SiSj = K̄′∑
nn

SiSj

Note that this step is not rigorous, but it reflects the fact that there will be an extra term
that will increase the value for K′, even if the projection would be more accurate. Now
we can iterate and get a full RG. Considering all spins to be parallel gives us

K̄′ = K′ + K1 =
3
8

ln cosh(4K)

As shown in Figure 6.14(b), this equation does give a non-trivial fixed point at finite
Kc = 0.50689. Thus RG predicts a phase transition for the 2D Ising model (exact value
Kc = 0.440687, see below). It also gives a good prediction for the critical exponent
ν = 1.07 (exact value ν = 1).

6.6 The Peierls argument

Starting around 1933, Peierls published scaling arguments why a phase transition should
occur in 2D as opposed to 1D. Here we report a few of these kinds of arguments to
demonstrate their spirit. Note that their validity also comes from the fact that thanks to
Onsager, we have an exact solution and thus can check back if they describe the core of
the problem or not.

Simple argument for 1D

We consider an Ising chain with all spins up and then select a few neighboring spins
and flip the whole island over. This creates two domain walls (also called grain boundaries
or defects) in the chain. The change in energy is

∆E = 2 · 2J
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because there are two defects, each with an energy penalty 2J. The change in entropy
corresponds to the number of ways to choose the positions of the two defects:

∆S = kB ln
N(N − 1)

2
≈ 2kB ln N

where we assume the number of lattice sites N � 1 in the thermodynamic limit. Thus
the change in free energy reads

∆F = 4J − 2kBT ln N < 0

for any temperature T in the thermodynamic limit. This means that it is always favor-
able to create grain boundaries due to entropic reasons and a phase transition to order
cannot occur at finite temperature.

More complex argument for 1D

We now look at an arbitrary number of domain walls, not only at one island with two
of them. We introduce the number of such domain walls M and write the free energy
in the domain wall picture:

F = 2JM− kBT ln
(

N
M

)
In the thermodynamic limit and with the Stirling formula we get

F
N

= 2Jx + kBT(x ln x + (1− x) ln(1− x))

where x = M/N is the domain wall density. If we minimize F for x we get

xeq =
1

e2J/kBT + 1

thus at finite T there is always a finite domain wall density and correlations decay over a
finite distance. Moreover the system will not feel the effect of the boundary conditions.
Only at T = 0 we have xeq = 0, because then entropy does not matter.

Simple argument for 2D

We now want to make the simple argument for 2D rather than for 1D. We immediately
encounter the problem that now there are two processes we have to account for: where
to place the domain walls, and which shape to assign to them. With some intuition, we
anticipate that shape fluctuations are now more important than where the islands are
located. Thus we consider one island of down spins in a sea of up spins. The change in
energy is

∆E = L · 2J
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where L is the contour length of the domain. A crude estimate for the number of pos-
sible shapes is 3L, assuming a random walk on a 2D cubic lattice and neglecting inter-
sections and the fact that it has to close onto itself (at each lattice site, there are three
possibilities to proceed). Thus for entropy we have

∆S = kB ln 3L .

Together we get
∆F = L(2J − kBT ln 3)

and thus ∆F < 0 only for T > Tc = 2J/(ln 3kB) even in the thermodynamic limit
L→ ∞. Thus this simple argument predicts that in 2D a phase transition can take place
at finite T, and the reason is a feature that is only present in two and higher dimensions,
namely shape fluctuations of the domain walls.

More complex argument for 2D

Another way to identify a phase transition is to investigate the effects of boundaries.
We consider a quadratic field of spins and fix all the ones at the boundary to point up.
We then consider the spin in the middle and ask if it keeps the up-preference of the
boundary in the TD-limit (p+ > 1/2 ?). One can show that for sufficiently low but
finite T, indeed this happens. This means that correlations do not decay completely
and that spontaneous magnetisation can emerge, indicating a phase transition.
We consider the quantity m = p+ − p− = 2p+ − 1, which will be finite if spontaneous
magnetization exists and vanish otherwise. We can write

m =
1
Z ∑

Σ+

e−βH − 1
Z ∑

Σ−

e−βH =
1
Z ∑

Σ+

e−βH(1− Σ)

The first and second terms are sums over all configurations with a positive and nega-
tive central spin, respectively. The basic idea of the newly defined quantity Σ is that
each configuration with a positive central spin can be turned into one with a negative
central spin by flipping all spins in the surrounding positive domain. Importantly, the
difference in energy is simply 2Jl, where l is the length of the domain wall surrounding
this domain. Therefore one can write

Σ = ∑ e−2Jβl =
∞

∑
l=4

g(l)e−2Jβl

where the sum is now over all configurations which have been obtained by flipping. In
the second step we have rewritten the sum in terms of the length of the boundary. Here
g(l) is the number of domains with length l. We note that the minimum l is 4 (one spin
flipped) and that one only will have even values (l = 4, 6, . . . ), because adding spins
one by one to the domain increases l by 2.
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In order to prove the polarization, we have to show that Σ can be smaller than 1. We do
this by establishing an upper bound for g(l):

g(l) < (
l
4
)2 · 4 · 3l−1 · 1

2l
=

l
24

3l

The first term is the maximal area corresponding to the contour length l. The second
term is the number of possible paths starting from each point within this area: 4 for the
first step and 3 for each additional step (on a 2D simple cubic lattice). The last term
corrects for the fact that a path can go in two directions and can start at any point along
the contour of a boundary. We now transfer this into an upper bound for Σ:

Σ <
∞

∑
l=4

l
24

wl =
1

24

∞

∑
n=2

(2n)w(2n) =
w4(2− w2)

12(1− w2)2

where w = 3e−2βJ . We thus obtain Σ < 1 for w < wc = 0.87. This in turn translates into
a critical temperature

Tc =
2J

kB ln(3/wc)
= 1.6J/kB

The exact result for the 2D Ising model is Tc = 2.269J/kB (see below). Thus the Peierls
argument does not only prove the transition, but even gives a reasonable first estimate
for its value. Note that here we have established only an upper bond for Σ. This does
not mean that Σ will be different from 1 above the critical temperature, we only showed
that it will certainly become smaller than this value at sufficiently low temperature. Our
argument is obviously very crude because we neglect interactions between boundary
loops, which will strongly bring down the number of possible paths.

6.7 The 2D Ising model

Several methods of solution have been reported since Onsager’s 1944 proof. The main
insight of Onsager was that the problem can be mapped onto a fermionic one. Moreover
the used the idea of the transfer matrix that we have introduced for the 1D Ising model
in a magnetic field. The main idea for 2D is that one writes

βH = −K ∑
r,c

Sr,cSr+1,c − K ∑
r,c

Sr,cSr,c+1

which means that one differs between interactions in columns c and interactions in
rows r. The first can be treated like Ising chains, and the second give non-trivial cou-
plings in the transfer matrix. Using a Jordan-Wigner transformation from Pauli spins
to fermionic creation / destruction operators gives a fermionic problem (this was to be
expected because we deal with spins Si = ±1). A second (canonical) transformation
leads to Fourier series, which in the thermodynamic limit lead to integrals (see below).
Inbetween one has to calculate the eigenvalues of a 4x4 matrix, as was to be expected
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from a transfer matrix approach. The fact that the final integrals cannot be solved is ac-
tually good, because it means that one can obtain the non-analytical behaviour required
for a phase transition to occur.
As mentioned above, other proofs have been reported that exploit the role of random
walks, most prominently the one by Vdovichenko which appears in the popular text-
book by Landau and Lifshitz. The main idea here is to start from

Z = ∑
{Si}

eK ∑〈ij〉 Si Sj = ∑
{Si}

∏
〈ij〉

eKSi Sj

so we have a large product of exponential factor. We then use

eKSiSj = cosh K + SiSj sinh K = cosh K(1 + xSiSj)

with x := tanh K. In this way, the spins in the exponential factors come down and
together form a huge polynomial. We write

Z =

(
1

1− x2

)N

∑
{Si}

∏
〈ij〉

(1 + xSiSj)

Next we realize that the single terms appearing in these large products are all possible
combinations of bonds on the lattice and that single spins Si can occur only to powers
of 0, 2 or 4: even powers drop out because we eventually sum over Si = ±1, and there
are only up to four bonds connected to one lattice site. So if a spin appears, than it can
only come with two or four bonds. This means that we deal with all closed loops (or
graphs or random walks) on the lattice. Formally one can thus write

Z =

(
2

1− x2

)N

∑
r

xrgr

where the sum if now over all closed graphs of length r and gr is the multiplicity of
this length. From here one needs to do graph theory and make sure that the counting
is right. Surprisingly, this can be done analytically and boils done to calculating the
eigenvalues of a 4x4 matrix, similar as in Onsager’s solution, where the 4 comes from
the 4 directions on the lattice.
Irrespective of the method of solution, the end result for the free energy is always the
same. Here we report it using x = tanh K introduced for the second solution:

−βF
N

= ln 2− ln(1− x2) +
1
2

∫ π

−π

dqdp
(2π)2 ln

[
(1 + x2)2 − 2x(1− x2)(cos p + cos q)

]
We note that the integral has a singularity when the argument of the logarithm becomes
0, which is xc =

√
2− 1. The corresponding critical temperature with xc = tanh Kc =

J/kBTc then is

Kc =
1
2

ln(1 +
√

2) ≈ 0.4407

⇒ Tc = 2J/ ln(1 +
√

2) ≈ 2.269J/kB
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Figure 6.15: cB as a function of temperature with a divergence at T = Tc.

We define the ‘reduced temperature’:

t :=
T − Tc

Tc

and ‘critical exponents’ for the divergences (for B = 0) around Tc:

cB =

{
(−t)−α′ T < Tc

t−α T > Tc

M =

{
(−t)β T < Tc

0 T > Tc

From the exact solution one finds:

1 cB has a logarithmic divergence (Figure 6.15).
⇒ α = α′ = 0 motivated by limα→0

1
α (x−α − 1) = − ln x

2 M =
(

1− sinh−4 2K
) 1

8
(Figure 6.16)

⇒ β = 1
8

This result was announced by Onsager in 1948 at a conference, but never pub-
lished by himself.

From the result for the magnetisation (which is the order parameter of the phase transi-
tion) one can construct the phase diagram. Figure 6.17 (left) shows the phase diagram
in the T-M-plane. Values for the magnetisation in the grey area (two-phase region) can-
not be realized in one system, because a self-polarized system jumps to the upper or
lower values of M. However, such a magnetisation can be realized by two systems, so
the system has to split into two. For example, M = 0 can be realized by two equally
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Figure 6.16: M as a function of temperature.

large systems with up and down magnetisation, respectively. Using the lever rule, each
desired value of M can be realized. Figure 6.17 (right) shows the phase diagram in the
T-B-plane. Now the two-phase region reduce to a line because any small external field
will immediately bias the system to up or down. Only for B = 0 phase coexistence can
occur.

Tc T

M

two-phase region

Tc T

B

Figure 6.17: Left: Phase diagram with excluded ‘two-phase region’ where the system
splits into two parts. Right: The two-phase region becomes a line in the
B(T) diagram.

6.8 Perturbation theory

In order to understand the mechanisms underlying this phase transition, we now con-
sider the ‘mean field theory’ for the Ising model. This theory approximates a system of
interacting particles by a system of non-interacting particles. It can be made rigorous
by the ‘Gibbs-Bogoliubov-Feynman inequality’ and as such is a ‘perturbation theory’ (simi-
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lar to the ‘Hartree-Fock approximation’ in quantum mechanics). In general, it is important
to have as many exactly solvable models in Statistical Physics as possible, even if they
might be physically not so realistic because they are built around some mathematical
trick to solve them. Nevertheless they can be very useful as starting points for pertur-
bative analyses.
We start from a model HamiltonianH0 for which an exact solution is known:

H(λ) = H0 + λH1

1 H(λ = 0) = H0 reference case

2 H(λ = 1) = H case of interest

3 H1 = H−H0

⇒ −βF(λ) = ln ∑
j

e−βEj(λ) = ln
(

tr
{

e−βH(λ)
})

where ∑j = tr is the sum over all states.

F(0) = F0

F(1) = F result of interest

⇒ dF
dλ

=
tr
{
H1e−β(H0+λH1)

}
tr
{

e−β(H0+λH1)
} = 〈H1〉 (λ)

d2F
dλ2 = −β


tr
{
H2

1e−β(H0+λH1)
}

tr
{

e−β(H0+λH1)
} −

 tr
{
H1e−β(H0+λH1)

}
tr
{

e−β(H0+λH1)
}
2

= −β
(〈
H2

1
〉
− 〈H1〉2

)
= −β

〈
(H1 − 〈H1〉)2

〉
≤ 0

⇒ F(λ) ≤ F(0) + λ
dF
dλ

∣∣∣∣
λ=0

λ=1⇒ F ≤ Fu = F0 + 〈H1〉0 Bogoliubov inequality

A visualisation of the Bogoliubov inequality is sketched in Figure 6.18. Note that the
real F is everywhere concave, not only at λ = 0, so we can use λ = 1 without problems.
In order to optimize the approximation one minimizes the upper bound with respect to
the free model parameters. The modern master of this type of perturbation theory was
Richard Feynman.
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λ 

Figure 6.18: Sketch visualising the Bogoliubov inequality: F(λ) (solid line) ≤ F(0) +
λ dF

dλ (0) (dashed line).

6.9 Mean field theory for the Ising model

We consider no external field:
H = −J ∑

〈i,j〉
SiSj

However, we note that a spontaneous magnetization looks like there was an effective
magnetic field. We therefore choose as our unperturbed reference Hamiltonian

H0 = −B ∑
i

Si

where we set µ = 1 for convenience and have introduced an effective magnetic field B.
ForH = H0 we know the free energy expression:

F0 = −NkBT ln

eβB + e−βB︸ ︷︷ ︸
=2 cosh βB


The Bogoliubov inequality then states

F ≤ F0 + 〈H −H0〉0
= −NkBT ln (2 cosh(βB))− J ∑

〈i,j〉

〈
SiSj

〉
0︸ ︷︷ ︸

N(z/2)〈S〉20

+B ∑
i
〈Si〉0︸ ︷︷ ︸

N〈S〉0

= Fu

Here z is the number of nearest neighbours and we have to correct with a factor of 2 so
that we count each bond only once (compare Figure 6.1).

〈S〉0 =
eβB − e−βB

eβB + e−βB = tanh βB
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We now fix B such that the upper bound Fu becomes minimal:

0 =
1
N

dFu

dB
= − 〈S〉0 − Jz 〈S〉0

d 〈S〉0
dB

+ 〈S〉0 + B
d 〈S〉0

dB
⇒ B = Jz 〈S〉0 = Jz tanh βB

Note that a factor of 2 has canceled here. We note that our central result is a self-
consistent relation for the effective field B. We could have obtained this result directly
from a mean field reasoning, but it is more rigorous to derive it from the Bogoliubov
inequality.
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Figure 6.19: M(x) = tanh(x) (blue) as a function of x. For Kz < 1 there is only one
intersection with g(x) = x

Kz (red) at x = 0. For Kz > 1 there is also an
intersection with g(x) = x

Kz (green) at finite x.

We define x = βB and have a look at the intersection of f (x) = tanh(x) and g(x) = x
Kz

(Figure 6.19). We note:

1 Kz < 1 ⇒ only intersection at x = 0

2 Kz > 1 ⇒ also two interactions at finite x 6= 0

⇒ Kc =
1
z
⇒ Tc =

zJ
kB

For the two-dimensional Ising model with cubic arrangement:

z = 4 ⇒ Kc =
1
4
= 0.25
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Compare exact solution: Kc = 0.4407. Obviously the mean field theory is just a crude
approach because it predicts a phase transition in any dimension d. It becomes exact
for d→ ∞.
How does magnetisation behave below Tc? Assuming a small magnetisation m = 〈S〉
just below Tc, we can perform a Taylor expansion:

m = tanh βB ≈ βB− 1
3
(βB)3

where βB = zKm. Therefore one power of m cancels and we have

m2 = 3
(zK− 1)
(zK)3 = 3

( zJ
kBT − 1)

( zJ
kBT )

3
= 3T3

( zJ
kBT − 1)

( zJ
kB
)3

As above, m vanishes at Tc = zJ/kB and we can write

m2 = 3
(

T
Tc

)3 (Tc

T
− 1
)
= 3

(
T
Tc

)2 (Tc − T
Tc

)
Taking the positive square root finally gives

m =
√

3
(

T
Tc

)(
Tc − T

Tc

)1/2

≈
√

3
(

Tc − T
Tc

)1/2

to lowest order in the expansion (note that T = Tc − (Tc − T)). We see that our approx-
imative calculation yields a critical exponent β = 1

2 (compare exact solution β = 1
8 ).

6.10 Monte Carlo computer simulations of the Ising model

Exact enumerations are not feasible for large systems. Consider that for a 50 x 50 2D
Ising system we would have already 22500 = 10753 states. Therefore it is better to use im-
portance sampling. Here only the relevant configurations are sampled. For the canonical
ensemble this means that we want to sample according to the Boltzmann distribution

pi =
1
Z

e−βEi

We now look for a procedure which effectively generates this distribution.
The standard procedure for this purpose is a Monte Carlo simulations (the name results
from the use of random numbers, which are also at the heart of gambling at Monte
Carlo). In a Monte Carlo simulation, we generate a series of configurations (Markov
chain, that is a memory-less process) such that:

1. Any configuration can be reached in principle.

2. Averaging over all configurations in the Markov chain amount to doing the aver-
age with exact enumeration.
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For the Ising model, the simplest procedure is to flip single spin at random (if in average
we have tried to flip every spin once, we call this a Monte Carlo step). We compare two
such configurations i and j with:

pi

pj
= e−β(Ei−Ej)

We define pi→j to be the transition probability for one spin to go from state i to j.

⇒ ∑
j

pi→j = 1

We now require that locally we have detailed balance (follows from time reversal invari-
ance):

pi→j

pj→i
=

pj

pi
= e−β(Ej−Ei)

⇒ pi =

(
∑

j
pi→j

)
pi = ∑

j
pj→i pj

We note that pi is an eigenvector of the transition probability matrix and thus corre-
sponds to a steady state. Thus a rule that obeys detailed balance should bring us to a
steady state distribution {pi}.
The simplest implementation of this is the Metropolis algorithm:

1 Pick a spin i by random.

2 Calculate the energy change ∆E upon flipping the spin.

3 If ∆E < 0, accept the spin flip.

4 If ∆E > 0, accept the flip with probability e−β∆E.

This is the simplest version because on the one hand it implements the condition on
the ratio of the transition probabilities resulting from detailed balance and on the other
hand, it uses the remaining freedom by simply setting the transition probability for one
direction to 1. By going downhill, the algorithm samples regions of high importance.
By hopping over barriers (compare 6.20), it allows to escape from metastable states.
There are two examples for more sophisticated MC-algorithms. First an algorithm in
which one does not decide wheather to flip or not, but places a new spin (heat-bath
algorithm):

1 Pick a spin i by random.

2 Calculate the effective magnetization mi resulting from the neighboring spins.

3 Calculate the energies of placing up or down spins in this magnetic environment:
E± = ∓Jmi ∓ B
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4 Place a new spin with the corresponding probabilties: p± = e−βE±/(e−βE+ +
e−βE−)

Monte Carlo dynamics of course is not physical dynamics and was only invented to
do importance sampling. Yet often one also uses it to explore dynamical phenomena.
Then a good choice is Glauber dynamics, which in some sense combines the first two
algorithms:

1 Pick a spin i by random.

2 Calculate the effective magnetization mi resulting from the neighboring spins.

3 Calculate the energy change ∆E = 2simi upon flipping the spin.

4 Accept the flip with probability p = e−β∆E/(1 + e−β∆E)

i

E
 

Figure 6.20: Sketch visualising the Metropolis algorithm and how it recovers from local
minima.

One can come up with more complicated MC-moves than simply flipping single spins.
In MC-simulations of the Ising model, it is very common to flip whole clusters (e.g. the
Swendsen-Wang or Wolff algorithms). In MC-simulations of polymers, it is common to
flip large parts of the polymer in a way that never would be possible in real systems due
to self-intersection, or to grow polymers in the computer such that they give the correct
importance sampling. Sometimes one also changes temperature, e.g. to solve optimiza-
tion problems like the traveling salesman by simulated annealing (lowering temperature
by optimal protocols to fall into the global minimum) or replica MC (when one runs
several simulations in parallel and at different temperatures). The latest development
in this field is the use of machine learning, e.g. Boltzmann generators, which are in-
vertible neural networks that learn transformations into latent space where sampling
is much easier (Noe, F., Olsson, S., Köhler, J., and Wu, H. (2019). Boltzmann genera-
tors: Sampling equilibrium states of many-body systems with deep learning. Science,
365(6457), eaaw1147).
With schemes like these, one can get very good results, e.g. Kc = 0.2216544 for the
critical coupling constant of the 3D Ising model (that is Tc around 4.5), which is known
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to be correct to all given digits due to a detailed analysis of its uncertainty. In par-
ticular, this allows one to conclude that the analytical suggestion Kc = tanh−1((

√
5−

2) cos(π/8)) = 0.2216586 by Rosengreen 1986 cannot be correct, despite being so close
(for a discussion on MC-simulations of the 3D Ising model, check the work by Martin
Hasenbusch, e.g. his paper in International Journal of Modern Physics C, Vol. 12, No.
7 (2001) 911–1009). For more details on Monte Carlo simulations, check the book Monte
Carlo simulation in statistical physics by Kurt Binder and Dieter Heermann (6th edition
Springer 2019).
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7 Classical fluids

7.1 Virial expansion

We now turn to classical fluids as the second example for directly interacting systems,
after lattice models like the Ising model. Our reference system here is the ideal gas. We
recollect that for the ideal gas, the Hamiltonian for N particle reads:

H =
N

∑
i=1

p2
i

2m

The canonical partition sum in this case reads:

Zid =
1

N!

 1
h3

∫
d~p e−βp2/(2m)︸ ︷︷ ︸
=1/λ3


N ∫ d~q︸ ︷︷ ︸

=V


N

=
1

N!
VN

λ3N

with the thermal wavelength λ = h

(2πmkBT)
1
2

. Based on the partition sum we can calcu-

late the free energy:

⇒ Fid = −kBT ln Zid

⇒ pid = − ∂Fid

∂V

∣∣∣∣
T,N

=
NkBT

V
= ρkBT

The ideal gas is an appropriate description for diluted gases (small density ρ). At higher
densities, direct interactions become important.
We consider a pairwise additive and isotropic interaction potential U as the simplest
case:

H =
N

∑
i=1

p2

2m
+ ∑

j<i
U

|~ri −~rj|︸ ︷︷ ︸
:=rij


Here j < i means a summation over all interaction pairs (or bonds) between different
particles; this is similar to the situation with the Ising model, but because the interaction
potential can be long-ranged, there is no restriction to nearest neighbors here. In the
potential, there is no dependence on

1. momenta (only positions)
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2. relative orientations

of the particles. An example for which the second assumption does not hold are liquid
crystals (Figure 7.1).

higher

density

isotropic orientational order

Figure 7.1: Liquid crystals: For increased density orientational, but not positional order
is established. This is the ‘isotropic-nematic transition’ of liquid crystals that
has been calculated by Lars Onsager in 1949. The full phase diagram for
hard spherocylinders also includes a smetic phase (in addition to the ori-
entational order, there is positional ordering in one dimension) and a solid
phase (here positional order is established in all three dimensions). Because
in hard systems there is no attractive energy, these effects are all driven by
entropy: by becoming globally ordered, the system generates more entropy
for the single particles (larger configurational phase space volume).

An example for an isotropic potential is the ‘Lennard-Jones potential’ introduced by John
Lennard-Jones in 1924:

U(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

The potential consists of two elements:

1 a universal attraction between neutral atoms and molecules (‘van der Waals inter-
action’) proportional to 1/r6

2 stability is provided by short-ranged ‘Born repulsion’ (∝ 1/r12).

For computer simulations one typically shifts and truncates the potential to achieve a
finite interaction range (this also allows the use of neighbor lists). These simulations
can be done based on ‘Monte Carlo’ (MC) or ‘Molecular Dynamics’ (MD) procedures; the
resulting phase diagrams will be the same. Figure 7.3 shows a phase diagram which
is typical for a simple one-component system (as for example described by the Lenard-
Jones potential; experimentally a good example would be CO2).
We now return to the analytical description:

Z =
1

N!

(
1
h3

∫
d~p e−βp2/(2m)

)N

VN︸ ︷︷ ︸
=Zid

· 1
VN

∫
dN~q e−β ∑i<j U(rij)︸ ︷︷ ︸

:=Zint
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r 

U 

 -ε 

σ 1.12σ

Figure 7.2: The Lennard-Jones potential U as a function of inter-particle distance r.

T

p 

solid

gas

liquid

Tc 

Figure 7.3: A generic phase diagram typical for a simple one-component system. Tc
indicates the temperature of the ‘critical point’ where phase boundaries cease
to exist.

⇒ F = −kBT ln Z = Fid + Fint

p = − ∂F
∂V

∣∣∣∣
T,N

= pid + pint

The interaction part does not factorise into single particle properties. Hence one needs
approximations. Because we understand the dilute case, we now introduce the ‘virial
expansion’, which is an expansion in low density around the ideal gas as a reference
system. We note that corrections to the ideal case pressure have to be of order ρ2 or
higher, because they arise if two particles or more collide.

⇒ pint = kBT
∞

∑
i=2

Bi(T)ρi = kBTB2(T)ρ2 + O(ρ3)

Here the Bi(T) are termed ‘virial coefficients’. In lowest order of the correction we thus
have

⇒ F = NkBT
[
ln
(
ρλ3)− 1 + B2ρ

]
p = ρkBT [1 + B2ρ]
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7.2 Second virial coefficient

In the following we use the grand canonical formalism to calculate B2(T) from U(r):

ZG(T, V, µ) =
∞

∑
N=0

Z(T, V, N)︸ ︷︷ ︸
:=ZN

 eβµ︸︷︷︸
fugacity z

N

In the high temperature limit z� 1 we expand this expression in z:

⇒ ZG = Z0 + Z1z + Z2z2 + O
(
z3)

Z0 = 1, Z1 =
V
λ3

Z2 =
1

2!λ6

∫
d~r1

∫
d~r2 e−βU(|~r1−~r2|) =

V4π

2λ6

∫
dr r2 e−βU(r)

Next we use the Euler relation for the grand canonical potential:

Ψ = −kBT ln ZG = −pV

⇒ pV
kBT

= ln ZG
z�1≈ ln

(
Z0 + Z1z + Z2z2 + O

(
z3))

z�1≈ Z1z + (Z2 −
Z2

1
2
)z2 + O

(
z3)

Were we used the approximation ln (1 + x) ≈ x− x2

2 for x � 1.

Obviously the virial expansion is similar to the expansion in fugacity z:

pV
kBT

= V
[
ρ + B2ρ2 + O

(
ρ3)]

To make a comparison of coefficients we need the relation between z and ρ.

ρ =
〈N〉
V

, z = eβµ ⇒ µ =
ln z
β

⇒ ∂µ = βz∂z

〈N〉 = 1
β

∂µ ln ZG = z∂z ln ZG

≈ Z1z +
(
2Z2 − Z2

1
)

z2 + O
(
z3)

We note that the first order

z ≈ 〈N〉
Z1

= ρλ3
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in our approximation reproduces our well known ideal gas result (p = ρkBT).

We need the next higher order to calculate B2:

〈N〉
Z1︸︷︷︸
:=c

= z +
(

2Z2 − Z2
1

Z1

)
︸ ︷︷ ︸

:=a

z2

⇒ z =
−1 +

√
1 + 4ac

2a
≈
−1 + 1 + 1

2 (4ac)− 1
8 (4ac)2

2a
= c(1− ac)

=
〈N〉
Z1

[
1− 〈N〉

Z1

2Z2 − Z2
1

Z1

]
Here we used

√
1 + x ≈ 1 + 1

2 x− 1
8 x2 for x � 1 in the first step.

⇒ pV
kBT

= V
[
ρ + B2ρ2 + O

(
ρ3)] = 〈N〉 [1 + B2ρ + O

(
ρ2)]

= ln ZG = Z1z +
(

Z2 −
Z2

1
2

)
z2 + O

(
z3)

= Z1
〈N〉
Z1

[
1− 〈N〉

Z1

(
2Z2 − Z2

1
Z1

)]
+

(
Z2 −

Z2
1

2

)
〈N〉2

Z2
1

+ O
(
ρ3)

= 〈N〉
[

1 +
〈N〉
Z2

1

(
−2Z2 − Z2

1 + Z2 −
1
2

Z2
1

)]
+ O

(
ρ2)

= 〈N〉
[

1−
(

Z2 −
Z2

1
2

)
〈N〉
Z2

1

]
We now find our final result for B2(T), which relates the microscopic potential to its
macroscopic effect (change in pressure compared to ideal gas):

⇒ B2(T) = −V
(

Z2

Z2
1
− 1

2

)
= −1

2

∫
d~r
(

e−βU(r) − 1
)

⇒ B2(T) = −2π
∫

r2 dr
(

e−βU(r) − 1
)

Note that the integrand (which is known as the Mayer f-function) has very good prop-
erties for a perturbation analysis: it is close to −1 in repulsive hard core part and then
decays to 0 with the attractive interation. This observation is the starting point for
Ursell’s cluster expansion leading to the higher virial coefficients (in a graphical man-
ner, similar to an expansion in Feynman diagrams). However, for our purpose it is
sufficient to discuss the second virial coefficient, because it already leads to a phase
transition.
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Examples

1 hard spheres
Spheres of radius d/2 which cannot penetrate each other. This yields an excluded
region of radius d (Figure 7.4).

⇒ B2(T) = −2π
∫ d

0
r2(−1) dr =

2π

3
d3 =

1
2

Vexcl = 4Vsphere > 0

Due to B2 being positive, a finite, excluded volume increases the pressure. B2 does
not depend on temperature, because there is no finite interaction energy.

r 

U 

d

Figure 7.4: Potential for the hard spheres with excluded region r < d.

2 attractive square well
We consider a potential well of depth ε between d and d + δ (Figure 7.5).

r

U 

d

 -ε 
δ 

Figure 7.5: Square well potential with range δ and depth ε.

⇒ B2(T) = −2π
∫ d+δ

d
r2 dr

(
eβε − 1

) δ�d, βε�1
≈ −2πd2δβε < 0 for ε� kBT
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B2(T) vanishes at high temperature. The attraction of the particles decreases the
pressure. This effect increases with increasing interaction energy ε and range δ.

3 Hard core repulsion and attraction
As a course approximation to particle interactions with repulsive core and attrac-
tive well, we combine a hard hard sphere with an attractive well (Figure 7.6):

⇒ B2(T) =
2π

3
d3 − 2πd2δβε = b− a

kBT

with constants a, b > 0.

r 

U 

d

 -ε 

δ 

Figure 7.6: Combination of the potentials for the hard spheres and the square well. The
resulting form is similar to the Lennard-Jones potential.

T 

B2 

 

b

B2(T) vanishes at 

`Boyle temperature´

Figure 7.7: B2 as a function of temperature. It vanishes at the ‘Boyle temperature’.

4 Lennard-Jones potential
This case cannot be solved analytically, but one can come up with a helpful ap-
proximation. We first non-dimensionalize the equation for B2(T) by measuring r
in units of σ and T in units of ε/kB. Next we note that one can rewrite the integral
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by partial integration, because it is a product of the Mayer f-function f (r) and a
derivative g′(r) = r2 (that is g(r) = r3/3):

B2(T) = −2πσ3
∫

dr (r2)

(
e−

4
T

[
1

r12−
1
r6

]
− 1
)
= −2πσ3

∫
dr g′(r) f (r)

We note that f g = 0 at the two boundaries and therefore

B2(T) = 2πσ3
∫

drg(r) f ′(r) =
8πσ3

3T

∫
dr r2

[
12
r12 −

6
r6

]
e−

4
T

[
1

r12−
1
r6

]

Until here the treatment is exact. In order to proceed, we now expand e4/(Tr6) for
small arguments and use the definitions of the Gamma-functions, which we then
evaluate numerically. The result is a power series

B2(T) =
2π

3
σ3
[

1.73
T1/4 −

2.56
T3/4 + . . .

]
The resulting functional form is similar to the one for hard spheres with attraction:
a divergence to negative values at T = 0 and a cero crossing to positive values
at finite t. However, at very large T, B2(T) for the Lennard-Jones potential goes
back to cero, because this potential is not infinitely hard. Such a decrease indeed
can be observed experimentally for atomic and molecular systems at very high
temperature.

We conclude that cases 3 and 4 above gave very similar results. For simplicity, we con-
tinue our discussion with case 3, which is sufficient to demonstrate that the combination
of repulsion at short distances and attraction at larger distances leads to a phase transi-
tion. To see this, we again study pressure and use the simple result for the combination
of hard spheres repulsion with the attractive square well:

pV = NkBT
(

1 + B2(T)
N
V

)
= NkBT

(
1 + b

N
V

)
− N2

V
a ≈ NkBT

1− b N
V
− N2

V
a

Introducing the specific volume v = V
N = 1

ρ this yields

p =
kBT

v− b
− a

v2 van der Waals equation of state

The excluded volume (b) reduces the accessible volume for the particles while an at-
tractive interaction (a/v2) reduces pressure. For T < Tc = 8a/(27bkB), p(v) will have a
minimum and maximum (see Figure 7.8).
In the region between the minimum and maximum we have dp

dv > 0. This implies that a
local fluctuation to higher density (smaller v) causes a decrease in pressure, which leads
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v 

p 

vmaxvmin

Figure 7.8: Pressure isotherm for a van der Waals gas below the critical temperature. In
the region between vmin and vmax the system is unstable.

to a further increase in density (decrease in internal pressure is equivalent to increase
in external pressure, so the fluid is compressed more). Likewise a fluctuation to lower
density (larger v) leads to an increase in pressure, which leads to a further decrease
in density (larger internal pressure is equivalent to decrease in external pressure, so
the fluid expands). Thus we see that in this region, the fluid is instable to density
fluctuations. The system can avoid this instability by jumping over it with a phase
transition between a liquid and a gas. In the region of the phase transition, two different
phases coexist. This can be understood even better by considering the free energy of
the system, which becomes concave in the instable region. This means that a linear
superposition of the two states obtained by a common tangent construction will have
lower free energy than the system predicted by the instable free energy. We now discuss
how one can calculate the region of the phase transition.

7.3 Maxwell construction

The details of the phase transition follow from the ‘Maxwell construction’. We consider
the Gibbs free energy as we control temperature T and pressure p:

G = E− TS︸ ︷︷ ︸
:=F

+pV = µN

⇒ µ =
F
N︸︷︷︸

:= f

+p v︸︷︷︸
=V/N

For two coexisting phases L and G in equilibrium the intensive parameters T, p and µ
have to be the same:

µL(T, p) = µG(T, p)

⇒ fG − fL = pt (vL − vG)

Here pt is the transition pressure.
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vGvL

instable

superheated liquid

undercooled gas

Figure 7.9: Van der Waals isotherm with Maxwell construction based on the equality of
areas 1 and 2.

The left hand side can be calculated by integration along the isotherm:

fG − fL =
∫ vG

vL

dv
∂ f (T, v)

∂v

∣∣∣∣
T
= −

∫ vG

vL

dv p(T, v)

⇒ pT(vL − vG) =
∫ vL

vG

dv p(T, V)

Geometrically this means that in Figure 7.9 the dotted area has to equal the one below
the solid line. Hence pt can be determined based on the equality of areas 1 and 2.

We therefore have arrived at the following picture:
If several phases can exist at constant (T,p), the one with the lowest chemical poten-
tial µ is stable (lowest G/N). At the transition point, the chemical potentials are equal.
However, their slopes can have jumps (compare Figure 7.10).

In order to bring the fluid from liquid to gas, we need the ‘heat of evaporation’ or ‘latent
heat’ Q:

Q =
∫ Tt+

Tt−
T dS =

∫ Tt+

Tt−
dH = HG − HL

where we used dH = TdS + Vdp and p = pt = const.

⇒ h =
H
N

=
E + pV

N
vdW eq
= e(T)︸︷︷︸

kinetic energy contr.

− a
v
+ pv

q =
Q
N

= hG − hL =
a

vL
− a

vG
+ p (vG − vL) ≈

a
vL

+ pvG (vG � vL)

a
vL

is the energy required to overcome attraction while pvG is the energy required for
expansion.

G = µN, dG = −SdT + Vdp + µdN
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Figure 7.10: Left: The chemical potential µ as a function of pressure for phases G and L.
At the transition point µG = µL, but the slopes have jumps.
Right: The specific volume v = ∂µ

∂p

∣∣∣
T

as a function of pressure has a jump
at the transition pressure pt.
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μ(T,p) 

Tt
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Tt

T

L

G

Q/Tt

Figure 7.11: Left: The chemical potential µ as a function of temperature for phases G
and L. At the transition point µG = µL, but the slopes have jumps.
Right: The entropy as a function of temperature jumps at the transition
point.

⇒ ∂µ

∂T

∣∣∣∣
p,N

=
1
N

∂G
∂T

∣∣∣∣
p,N

= − 1
N

S

We conclude that both v = ∂µ
∂p

∣∣∣
T

and s = − ∂µ
∂T

∣∣∣
p

jump at the transition (compare Fig-

ures 7.10 and 7.11 respectively). Therefore this phase transition is called to be of ‘first
order’ or ‘discontinuous’. Both jumps disappear at the critical point, where the isotherm
becomes horizontal at the transition. From

∂p
∂v

∣∣∣∣
T
=

∂2 p
∂v2

∣∣∣∣
T
= 0
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one calculates the critical values:

vc = 3b, Tc =
8a

27bkB
, pc =

a
27b2

for water: pc = 217 atm, Tc = 647 K

⇒ pcvc

kBTc
=

3
8
= 0.375 independent of a and b

Experimental values are similar, but slightly smaller (around 0.3).

If p, v and T are expressed in terms of their critical values:

p̃ =
p
pc

, ṽ =
v
vc

, T̃ =
T
Tc

the van der Waals equation becomes(
p̃ +

3
ṽ2

)
(3ṽ− 1) = 8T̃

log(v) (v in units of v
c
)

p 
in
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Figure 7.12: Van der Waals isotherms for different temperatures. The ‘spinodal’ is the
boundary between metastable and unstable states. The ‘binodal’ separates
metastable and absolutely stable states. The latter curve was calculated
numerically based on Maxwell’s construction for different temperatures.

Figure 7.12 shows van der Waals isotherms for different temperatures with respect to
Tc.
This reduced equation leads to the ‘law of corresponding states’: Two fluids with the same
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(
p̃, ṽ, T̃

)
are in equivalent states. Indeed experimental curves show surprisingly good

data collapse. Even more surprisingly, their behaviour becomes almost identical at the
critical point - large fluctuations render microscopic details irrelevant.

7.4 Fluid-solid phase transition

The ‘van der Waals’ equation of states predicts the fluid-fluid phase transition caused
by attractive interactions. The fluid-solid phase transition can be predicted by a simple
entropic argument. Recall the van der Waals theory for a hard sphere fluid:

F = NkBT
{

ln
(

Nλ3

V − Nb

)
− 1
}

⇒ p = − ∂F
∂V

∣∣∣∣
T,N

=
NkBT

V − Nb

b = 4Vs ⇒ V − Nb = V(1− ρb) = αV

with α = 1− ρ/ρ0 and ρ0 = 1/b. αV is the free volume in the fluid.
Based on Figure 7.13 and L = V1/3 we define the free volume of a solid as:

αV ≈
(

V
1
3 − d

)3
=

[
1−

(
ρ

ρ0

) 1
3
]3

V

The free volume vanishes at close packing.

L

d

Figure 7.13: Unit cell with hard spheres of diameter d. The grey shaded region indicates
the free volume.

⇒ F1 − F2 = NkBT ln
α2

α1

Hence the phase with larger α is favored. For that reason the fluid F and the solid S
are stable at low and high densities, respectively. Figure 7.14 shows how the Maxwell
construction looks like in this case.
We now can understand the complete phase diagram of a simple one-component fluid:
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Figure 7.14: Free energy for liquid (F) and solid phase(S) as a function of density ρ. The
tangent represents the Maxwell construction.
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Figure 7.15: Combining the two transitions in (a), one gets the complete phase diagram
in (b). In (c) we swap T and ρ axes. By replacing ρ by p, we get the final
phase diagram in (d). Two-phase coexistence regions become lines in this
representation.
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7.5 Structure and correlation

In contrast to thermodynamics, statistical physics not only predict phase behaviour,
but also the way the fluid is structured on a molecular level. The central quantity in
both theory and experiments is the pair correlation function (also known as the two-point
correlation function or the pair distribution function, and for isotropic systems as the radial
distribution function). Below we explain that this function is essentially the Fourier trans-
form of the structure factor which is measured in the detector of scattering experiments.
Possible probes are neutrons, electrons or photons. Neutrons are a great choice because
the scattering contrast with the nucleus makes the interaction very localized and thus
uncertaintly about position is very small. However, for neutrons one needs large fa-
cilities, either reactors (like the FRM II at TU Munich or the Institut Laue-Langevin at
Grenoble, France) or spallation sources (like the European Spallation Source at Lund,
Sweden). Electrons, visible light or normal X-ray are much easier to handle and are
available locally in many labs. For synchotron radiation one again has to use large fa-
cilities (like the Free Electron Laser at Hamburg or the European Synchrotron Radiation
Facility at Grenoble, France). 1

We start with the statistical physics side and first define the distribution function for
absolute position:

p(~r1, ..., ~rN) =
e−β ∑i<j U(rij)∫

d~r1 ...d~rN e−β ∑i<j U(rij)

By defining W := ∑i<j U(rij), the probability that any particle is at position~r can be
written as:

n1(~x) =
N

∑
k=1
〈δ (~x− ~rk)〉

=

∫
d~r1...d~rN

(
∑N

k=1 δ (~x− ~rk)
)

e−βW∫
d~r1...d~rN e−βW

= N
∫

d~r2...d~rN e−βW(~x,~r2,...,~rN)∫
d~r1...d~rN e−βW

n1 (~x)
ideal gas
=︸ ︷︷ ︸

W=0

N
V

= ρ

The probability that some particle is at ~x1 and another at ~x2 is:

n2 (~x1, ~x2) = ∑
i 6=j

〈
δ (~x1 −~ri) δ

(
~x2 −~rj

)〉
= N(N − 1)

∫
d~r3...d~rN e−βW(~x1,~x2,...,~rN)∫

d~r1...d~rN e−βW

1For more information on scattering, consult the recent proceedings of the 50th IFF spring school at
Research Center Jülich (https://publications.rwth-aachen.de/record/756021).
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n2 (~x1, ~x2)
ideal gas
=︸ ︷︷ ︸

W=0

N(N − 1)
V2

N→∞→ ρ2

For the pairwise additive potential everything follows from n1 and n2. Eg the averaged
interaction energy:

〈W〉 = ∑
i<j

〈
U(rij)

〉
=

1
2 ∑

i 6=j

∫
d~x1 d~x2

〈
U (~x1 − ~x2) δ (~x1 −~ri) δ

(
~x2 −~rj

)〉
=

1
2

∫
d~x1 d~x2 U (~x1 − ~x2) n2 (~x1, ~x2)

In a homogeneous system:

n2 (~x1, ~x2) = n2 (|~x1 − ~x2|)

We define the ‘radial distribution function’ g by:

n2 (|~x1 − ~x2|) = ρ2g (|~x1 − ~x2|)

⇒ 〈W〉 = N2

2V

∫
d~r U(r)g(r)

ρg(r)4πr2 dr is the average number of particles in a spherical shell of width dr at a
distance r from any particle.
For the ideal gas, g(r) = 1 as shown above. For a real gas, volume exclusion means
that g(r) = 0 for small r, because no other particle can be at the same position. Above
the atomic or molecular radius, g(r) has to jump to values higher than 1 because of the
attractive interaction. However, it then has to decay again because at large distances,
fluctuations smear out the correlations and we should get the ideal gas result g(1) = 1.
Interestingly, this decay occurs with damped oscillations, indicating a shell structure:
each particle is surrounded by a certain number of nearest neigbors, and this effect
repeates over and over again. Unfortunately, it is not easy to calculate pair correlation
functions directly from the interaction potential. Analytically, this is similar to a virial
expansion, but involves hierarchies with integrals that cannot easily be closed (e.g. the
BBGKY-hierarchy or the hypernetted chain). Therefore it is usually easier to simulate
this function with molecular dynamics or Monte Carlo approaches.
We finally discuss how the correlation function is measured in scattering experiments.
Scattering is the deviation of radiation from its straight path and thus you want to
measure how many particles are scattered away from the incoming axis. For isotropic
systems like fluids only the scattering angle matters, so in principle one only has to
move the detector on a cirular path around the sample. The angle between the incom-
ing wave~k and the outgoing wave ~k′ is called 2θ. Usually one has the case of elastic
scattering (no energy transfer, wavelength λ constant), thus |~k′| = |~k|. Then the two
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wave vector make an equilateral triangle with the momentum transfer q = ~k′ −~k and
one has

sin θ =
Qλ

4π

Therefore the scattering angle 2θ and the modulus Q of the momentum transfer vector
~Q are equivalent. We consider a solid angle Ω with opening dΩ and count the number
of particles n which are scattered into this direction. This is quantified by the differential
crosssection:

dσ

dΩ
=

n
jdΩ

= b2

Here j is the incoming flux (number of particles per cross-sectional area) and the result
has to be the square of a length for dimensional reasons. This defines the scattering
length b which describes the power of the scatting. For a detailed more description of
this interaction, one actually had to use Fermi’s golden rule to calculate the scattering
matrix and consider the form factor f (~q) which describes the interaction of the probe
with the scattering ostacle, but one can show that this gives a multiplicative factor that
we can ignore here.

fluidincoming wave outgoing wave

Figure 7.16: Schematic sketch of a scattering experiment. If~k denotes the wave vector
of the incoming wave and ~k′ for the outgoing wave, the wave-fluid inter-
action results in a momentum transfer ~Q = ~k′ −~k with |~k′| = |~k| (for elastic
scattering, without energy transfer).

How can be now make contact to statistical physics ? The key idea is that the detec-
tor only measures the number of particles, or in other words only intensity, which is
the squared modulus of the wavefunction. We assume that each scattering particle in
the fluid gives rise to an outgoing spherical wave and that we sum them all up at the
detector. Then we can write

dσ

dΩ
= b2NS(~Q)

where we have introduced the structure factor S(~Q

S(~Q) =
1
N

〈
|∑

i
ei~Q~ri |2

〉
=

1
N

〈
∑

i
e−i~Q~ri ∑

j
ei~Q~rj

〉
=

1
N

〈
∑
i,j

ei~q(~rj−~ri)

〉

Although it seems like a disadvantage that we can only measure intensity and therefore
have to take the square modulus, the advantage now is that it brings in the pairs of
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particles and thus their correlation. We note that this result is translationally invariant
and only depends on all relative distances. We also note that the sum still contains
identical particles, which leads to a singularity that we have to remove. We therefore
define the pair correlation function now as

g(~r) =
n2(~r)

ρ2 − δ(~r)
ρ

and then get as final result:

S
(
~Q
)
= 1 + ρ

∫
d~r ei~Q·~r (g(r)− 1)

The first 1 comes from the Fourier transform of the delta function and the second 1
(under the integral) removes another divergence, namely the one resulting from ~Q = 0,
that is the scatting in the forward direction, that is of no concern here (actually the
detector never looks into this direction, because the beam would destroy it).

Figure 7.17: Typical shapes for interaction potential, pair correlation function and struc-
ture factor for a classical fluid. Taken from Reiner Zorn, IFF Spring School.
Experimental results, e.g. for argon, give exactly these types of shape for
the structure factor.

Overall, this is the promised result: the structure factor essentially is the Fourier trans-
form of the pair correlation function. Because the situation is isotropic for fluids, we
can do the angular integration and get:

S
(
~Q
)
= 1 + ρ

4π

Q

∫
rdr eiQr (g(r)− 1)
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With this formula we can now convert any predicted pair correlation function into a
statement on the structure factor (and vice versa).
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8 Thermodynamics

8.1 Axiomatic structure

Thermodynamics is closely related to statistical physics. In fact it emerges from it in
the limit of large system size, when fluctuations become irrelevant and only the mean
values are relevant. Historically, thermodynamics developed in the 19th century as a
theory for heat transfer and thus preceeded statistical physics, which emerged at the
end of the 19th century from kinetic gas theory. In this script, however, we focus on
statistical physics and therefore discuss thermodynamics only in the end.
In contrast to statistical physics, thermodynamics is a phenomenological theory and
does not have a microscopic basis. One can consider this either as strength or weakness,
depending on the viewpoint. Traditionally, it is explained starting from the four laws
of thermodynamics. Here we choose the axiomatic viewpoint following the presenta-
tion by Callen. The following four axioms together completely determine the formal
structure of classical thermodynamics:

1 Simple isolated systems in equilibrium are characterised by the state variables
(E, V, N). These three variables are singled out by basic symmetries: time-invariance
of physical law leads to energy conservation, the existence of Goldstein modes
(linear dispersion) leads to homogeneous excitations of the whole volume, and
particle number is usually conserved in classical systems.

2 For each equilibrium state an entropy function S(E, V, N) exists. After removal of
an internal constraint, the system obtains the state of maximal entropy. In thermo-
dynamics, this is the main postulate, while in statistical physics, it follows from
the fundamental postulate of a homogeneous distribution in equilibrium.

3 Entropy is additive over subsystems and increases monotonously with E. This
implies that temperature T is always positive.

4 Entropy vanishes at ∂E/∂S = 0 (Nernst postulate for T = 0).

Thus a thermodynamic system is located on the ‘entropy manifold’ in a four dimensional
state space (E, V, N, S). This is similar to a classical system being located on a ‘energy
manifold’ in 6N dimensional phase space (~p,~q). Quasi-static processes only involve
equilibrium states. They can proceed only up or sidewards on the entropy manifold.
We first note that many of these elements we already encountered in the statistical
physics part, in particular the maximum entropy principle. There is one interesting
difference here, namely that entropy can only increase with energy, which means that
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temperature can only be positive. As we have seen in the statistical physics part, for
systems with an upper limit of energy, we also can get negative temperature; this how-
ever is excluded in thermodynamics.

 E
X

S

A

B

Figure 8.1: Entropy manifold with a quasi-static process from A to B. X stands for vol-
ume V or particle number N. Quasi-static processes only involve equilib-
rium states. Moving ’up’ on the manifold indicates ‘irreversible’ processes
while ‘reversible’ processes can be regarded as moving sidewards.

The total differential of the entropy function is:

dS =
∂S
∂E

∣∣∣∣
V,N

dE +
∂S
∂V

∣∣∣∣
E,N

dV +
∂S
∂N

∣∣∣∣
V,E

dN

=
1
T

dE +
p
T

dV − µ

T
dN

Because S is an increasing function of E, one can always solve for E = E(S, V, N):

dE = T dS︸︷︷︸
heat

− p dV︸ ︷︷ ︸
mechanical work

+ µ dN︸ ︷︷ ︸
chemical energy

The three terms represent different ways to transfer energy.
Both S(E, V, N) and E(S, V, N) are fundamental equations which contain the complete
thermodynamical information. Their partial derivatives can be interpreted as ‘thermo-
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dynamical forces’ in analogy to the mechanical forces F = −∇V:

T =
∂E(S, V, N)

∂S

∣∣∣∣
V,N

temperature as driving force for entropy (heat) exchange

p = − ∂E(S, V, N)

∂V

∣∣∣∣
S,N

pressure as driving force for volume exchange

µ =
∂E(S, V, N)

∂N

∣∣∣∣
S,V

chemical potential as driving force for particle exchange

Each of these three equations of state contains only incomplete thermodynamical infor-
mation. Knowledge of all three means that we know the tangential plane at every point
and so can reconstruct the fundamental equation E = E(S, V, N).

8.2 Variational principles

We next consider a composite system with two subsystems. The thermodynamical state
space is now spanned by

(E1, V1, N1, E2, V2, N2, S).

In Figure 8.2 we schematically sketch the subsystem represented by S, E = E1 + E2 and
one extensive variable of one of the two subsystems, eg X = V1.

 EX

S

equilibrium state A
plane E = E0

Figure 8.2: The equilibrium state A as a point of maximum S for constant E = E0.
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Due to the maximal entropy principle, the equilibrium state is in fact at A.

⇒ The equilibrium value of any unconstrained internal parameter Xj is such as

to maximize the entropy S for a given value of the total energy E.

Note that the final state might be reached by a non-equilibrium process, but to identify
the equilibrium state, one minimizes over the manifold of possible equilibrium states.
We next note that the equilibrium state A can also be identified from a minimal energy
principle:

⇒ The equilibrium value of any unconstrained internal parameter Xj is such as

to minimize the energy E for a given value of the entropy S.

This is sketched in Figure 8.3.

 EX

S

equilibrium state A

plane S = S0

Figure 8.3: The equilibrium state A as a point of minimum E for constant S = S0.

Proof:

If the energy was not minimal, we could withdraw some energy as work −pdV and
return it as heat TdS. Then the system would be restored to its initial energy but with
increased entropy. This is a contradiction to the maximal entropy principle.
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Example:

We consider the heat flow between two systems of fixed volumes and particle numbers.

1 maximal entropy principle:

dS =
1
T1

dE1 +
1
T2

dE2 =

(
1
T1
− 1

T2

)
dE1

!
= 0 ⇒ T1 = T2

Before the equilibrium is reached: dS > 0 ⇒ maximum of S.

2 minimal energy principle:

dE = T1 dS1 + T2 dS2 = (T1 − T2) dS1
!
= 0 ⇒ T1 = T2

Before the equilibrium is reached: dE < 0 ⇒ minimum of E.

We again consider the two subsystems with an internal constraint Xj. We now connect
them to a heat reservoir with temperature Tr.
The minimal energy principle implies:

d (E + Er) = d (E1 + E2 + Er) = 0

Terms related to heat exchange with the reservoir:

T1dS1 + T2dS2 + TrdSr = (T1 − Tr) dS1 + (T2 − Tr) dS2 = 0

⇒ T1 = T2 = Tr = T equilibrium condition independent of internal constraint

0 = d (Er + E) = T dSr + dE = −TdS + dE
= d(E− TS) = dF

Hence the free energy F has an extremum at equilibrium. Since T is a constant and
since Sr does not have a second derivative,

d2 (Er + E) > 0

implies d2F > 0 and thus F is minimal. The equilibrium value of any unconstrained
internal parameter Xj in contact with a heat reservoir minimizes the free energy F over
all states with T = Tr.

8.3 Euler and Gibbs-Duhem relations

Energy is extensive and therefore has to be a homogeneous function of order one:

E(λS, λV, λN) = λ E(S, V, N)
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⇒ ∂E
∂(λS)

∂(λS)
∂λ

+
∂E

∂(λV)

∂(λV)

∂λ
+

∂E
∂(λN)

∂(λN)

∂λ
= E(S, V, N)

λ=1⇒ E = TS− pV + µN Euler relation

⇒ dE = TdS + SdT − pdV −Vdp + µdN + Ndµ

⇒ SdT −Vdp + Ndµ = 0

⇒ dµ = −sdT + vdp Gibbs-Duhem relation

The three intensive variables (T, p, µ) are not independent. There are only two ther-
modynamic degrees of freedom. If one knows the equations of state s = s(T, p) and
v = v(T, p), one can integrate the Gibbs-Duhem relation to get µ = µ(T, p).
If one knows the fundamental equation, the Gibbs-Duhem relation can be directly cal-
culated in the integrated form:

E = E(S, V, N)

⇒ pi =
∂E
∂Xi

= pi(S, V, N) = pi(
S
N

,
V
N

, 1) = pi(s, v)

Elimination of (s, v) from these three equations of state gives the Gibbs-Duhem relation
between (T, p, µ).
The same arguments can be made in the entropy representation. The Euler-relation
becomes

S =
1
T

E +
p
T

V − µ

T
N

and the Gibbs-Duhem relation then reads:

0 = d(
1
T
)E + d(

p
T
)V − d(

µ

T
)N

Example: fundamental equation for ideal gas

We now use these results to discuss the ideal gas. In thermodynamics one starts with
the phenomenological observations, so we take the two well-documented gas laws

pV = nRT = NkBT, E =
3
2

nRT =
3
2

NkBT

Because E appears here, we choose the entropy representation and rewrite these equa-
tions as

p
T

=
kB

v
,

1
T

=
3kB

2e
We next integrate the Gibbs-Duhem relation

d(
µ

T
) = ed(

1
T
) + vd(

p
T
) = e(

−3kB

2e2 )de + v(
−kB

v2 )dv = −3kBde
2e
− kBdv

v

to give
µ

T
= (

µ

T
)0 −

3kB

2
ln

e
e0
− kB ln

v
v0
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Inserting this result into the Euler relation gives

S = S0 + kBN ln
[
(

E
E0

)3/2(
V
V0

)(
N0

N
)5/2

]
with

S0 =
5kBN

2
− (

µ

T
)0N

Note that we get the same result as from the microcanonical or canoncial ensemble,
except that we have a constant of integration that we cannot determine in thermody-
namics. Here we see the essential difference to statistical physics: we cannot give a
microscopic expression, but nevertheless we can get full thermodynamic information
from a few experimental observations because the formal structure gives very strong
constraints on the fundamental equation. We also note that in this specific and very
fortunate case, we are able to integrate term-by-term, which usually is not the case. We
finally note that we could have obtained the same result much easier by simply inte-
grating the differential ds = (1/T)de + (p/T)dv, but here we wanted to demonstrate
the use of the Gibbs-Duhem equation.
Similar procedures can be used to obtain the fundamental equations for e.g. the van
der Waals gas, the photon gas, the rubber band, etc.

8.4 Thermodynamic potentials and Legendre
transformations

We reconsider the situation that the temperature T is fixed by a reservoir. Now the
relevant quantity is free energy F.

S(E) = S1(E1) + S2(E− E1)

= S1(E1) + S2(E)− ∂S2

∂E2

∣∣∣∣
E

E1

= const+
(

S1(E1)−
1
T1

E1

)
As S is maximal at equilibrium, free energy F = E1 − TS1(E1) is minimal.
Equilibrium is a compromise between order (E) and disorder (S). The larger T, the more
disorder takes over. Free energy F is the relevant ‘thermodynamic potential’ for the choice
(T, V, N) as state variables.

In general one expects 23 = 8 thermodynamic potentials, one for each choice of state
variables:
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state variables thermodynamic potential

S, V, N E internal energy

T, V, N F = E− TS Helmholtz free energy

T, p, N G = F + pV Gibbs free energy

S, p, N H = E + pV enthalpy

T, V, µ Ψ = F− µN grand canonical potential

S, V, µ A1

S, p, µ A2

T, p, µ A3

E, F, G, H and Ψ are physically relevant. Each is minimal for the given variables (deriva-
tion as before). Obviously this range of potentials gives raise to many Maxwell re-
lations. Note that S is not a thermodynamic potential. Although it also comes with
a fundamental equation, it does not obey a minimization principle (rather it obeys a
maximization principle).
Different thermodynamic potentials are related to each other by Legendre transforma-
tions. We now discuss this concept for the one-dimensional case. Consider a monotonous
function y = f (x) with a unique inverse x = f−1(y). We want to rewrite y(x) as a func-
tion of its derivative p = f ′(x) = g(x).

x

y

∆y

∆x
= p

x0

Figure 8.4: y as a function of x with tangent at x = x0

⇒ x = g−1(p) = x(p)

⇒ y(p) = y(x(p)) = f (g−1(p)) = ( f ◦ g−1)(p)
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However this procedure is not unique:
Curves shifted in x-direction have the same result y(p).

x

y

Figure 8.5: Several curves yi(x) shifted along the x-axis are shown with illustrative tan-
gents.

The underlying reason is that we work with an ODE of first order:

y(x) =
(

f ◦ g−1
)
(y′(x)),

which leaves a constant of integration undetermined.

To solve this problem, we describe the curve y(x) as enveloped by the family of its
tangents.

x

y

Figure 8.6: y(x) can be described as enveloped by the family of its tangents.

Each tangent is characterised by the slope p = f ′(x) and the intercept:

p(x) =
y(x)−Ψ(x)

x
⇒ Ψ(x) = y(x)− p(x) x
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The resulting Legendre transform

Ψ(p) = y(x(p))− p x(p)

is a unique function of y(x).

Back transform:

dy = p dx ⇒ dΨ = dy− p dx− x dp = −x dp

⇒ dΨ
dp

= −x ⇒ y(x) = Ψ(p(x)) + p(x) x

We note that applying the Legendre transformation twice brings us back to the original
function.

Example:

y = (x− x0)
2 ⇒ p = 2(x− x0) ⇒ x =

p
2
+ x0

⇒ y = (
p
2
)2does not depend on x0

⇒ Ψ = y− px =
( p

2

)2
− p

( p
2
+ x0

)
= − p2

4
− px0depends on x0

⇒ −x =
dΨ
dp

= − p
2
− x0 ⇒ p = 2(x− x0)

⇒ y = Ψ + px =
−(2(x− x0))2

4
− 2(x− x0) x0 + 2(x− x0) x

= −(x− x0)
2 + 2(x− x0)

2 = (x− x0)
2

The Legendre transform of y(x) in regard to p = y′(x) is denoted by y [p].

We now see that the free energy F is actually the Legendre transform E [T] of energy E
from entropy S to temperature T (alternatively it can be derived from βF = S [β]).

E = E (S, V, N)

T(S, V, N) =
∂E
∂S

⇒ S = S(T, V, N)

F(T, V, N) = E [T] = E(S(T, V, N), V, N)− T S(T, V, N)
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⇒ ∂F
∂T

=
∂E
∂S︸︷︷︸
T

∂S
∂T
− S− T

∂S
∂T

= −S

∂F
∂V

=
∂E
∂S︸︷︷︸
T

∂S
∂V

+
∂E
∂V
− T

∂S
∂V

=
∂E
∂V

= −p

∂F
∂N

=
∂E
∂S︸︷︷︸
T

∂S
∂N

+
∂E
∂N
− T

∂S
∂N

=
∂E
∂N

= µ

⇒ dF = −S dT − p dV + µ dN

8.5 Maxwell relations

In the last section we introduced 8 thermodynamic potentials. Each generates 3 · 2/2 =
3 separate pairs of mixed second derivatives, giving rise to 24 Maxwell relations like
this one:

∂2E
∂S∂V

= − ∂p
∂S

∣∣∣∣
V,N

=
∂2E

∂V∂S
=

∂T
∂V

∣∣∣∣
S,N

It is a unique strength of thermodynamics to generate such surprising relations between
seemingly unrelated physical quantities. In order to memorize these relations, the ‘ther-
modynamical square’ or ‘König-Born diagram’ (compare Figure 8.7) has been introduced.
We keep N fixed and consider the four most important potentials.

V

S

E

F T

G

H P
Figure 8.7: The natural variables flank the potentials while the arrows indicate signs.

dE = TdS− pdV
dF = −pdV − SdT
dG = −SdT + Vdp
dH = Vdp + TdS
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From two neighboring corners a Maxwell relation can be read off (derived from the
edge in between, ie H):

V

S H p S H p

T

Figure 8.8: Identifying Maxwell relations using the thermodynamical square exempli-
fied for the enthalpy H.

∂V
∂S

∣∣∣∣
p
=

∂T
∂p

∣∣∣∣
S

∂2H
∂S ∂p

=
∂2H

∂p ∂S

Three other Maxwell relations follow by rotation of the scheme.

Response functions

Derivatives like ∂T
∂p

∣∣∣
S

can be measured in experiments and are called ‘response functions’.

Theorem:

There exist only three independent response functions. All others can be expressed
through them.

Proof:

We reduce the derivatives using the thermodynamical square, the mathematical rela-
tions between partial derivatives (see last section of this chapter) and the Gibbs-Duhem
relation for the chemical potential.
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Standard choice:

For constant particle number, we define the following quantities:

α :=
1
V

∂V
∂T

∣∣∣∣
p

coefficient of thermal expansion

κT := − 1
V

∂V
∂p

∣∣∣∣
T

isothermal compressibility

cp :=
d̄Q
dT

∣∣∣∣
p
= T

∂S
∂T

∣∣∣∣
p

specific heat at constant pressure

This essentially corresponds to a transformation to the Gibbs representation (g = G
N ):

∂2g
∂T2 = −

cp

T
∂2g

∂T ∂p
= v α

∂2g
∂p2 = −v κT

Example

Relation between cp and cV (N = const)

heat capacity at constant pressure: cp =
d̄Q
dT

∣∣∣∣
p
= T

∂S
∂T

∣∣∣∣
p

heat capacity at constant volume: cV =
d̄Q
dT

∣∣∣∣
V
= T

∂S
∂T

∣∣∣∣
V

dS =
∂S
∂T

∣∣∣∣
V,N︸ ︷︷ ︸

=
cV
T

dT +
∂S
∂V

∣∣∣∣
T,N︸ ︷︷ ︸

= ∂p
∂T

∣∣∣
V

dV

=
cVdT

T
+

∂p
∂T

∣∣∣∣
V

[
∂V
∂T

∣∣∣∣
p

dT +
∂V
∂p

∣∣∣∣
T

dp

]

⇒ T
∂S
∂T

∣∣∣∣
p
= cp = cV + T

∂p
∂T

∣∣∣∣
V

∂V
∂T

∣∣∣∣
p︸ ︷︷ ︸

=Vα

⇒ ∂p
∂T

∣∣∣∣
V
= −

∂V
∂T

∣∣∣
p

∂V
∂p

∣∣∣
T

=
α

κT
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⇒ cp = cV + TV
α2

κT
> cV as κT > 0,

α2

κT
> 0

For an ideal gas this yields:

cV =
dE
dT

∣∣∣∣
V
=

3
2

NkB

α =
1
V

∂V
∂T

∣∣∣∣
p
=

1
T

κT = − 1
V

∂V
∂p

∣∣∣∣
T
=

1
p

⇒ cp = cV +
VTp
T2 = cV + NkB =

5
2

NkB

8.6 Process-dependence of work and heat

Recall the total differential for energy:

dE = T dS− p dV + µ dN

It is instructive to compare with mechanics:

dE = ~v · d~p− ~F · d~r

=
~p
m
· d~p +∇V · d~r

= d
(

p2

2m

)
+ dV

We see that each term by itself is a total differential. This is not true in thermodynamics
because T = (S, V, N) 6= T(S).
Note that in both cases E(B) is a state function whose value is independent of how one
gets from A to B. In this sense the system is conservative. However, the way in which
energy is divided between heat and mechanical work is not universal and in this sense
the system is not conservative.
Despite the path-dependent weights of the different energy forms, the partial deriva-
tives are not arbitrary because they must belong to a fundamental equation. Therefore
we must have eg

∂2E
∂V∂S

=
∂T
∂V

∣∣∣∣
S,N︸ ︷︷ ︸

change in T during adiabatic expansion

=
∂2E

∂S∂V
= − ∂p

∂S

∣∣∣∣
V,N︸ ︷︷ ︸

change in p during isochoric heating
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Figure 8.9: Mechanics: The contributions of the integrals
∫

∂E
∂p dp and

∫
∂E
∂q dq are the

same for the different paths C1 and C2 going from A to B. The change in
kinetic and potential energy is path-independent.
Thermodynamics: The contributions of the integrals

∫
∂E
∂S dS and

∫
∂E
∂V dV

can differ for the different paths C1 and C2. The choice of path can determine
how heat and work are distributed.

This expression relates quantities which at first seem unrelated. We will later meet the
whole set of these ‘Maxwell relations’. It is the particular strength of thermodynamics to
provide these surprising relations which all have been experimentally verified.
If we neglect changes in particle number, we have

dE = TdS︸︷︷︸
heat

− pdV︸︷︷︸
mechanical work

We have seen before that the two quantities depend on the path taken from state A to
B. We therefore write:

dE = d̄Q + d̄W first law of thermodynamics (energy conservation)

Here d̄ indicates ‘incomplete differentials’.

sign convention: d̄W > 0 If the work increases the energy of the system.

d̄Q > 0 Heat flows into the system and increases its energy.

Very often one discusses expansion of gases. Then the mechanical work is d̄W =
−pdV < 0, i.e. the system does work and looses energy, because p is positive and
dV < 0.
James Joule was the first to realize that one can always measure d̄Q and d̄W for given
states A and B:

1 First make an adiabatic (isentropic) experiment (thermally isolating walls). This
implies:

d̄Q = 0 ⇒ dE = d̄W
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If A→ B does not work because ∆S < 0, use B→ A with ∆S > 0.
Because d̄W can be measured by mechanical means, one gets ∆EAB in this way.
Joule invented many devices to do exactly this.

2 Now make an experiment of interest with heat exchange (diathermal walls) con-
necting the same two states and measuring WAB (now with another result).

⇒ QAB = ∆EAB −WAB

As ∆EAB is known due to our first step, we now can calculate QAB.

The essential point here is that E is a state function, while Q and W are not.

Pond analogy

stream

pond

rain evaporation

sun

Figure 8.10: The amount of water in the pond depends on rain, evaporation and in- and
outflow due to a stream.

Consider a farmer who wants to know how much water is in his pond. There are two
ways its amount can change:
in- and outflow through a stream, and increase/ decrease by rain/ evaporation.
How can he control the relative importance of these two channels?
The solution is simple: First he covers the pond by a tarpaulin. He then can calibrate
the water height by using flow meters in the stream. Finally removing the tarpaulin, he
now can calculate back how much water results from rain/ evaporation.

Expansion of an ideal gas

We now discuss the expansion of an ideal gas as an example for the process-dependance
of thermodynamic processes. We go from state A to B as shown in Figure 8.11 .
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V

p

A D

BC

adiabatic (isentropic)

heating at constant p (isobar) cooling at constant V (isochor)

Figure 8.11: Three different paths from A to B. In each case the system cools.

Fundamental equation:

S = S0 + kBN ln

(
VE

3
2

N
5
2

)
For an adiabatic process (S=const) at N=const we therefore have

V E
3
2 = const

E =
3
2

NkBT =
3
2

pV ⇒ V5 p3 = const

⇒ ∆EAB =
∫

d̄W = −
∫ VB

VA

p dV = −pA

∫ VB

VA

(
VA

V

) 5
3

dV

=
3
2

pAV
5
3

A

(
V−

2
3

B −V−
2
3

A

)
< 0

The gas is doing work and looses energy.

We now calculate work and heat for the paths through D and C.

WADB = −
∫

p dV = −pA (VB −VA) < ∆EAB < 0

The system is doing even more work.

QADB = ∆EAB −WADB > 0

Heat flows into the system to compensate for this extra work.

WACB = −
∫

p dV = −pB (VB −VA) > ∆EAB < 0
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V

p

adiabatic p3V 5
= const

isothermal pV = const

Figure 8.12: The adiabatic curve is stepper than the isothermal one. A combination can
be used to get from A to D in Figure 8.11.

The system is doing work, but less compared with the two other paths.

QACB = ∆EAB −WACB < 0

Heat flows from the system, lowering its energy.
Note that we did not need to calculate ∆EAD or ∆EAC. Indeed this is more complicated
and requires the construction shown in Figure 8.12: by combining an adiabatic with an
isothermal process, one can go from A to D.

8.7 Reversible and irreversible processes

Both statistical physics and classical thermodynamics state

∆S ≥ 0 second law of thermodynamics

∆S = 0 reversible process: can go both ways
∆S > 0 irreversible process: other way cannot occur spontaneously

Examples

1 adiabatic expansion of an ideal gas

The piston is moved out with different velocities and the complete system is ther-
mally isolated. Therefore there is no heat flux, d̄Q = 0. We consider the extreme
cases concerning the piston’s velocity:

1 very fast: expansion into vacuum
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Figure 8.13: The ideal gas expands while the piston is moved out.

2 very slow: quasi-static, pressure is always equilibrium pressure p = NkBT/V

Fundamental equation:

S = S0 + kBN ln

(
VE

3
2

N
5
2

)

expansion into vacuum (case 1 ):

dE = d̄W = 0

dS =
∂S
∂V

dV = kBN
1
V

dV > 0

We see that no work is being done and that the process is irreversible. The entropy
has to go up because now many more microstates become available.

quasi-static (case 2 ):

dE = d̄W = −p dV

= −NkBT
V

dV = −2
3

E
V

dV

dS =
∂S
∂V

dV +
∂S
∂E

dE = NkB
1
V

dV +
3
2

NkB
1
E

dE = 0

The gas looses energy because it does work (and hence also becomes colder). The
process is reversible, because the entropy increase due to the volume increase is
exactly balanced by the loss of entropy due to the decrease in energy.

This situation is easy to analyze because we consider an isolated system for which
we know everything. The situation is more complex if we couple it to the envi-
ronment. Consider for example isothermal quasi-static expansion, so we couple
the piston to a heat bath. Then it does the same work as above. However, because
now T is constant, E is also constant and heat has to flow in such that d̄Q = −d̄W.
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The entropy of the piston goes up, but the reservoir loses exactly the same amount
of entropy due to the heat flow and the overall entropy is constant. Therefore
isothermal quasi-static expansion is also reversible.

2 warm bottle B in cold lake L
We assume that the heat capacities of bottle (cB) and lake (cL) are constant.
Fundamental equation:

S = S(E, V, N) = S0 + c ln
E
E0

1
T

=
∂S
∂E

= c
1
E
⇒ E = c T

⇒ c =
dE
dT

We now bring the two systems in thermal contact. The bottle will be cooled from
Ta to Tb. It will give away heat

QB = ∆EB = cB (Tb − Ta) ≤ 0

while no work is done due to the volume being constant.

∆E = ∆EB + ∆EL = QB + QL = 0

⇒ ∆TL =
|QL|

cL
=
|QB|

cL
=

cB

cL
∆TB ≈ 0

As cB � cL the temperature change of the lake can be neglected.

Changes in entropy:

∆SL =
∫ b

a

d̄QL

T
=

QL

Tb
=
−QB

Tb
= cB

Ta − Tb

Tb
≥ 0 lake gains entropy

∆SB =
∫ b

a

d̄QB

T
=
∫ Tb

Ta

cB dT
T

= cB ln
(

Tb

Ta

)
≤ 0 bottle looses entropy

The overall change in entropy thus is (defining z := Ta/Tb ≥ 1):

∆S = ∆SL + ∆SB = cB (z− 1− ln z)

Our result is in agreement with the second law of thermodynamics:

ln z ≤ z− 1 ⇒ z− 1− ln z ≥ 0 ⇒ ∆S ≥ 0

The equal sign is valid for z = 1 (Ta = Tb). Otherwise ∆S > 0 and the process
is irreversible as heat flows from the warmer to the cooler system. Note that the
same conclusion holds if we place a cold bottle in a warm lake (z < 0).
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Figure 8.14: f (z) = z− 1 and g(z) = ln(z) as a function of z.

8.8 Thermodynamic engines

We again consider heat flow from a warm to a cold body.
We assume constant heat capacities. The change in energy of the complete system then
can be expressed as:

∆E =
∫ Tf

T10

c1 dT1 +
∫ Tf

T20

c2 dT2
!
= 0

⇒ Tf =
c1T10 + c2T20

c1 + c2

The change in entropy is:

∆S =
∫ Tf

T10

c1dT1

T1
+
∫ Tf

T20

c2dT2

T2

= c1 ln
Tf

T10
+ c2 ln

Tf

T20

Assuming equal heat capacities: c1 = c2 = c

⇒ Tf =
T10 + T20

2

∆S = 2c ln
(

Tf√
T10T20

)
= 2c ln

(
T10 + T20

2
√

T10T20

)
≥ 0

The change in entropy is always positive as the arithmetic mean is always larger than
or equal to the geometrical mean.

T10 + T20

2
≥
√

T10T20
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We can see this as follows:

(a− b)2 ≥ 0 ⇒ a2 + 2ab + b2 ≥ 4ab ⇒ (a + b)2

4
≥ ab

The process would be reversible for

Tf =
√

T10T20

However, this would lead to an energy

E = 2c
√

T10T20 < 2c
T10 + T20

2

The energy difference

E = 2c
[

T10 + T20

2
−
√

T10T20

]
had to be spent as work. This can be accomplished by a thermodynamic engine (Wärmekraft-
maschine’).

W

Figure 8.15: Scheme of a power plant: 1) furnace (coal, oil ...), 2.) environment (cooling
tower), M) turbine, W) power line

How much work can one get out of the system?
We consider a final temperature Tf :√

T10T20 ≤ Tf ≤
T10 + T20

2
This range for the final temperature is bounded by the reversible case from below (a
smaller value would correspond to negative entropy change) and the completely spon-
taneous process without any work being done from above (a larger value would cor-
respond to influx of work into the system, corresponding to a heat pump but not to a
heat engine).
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Q1 = c
(
T10 − Tf

)
heat taken up by M

Q2 = c
(
Tf − T20

)
heat given away by M

W = Q1 −Q2 work done by the system

The lower Tf the more work we can get out of our machine. Work is produced by ’slow-
ing down’ the heat exchange.

We consider the two extreme cases:

1 Tf =
1
2 (T10 + T20)

no work, maximal entropy production (compare gas expansion to vacuum)

2 Tf =
√

T10T20
maximal work, reversible process (compare gas expansion under quasi-static pres-
sure changes)

We note that producing entropy is a waste of work.

We define a thermodynamic efficiency (‘Wirkungsgrad’):

η :=
W
Q1

= 1− Q2

Q1

For case 1 we get:

η = 1− Q2

Q1
= 0

Q2 = 0 would describe a perpetuum mobile of the second kind which cannot exist. This
is due to a negative entropy change for the furnace system which violates the second
law of thermodynamics:

∆S = −Q1

T1

As it always takes two to tango: Heat flow away from system 1 requires heat uptake by
a second system to ensure dS ≥ 0.

⇒ dS = −d̄Q1

T1
+

d̄Q2

T2
≥ 0

⇒ d̄Q2 ≥ d̄Q1
T2

T1
lower bound for Q2

⇒ η = 1− Q2

Q1
≤ 1− T2

T1
= ηideal

No thermodynamic engine can be more efficient than ηideal .
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Maxwell demon

The following thought experiment has been suggested for a perpetuum mobile of the
second kind and goes back to Maxwell (1867).
A device (‘Maxwell demon’) (see 8.16 ) opens a little trapdoor each time a gas molecule
comes from the right (‘ratchet mechanism’) . Then pressure raises on the left, which can
be used to extract work. This also cools the system, which is compensated by heat flux
from the environment. In this way, the device can produce work out of heat, seemingly
violating the second law.

This and many other similar setups have been analyzed by many researchers. Feynman
argued that it cannot work because the device itself will fluctuate (‘trembling demon’).
Landauer built his argumentation on the need for storing information, thereby raising
entropy.

Figure 8.16: Maxwell’s demon at work selectively letting gas particles pass.

When analyzing the thermodynamic engine, we assumed that M does not store heat or
work. This is certainly true for a machine working in a cyclic manner.
How can one construct such a thermodynamic engine in practice?

Carnot cycle

The Carnot cycle 8.17 uses an ideal gas and four steps.

1 The gas is in contact with a hot reservoir and isothermally expanded. Entropy
increases while energy is constant. Heat is taken up and work is delivered.

2 The gas is adiabatically expanded. Entropy is constant, more work is delivered.
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Figure 8.17: Carnot cycle

3 The gas is contacted with a cold reservoir and isothermally contracted. Work is
consumed by the system, entropy decreases and heat is given to the reservoir.

4 The gas is adiabatically contracted. Entropy is constant, more work is consumed.

The grey area in the S-T-diagram is the heat delivered to the outside. The grey area in
the V-p-diagram is the work delivered. The thermodynamic efficiency can be shown to
be:

η =
W

QAB
= 1− T2

T1
= ηideal

Because the Carnot cycle is reversible, it can also be used in the other direction. Then
we use work to transfer heat from the cold to the hot reservoir (‘heat pump’ or ‘refrigera-
tor’).

For a power plant we typically have:

T1 = 540 ◦C = 813 K
T2 = 40 ◦C = 313 K

⇒ ηideal = 62%

In practice one can reach around 45% which corresponds to 5 kWh output energy from
1 l of oil.
Heat production is unavoidable but can be used for heating (’Wärmekraftkopplung’).
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9 Stochastic thermodynamics

9.1 A new research field between statistical physics and
thermodynamics

Thermodynamics emerges from statistical physics in the limit of large system size,
when fluctuations vanish due to the law of large numbers and only the mean values
are relevant. Therefore quantities like the internal energy E, which have probability
distributions in statistical physics, are deterministic in thermodynamics. The same then
applies to work W and heat Q, which in thermodynamics have incomplete differentials,
but have no fluctuations.
Recently this traditional viewpoint of thermodynamics has been extended to smaller
("mesoscopic")systems, and a new field has emerged that considers work and heat to
be realized according to distributions that can be calculated. The main idea is to go
from the ensemble picture to a description of single trajectories and to assign quanti-
ties like work, heat and entropy, that traditionally have been considered to be systems
properties, to such trajectories. This approach is closely related to the method of path
integrals, which in turn is related to partition sums, so it is actually a natural approach
and not completely new. Also the fact that work fluctuates is clear to anyone who al-
ways has done an actual experiment. Because we deal with dynamic trajectories, this is
a subject of non-equilibrium physics, but surprisingly, many exact relations have been
demonstrated (for example the Jarzynski relation or the integral fluctuation theorem)
which have similarities with the laws of thermodynamics and thus earlier have not
been thought to be possible out of equilibrium. Stochastic thermodynamics comes in
many different variants, but here we will report only on the one that builds on the
overdamped Langevin equation (other interesting examples are Hamiltonian systems
or master equations). This corresponds to the canonical ensemble with fixed tempera-
ture T.1

9.2 Langevin and Fokker-Planck equations

We first introduce the concept of stochastic differential equations (the Langevin equa-
tion, which is equivalent to the Fokker-Planck equation). Such an equation describes

1The first book on this subject is Stochastic thermodynamics: an introduction by Luca Peliti and and Simone
Pigolotti. Excellent reviews are Felix Ritort, Work Fluctuations, Transient Violations of the Second Law and
Free-Energy Recovery Methods: Perspectives in Theory and Experiments, Poincare Seminar 2003, and Udo
Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports on Progress in
Physics 2012.
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Brownian or random walks, which we have already touched on in the introduction. We
consider the simplest case for a microscopic dynamics: a spherical particle in aqueous
solution (compare Fig. 9.1). Collisions with the water molecules keep it in continuous
motion. Obviously this is an effect of finite temperature. How can we describe this
‘Brownian motion’?

R

η, Τ

Figure 9.1: A spherical particle of radius R in a fluid with viscosity η and temperature
T is performing a ‘Brownian random walk’.

For simplicity we work in one dimension. Newton’s second law yields a differential
equation:

mẍ︸︷︷︸
inertial force

= mv̇ = −ξv︸︷︷︸
friction force

where ξ is the friction coefficient. The solution to the equation describes an exponential
decay:

v(t) = v0 e−t/t0 with t0 =
m
ξ

and hence over time the particle comes to rest, which is not what we observe.
By adding a random force continuously kicking the particle we arrive at the ‘Langevin
equation’:

mv̇ = −ξv + ση(t)

σ is the amplitude of the thermal noise and η describes Gaussian white noise which
obeys:

1. 〈η(t)〉 = 0

2. 〈η(t)η(t′)〉 = 2δ (t− t′)

The formal solution is given by:

v(t) = e−t/t0

(
v0 +

∫ t

0
ds es/t0

σ

m
η(s)

)
⇒ 〈v(t)〉 = v0e−t/t0
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〈
v(t)v(t′)

〉
= v2

0e−
t+t′

t0 +
( σ

m

)2
e−

t+t′
t0

∫ t

0
ds
∫ t′

0
ds′ e

s+s′
t0 2δ

(
s− s′

)
︸ ︷︷ ︸

t<t′
=
∫ t

0 ds 2e2s/t0=t0(e2t/t0−1)

= e−
t+t′

t0

(
v2

o −
σ2

mξ

)
︸ ︷︷ ︸

=0 for t,t′�t0

+
σ2

mξ
e(t
′−t)/t0

⇒
〈
v(t)2〉 = σ2

mξ

The random kicks from the environment keep the particle in motion.

Equipartition theorem:
1
2

m
〈
v2〉 = 1

2
kBT

⇒ σ2 = ξkBT fluctuation-dissipation theorem

The noise amplitude σ (fluctuations) is related to the friction coefficient (dissipation)
through temperature. The higher T, the stronger the noise.

For t� t0, we can neglect inertia:

⇒ ξv = ση(t) = ξ ẋ

⇒ x(t) = x0 +
1
ξ

∫ t

0
dt′ση(t′)

⇒ 〈x(t)〉 = x0〈
(x(t)− x0)

2
〉
=

1
ξ2

∫ t

0
dt′
∫ t

0
dt′′ 2σ2δ

(
t′ − t′′

)
=

1
ξ2 2σ2t !

= 2Dt

Here we identified the diffusion constant D from the one dimensional random walk.

⇒ D =
σ2

ξ2 =
kBT

ξ
Einstein relation

If we use for the friction coefficient Stoke’s law from hydrodynamics, ξ = 6πηR with
viscosity η we get:

⇒ D =
kBT

6πηR
Stokes-Einstein relation

211



The Langevin equation is a ‘stochastic differential equation’ and requires ‘stochastic calcu-
lus’. Alternatively one can derive an equation for the probability p (x, t) to be at position
x at time t starting from the Langevin equation:

ξ ẋ = F(x) + ση(t)

⇒ ṗ(x, t) = −1
ξ

∂x (F(x)p(x, t))︸ ︷︷ ︸
drift

+ D∂2
x p(x, t)︸ ︷︷ ︸

diffusion

This is the Fokker-Planck or Smoluchovski equation. It can be written as a continuity
equation

ṗ + ∂x J = 0

with probability current

J =
1
ξ

Fp− D∂x p

In the case of detailed balance:
J = 0

⇒ 1
ξ

Fp = D∂x p

⇒ ∂x p
p

= ∂x ln p =
F

ξD

⇒ p = p0e
∫

dx F
ξD = p0e−

V
ξD

= p0e−βV

Here we used the definition F = −V ′ of the potential in the second and the Einstein
relation in the last step. We note that the Boltzmann distribution arises as stationary
solution of the Fokker-Planck equation.

9.3 Stochastic energetics and the first law of
thermodynamics

The Langevin equation can be considered to be a balance of forces. To go from forces
to energy, one has to multiply with distance and then to integrate. Let us first discuss
how this works for Newton’s 2nd law by multiplying it with ẋ:

mẍ = F = −dV
dx
⇒ d

dt
(

1
2

mẋ2) = −dV
dx

ẋ = −dV
dt
⇒ 1

2
mẋ2 + V = const

Bingo, we managed to show energy conservation. Easy. Surprisingly, the same idea
has not been applied to the Langevin equation for a long time, until Sekimoto did so in
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1998 (Sekimoto, Ken. "Langevin equation and thermodynamics." Progress of Theoreti-
cal Physics Supplement 130 (1998): 17-27). We take the Langevin equation from above.
Very importantly, we consider a conservative force, F = −dV/dx (in the general case,
we also would add a non-conservative force here), but we now consider the potential
V(x(t), λ) to depend not only on position x(t), but also on some external control pa-
rameter λ, which is our way to do work on the system. A simple example would be
λ = t, if we have a time-dependent potential for example by switching on a laser poten-
tial for a colloidal bead. We now write the Langevin equation and then multiply with
dx to go from forces to energies:

ξ ẋ = −∂V(x(t), λ)

∂x
+ ση(t)⇒ 0 = −(−ξ ẋ + ση(t))dx +

∂V(x(t), λ)

∂x
dx

We first note that the term in brackets is the reaction force to the heat bath and therefore
the corresponding energy should be identified with the differential heat dQ released
into the environment. Another way is to argue from force balance that this term is
Fdx = − ∂V

∂x dx, and that in an overdamped system all forces are dissipated. We next
note that the term on the right hand side is not a total differential, because V depends
on x and λ. We therefore add 0 here:

0 = dQ +
∂V(x(t), λ)

∂x
dx +

∂V(x(t), λ)

∂λ
dλ− ∂V(x(t), λ)

∂λ
dλ

We now have a total differential dV on the right hand side and can identify dW =
dV(x(t),λ)

dλ dλ as the work that is being done on the system. Thus we get

dW = dQ + dV

which is our microscopic version of the first law of thermodynamics (energy conserva-
tion), dV = dE = dW − dQ. Note that heat here appears with a minus sign, different
from the convention in thermodynamics (the convention here is that heat is positive if
is released into the environment).
In order to complete this procedure, we still have to integrate over time. This converts
the differentials into functionals of the trajectories x(t):

W[x(t)] =
∫

dt
∂V
∂λ

λ̇, Q[x(t)] = −
∫

dt
∂V
∂x

ẋ

The work and heat functionals can be measured in experiments for colloidal beads
and have been shown to add up to the change in internal energy, as expected (Blickle,
Valentin, et al. "Thermodynamics of a colloidal particle in a time-dependent nonhar-
monic potential." Physical review letters 96.7 (2006): 070603).

9.4 Jarzynski relation, the second law of thermodynamics
and violating trajectories

Having identified the first law in the Langevin equation, we now can ask if we also can
identify entropy and the second law on the level of trajectories. This can be achieved
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with the help of the Jarzynski equality, which has been published in 1997 in a paper that
now is cited more than 5.000 times (Jarzynski, Christopher. "Nonequilibrium equality
for free energy differences." Physical Review Letters 78.14 (1997): 2690):〈

e−W/kBT
〉
= e−∆F/kBT

This equation has been first proven for Hamitonian systems and later also extended
to Langevin and quantum systems. It is very surprising because the left is an average
over all non-equilibrium trajectories connecting two states with each other, while the
right is an equilibrium quantity (∆F is the free energy difference). We can also write
this equation as 〈

e−(W−∆F)/kBT
〉
= 1

and then consider the energy term in more detail using the first law from above and the
definition of free energy:

W − ∆F = Q + ∆E− (∆E− T∆S) = T∆Sr + T∆S = T∆Stot = Wdiss

where ∆Sr = Q/T (Q is the heat dissipated into the reservoir) and ∆S are the entropies
of the reservoir and the subsystem, respectively. ∆E = ∆V has dropped out here. In
the last step we have identified this expression with the dissipated work, that is the
part of the work which cannot be recovered again (the thermodynamic potential ∆F
can be argued to be the maximal work one can extract from the system). If we now use
Jensen’s inequality on Jarzynski’s equation, we can write:

1 =
〈

e−Wdiss/kBT
〉
≥ e−〈Wdiss〉/kBT

Because e−x decays down from 1 if x starts at 0, we conclude that

〈Wdiss〉 = T∆Stot ≥ 0

which is nothing else than the second law of thermodynamics (increase in total en-
tropy).
Up to now it looks as if we managed to identify the second law of thermodynamics
on the level of single trajectories, but in fact we found something which is even more
surprising. Going beyond Jensen’s inequality and looking at the full average again, we
see that one can average the function e−x to an overall value 1 only if there is a finite
probability also for negative values of Wdiss (e−x is always smaller than 1 for positive
x, so we need some negative x with values larger than 1 to get an average of 1). So
although for most trajectories the realization is positive, to get the positive mean, there
must be some with a negative value. These are called violating trajectories and mean that
the reservoir can help the system to perform work. Such a process is completely pro-
hibited in thermodynamics, but can occur in mesoscopic systems. It has been proven
experimentally (e.g. for colloidal beads or biomolecules) and it is ongoing speculation
if this can be used to extract useful work (or information) from thermal reservoirs (with
the help of Maxwell demon, which filters out the violating trajectories).
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Figure 9.2: (A) The Jarzynski equation predicts that violating trajectories must exist in
the distribution of dissipated work Wdiss = T∆Stot. While the average has
to be positive, in agreement with classical thermodynamics, the overall av-
eraging of e−x (red line) with the distribution (green line) can only reach 1
if also negative values existed. (B) The existence of violating trajectories has
been demonstrated first for biomolecules that have been pulled at differ-
ent speeds (Liphardt, Jan, et al. "Equilibrium information from nonequilib-
rium measurements in an experimental test of Jarzynski’s equality." Science
296.5574 (2002): 1832-1835). (C) It also has been demonstrated for a colloidal
particle pushed against a wall by a laser (Blickle, Valentin, et al. "Thermody-
namics of a colloidal particle in a time-dependent nonharmonic potential."
Physical review letters 96.7 (2006): 070603).

Finally we discuss how classical thermodynamics emerges again from this system. We
split the averaging into regions of positive and negative values for dissipated heat:

1 =
〈

e−Wdiss/kBT
〉
= p+

〈
e−Wdiss/kBT

〉
+ p−

〈
e−Wdiss/kBT

〉
with p+ + p− = 1. We note that energy is an extensive quantity, thus Wdiss ∼ N. For
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the negative part not to diverge, we therefore must have p− ∼ e−N . Therefore p+ ∼
(1− e−N) → 1 and violating trajectories are exponentially suppressed with increasing
system size. To measure these violations, one therefore needs small systems and small
energies (of the order of kBT).
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10 Appendix: some useful relations
between partial derivatives

We consider a function f (x, y, z) of three variables, which is a typical situation in sta-
tistical physics and thermodynamics. We write its total differential and then keep it
constant:

d f =
∂ f
∂x

∣∣∣∣
y,z

dx +
∂ f
∂y

∣∣∣∣
x,z

dy +
∂ f
∂z

∣∣∣∣
x,y

dz !
= 0

Now in addition we keep z constant and divide by dx to get

0 =
∂ f
∂x

∣∣∣∣
y,z

+
∂ f
∂y

∣∣∣∣
x,z

∂y
∂x

∣∣∣∣
f ,z

We rearrange to get

∂y
∂x

∣∣∣∣
f ,z

= −

∂ f
∂x

∣∣∣
y,z

∂ f
∂y

∣∣∣
x,z

We repeat the same procedure, but now we divide not by dx, but by dy to get

0 =
∂ f
∂x

∣∣∣∣
y,z

∂x
∂y

∣∣∣∣
f ,z

+
∂ f
∂y

∣∣∣∣
x,z

thus

∂x
∂y

∣∣∣∣
f ,z

= −
∂ f
∂y

∣∣∣
x,z

∂ f
∂x

∣∣∣
y,z

Comparing the two boxed results, we conclude

∂x
∂y

∣∣∣∣
f ,z

=

(
∂y
∂x

∣∣∣∣
f ,z

)−1

Repeating the first procedure from above, we find two more analogous relations to the
first boxed relation:

∂z
∂x

∣∣∣∣
f ,y

= −

∂ f
∂x

∣∣∣
y,z

∂ f
∂z

∣∣∣
x,y
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∂z
∂y

∣∣∣∣
f ,x

= −
∂ f
∂y

∣∣∣
x,z

∂ f
∂z

∣∣∣
x,y

Combining these three equations and using the relation with the inverse gives

∂x
∂y

∣∣∣∣
f ,z

∂y
∂z

∣∣∣∣
f ,x

∂z
∂x

∣∣∣∣
f ,y

= −1

All the relations given here find frequent applications in statistical physics and thermo-
dynamics.

218


	Introduction to probability theory
	Probability in physics
	Frequentist approach
	Axiomatic approach
	Continuous distributions and distribution function
	Joint, marginal and conditional probabilities
	Expectation and covariance
	Binomial distribution
	Gauss distribution
	Poisson distribution
	Random walks
	Computation with random variables
	Addition of random variables
	Information entropy
	Mutual information

	The microcanonical ensemble
	Thermodynamic equilibrium
	Micro- and macrostates
	Density of states
	The fundamental postulate
	Equilibrium conditions
	Equations of state for ideal gas
	Two-state system
	Einstein model for specific heat of a solid
	Entropic elasticity of polymers
	Statistical deviation from average
	Foundation of the fundamental postulate

	The canonical ensemble
	Boltzmann distribution
	Free energy
	Non-interacting systems
	Equipartition theorem
	Molecular gases
	Specific heat of a solid
	Black body radiation

	The grandcanonical ensemble
	Probability distribution
	Grandcanonical potential
	Fluctuations
	Ideal gas
	Molecular adsorption onto a surface
	Chemical reactions

	Quantum fluids
	Fermions versus bosons
	Calculating with occupation numbers
	The ideal Fermi fluid
	The ideal Bose fluid
	Classical limit

	Ising model
	History and definition
	The 1D Ising model
	Transfer matrix
	Renormalization of the Ising chain
	Renormalization of the 2D Ising model
	The Peierls argument
	The 2D Ising model
	Perturbation theory
	Mean field theory for the Ising model
	Monte Carlo computer simulations of the Ising model

	Classical fluids
	Virial expansion
	Second virial coefficient
	Maxwell construction
	Fluid-solid phase transition
	Structure and correlation

	Thermodynamics
	Axiomatic structure
	Variational principles
	Euler and Gibbs-Duhem relations
	Thermodynamic potentials and Legendre transformations
	Maxwell relations
	Process-dependence of work and heat
	Reversible and irreversible processes
	Thermodynamic engines

	Stochastic thermodynamics
	A new research field between statistical physics and thermodynamics
	Langevin and Fokker-Planck equations
	Stochastic energetics and the first law of thermodynamics
	Jarzynski relation, the second law of thermodynamics and violating trajectories

	Appendix: some useful relations between partial derivatives

