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Important numbers

’ Quantity‘ Meaning Value
Ny Avogadro constant 1 mol = 6.022 x 10%
Da mass of hydrogen atom 1 g/mol = 1.6 x 10~?%g
M molar mol / 1~ 1/nm?
nM nanomolar ~ 1/um?
water concentration 55 M
cellular ATP / ADP / P; conc mM / 10 uM / mM
cs physiological salt concentration 100 mM
pH pH in human cell 7.34
A de Broglie or thermal wavelength 0.1 A
lpy Debye Hiickel screening length 1 nm
kT thermal energy 4.1 x 10721J = 2.5kJ/mol =
0.6kcal/mol = 4.1pNnm
25meV = eV/40
AV voltage difference kgT/e = 25mV
hw red photon (700 nm) T0kT
hw blue photon (450 nm) 110kpT
ATP-hydrolysis 20 — 30kpT
work in motor cycle 8 nm x 5 pN = 10 kT
metabolism of glucose 30 ATP molecules
number of human cells 3 x 1013
regeneration rate human cells 107 Hz
human metabolic rate 90 W = 2.000 kcal / day
size of human genome 3.2 Gbp
length of human genome 2 x 3.2G x 0.34nm = 2m
mutation rate per bp humans 1078
mutation rate per bp HIV 3107°
D diffusion constant small protein (10um)?/s
v velocity molecular motor um/s
velocity blood flow capillaries 0.3 mm/s
velocity blood flow aorta 0.4 m/s
velocity action potential 10-100 m/s
thickness plasma membrane 4 nm

tension plasma membrane

0.3 pN/nm = 0.3 mN/m

cortical tension

2 nN/pm = 2 mN/m

bending rigidity plasma membrane 20 kT
d /1, DNA 2 nm / 50 nm
d / I, actin 7nm /17 pm

d / l, intermediate filaments

10 nm / 200 nm - 1 pym

d / 1, microtubule

25 nm / 1 mm




Some history (NP = Nobel Prize)

1665 Hooke’s book Micrographia shows biological cells

1774 Franklin’s oil drop experiment demonstrates the nanometer size of
molecules

1827 thermal motion of microscopic particles observed by Brown

1873 Plateau experiments on soap films, minimal surfaces

1876 Koch discovered bacteria, germ theory of disease (NP 1905)

1905 Einstein paper on Brownian motion (NP 1921)

1906 Smoluchowski theory on Brownian motion

1908 Langevin equation

1910 Perrin experiments on colloids and Avogadro constant (NP 1926)

1917 Fokker-Planck equation

1920 Staudinger shows that polymers are chain molecules (NP 1953)

1931 Ruska invented the electron microscope (NP 1968)

1940 Kramers reaction-rate theory

1941 DLVO theory for colloids

1944 Onsager solution of the 2D Ising model (NP 1968)

1952 Hodgkin and Huxley papers on action potentials (NP 1963)

1953 structure of DNA by Watson and Crick (NP 1962)

1954 Huxley sliding filament hypothesis for muscle (could have earned him a
second NP)

1958 central dogma of molecular biology by Crick

1959 X-ray structure of hemoglobin by Perutz and Kendrew (NP 1962)

1960 FitzHugh and (later) Nagumo phase plane analysis of Hodgkin Huxley
model

1965 Density functional theory by Walter Kohn (NP 1998)

1969 Israelachvili surface force apparatus

1969 Oesterhelt discovers light-sensitive proton pumps in bacteria; this is the
starting point of optogenetics

1970 Canham curvature elasticity explains discocyte shape

1972 Warshel and Karplus molecular dynamics of biomolecules (NP 2013)

1973 Helfrich Hamiltonian with spontaneous curvature

1976 Neher and Sakmann Nature paper on patch clamp technique for ion chan-
nels (NP 1991)

1976 Roger Tsien discovers the Green Fluorescent Protein (GFP) (NP 2008)

1978 Helfrich interaction between membranes

1978 Doi and Edwards reptation model for polymer melts

1979 book Scaling Concepts in Polymer Physics by de Gennes (NP 1991)

1981 Binnig and Rohrer invent scanning probe microscopy (NP 1986)

1981 Evans micropipette aspiration of red blood cells

1982 de Gennes and Taupin persistence length of membranes

1983 Howard Berg book on Random Walks in Biology




1985 Peliti and Leibler renormalization of bending rigidity

1986 Safinya and Roux X-ray on membranes

1986 Lipowsky and Leibler unbinding transition of membranes

1986 book The Theory of Polymer Dynamics by Doi and Edwards

1990 Seifert and Lipowsky paper on vesicle adhesion

1991 spontaneous curvature phase diagram of vesicles (Seifert et al.)

1994 book Statistical Thermodynamics of Surfaces, Interfaces, and Membranes
by Safran

1994 area difference elasticity (ADE) model for vesicles (Miao et al.)

1995 Marko and Siggia model for stretching the WLC

1997 NP physics 1997 for laser cooling includes Steven Chu, who also works
on biomolecules

1997 RMP review by Jilicher, Armand and Prost on molecular motors

1998 MacKinnon Science paper on the structure of the K+ channel (NP 2003)

2002 Lim et al. PNAS paper on shape of red blood cells

2005 Karl Deisseroth induce action potentials by light (neuronal optogenetics)

2014 NP chemistry for super-resolution microscopy to Eric Betzig, Stefan Hell
and Bill Moerner

2016 NP chemistry for the synthetic molecular motors (still missing is one on
biological molecular motors)

2017 Stefan Hell invented MINFLUX

2018 NP physics for optical tweezers to Arthur Ashkin

2021 NP physics for complex systems to Giorgio Parisi




Chapter 1

Physics background

In this script on theoretical biophysics we will make use of concepts and methods
from many different fields of physics, which we will introduce when they are
needed. However, there are two parts of basic physics which we will need right
from the start, and therefore we briefly review them in this chapter. The first
one is statistical mechanics, and the second one is electrostatics.

1.1 Statistical mechanics

1.1.1 The microcanonical ensemble

The most basic principle of statistical physics is the fundamental postulate that
states that a closed system maximizes its entropy. One way to arrive at this
conclusion is by starting from information theory. This approach to statistical
mechanics has been pioneered by Claude Shannon (founder of information theory)
and Edwin Jaynes (inventor of the maximum entropy principle). We start from
the Shannon entropy

S:—Zpilnpi (1.1)

where ¢ numbers all states of the system and p; is the probability of a state with
> pi = 1. By multiplying with kg, we would get the physical (or Gibbs) entropy
S. For the microcanonical ensemble, we would have p; = 1/Q being constant (€2
is the number of states) and thus

S:kBIHQ (12)

which is the famous formula by Boltzmann, which you also find on his grave at
the Wiener Zentralfriedhof. One can show that entropy S is a unique measure for
the disorder or information content in the probability distribution {p;}. From a
more physics point of view, it is a measure for phase space volume that is additive
over subsystems. A system that explores all possible states to an equal extent has
maximal entropy. The microcanonical ensemble assumes that a physical system
at equilibrium has exactly this property. The physical basis of this postulate is
not completely clear, but a hand-waving explanation is that all dynamical systems
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develop more structure with time, because they sample more of interaction space,
and thus higher order correlations develop that lead to apparent disorder on the
coarse-grained scale on which we can observe them.

1.1.2 The canonical ensemble

In general, biological systems are not in equilibrium and driven by energy that
is supplied by the environment (food, light, etc). However, often state variables
change only slowly and therefore the system can be described by the laws of
thermodynamics and statistical physics, albeit often only on local and temporary
scales. Biological systems operate at relatively high and constant (body or room)
temperature and therefore the canonical ensemble is relevant, in which we do not
prescribe energy (like in the microcanonical ensemble), but averaged energy.

We now want to maximize entropy under the constraint of constant average en-
ergy, (E) =U =Y, E;p;. We add normalization and average energy constraints
with Lagrange multipliers to the Shannon entropy, giving the function

S:—Zpilnpi—BZEiPi—aZpi (1.3)
and maximize it

6§ ==Y (Inp;+ 1+ a+ BE;)dp; =0 (1.4)
leading to
pi = 6_(1+a+5Ei) (15)

From the normalization we get
e~ 1) — const = 1 (1.6)
Z

with

Z=Y ek (1.7)

From the average condition U = (1/2)Y; Eie PFi we get that 3 should be a
function of U. We can make the connection to temperature 1" and identify § =
1/(kgT). Now we have the Boltzmann distribution:

1 45
pi= e BE: (1.8)
where Z is the partition sum. For a continuous state space, we would replace the
sum over states by an integral over states. We conclude that the canonical dis-
tribution is the one that maximizes entropy under the condition that the average
energy has a fixed (observed) value.

10



1.1.3 The grandcanonical ensemble

We now generalize to the case of particle exchange with a reservoir, for example
molecules in a bulk fluid that can adsorb or bind to a surface. Other examples
might be the molecules in an open beer bottle lying on the floor of a lake or
the molecules in the cell that is in exchange with its surrounding medium. We
now have a second side constraint, namely for the average number of particles,
(N) =Y, Nipi, resulting in the function

3:—Zpilnpz‘—5ZEz‘pz‘—OéZpi—’YZNipz‘ (1.9)

where we have introduced a third Lagrange parameter . Variation of this func-
tion gives

68§ ==Y (Inp;+ 1+ a+ BE; +yN;) 6p; = 0 (1.10)
i
With the same arguments as above, we can identify v = —fu with the chemical
potential p. We then get
Zg =Y e PEi—mN) (1.11)
i
for the grandcanonical partition sum and
1
pi = 76*5<Ei*MNi> (1.12)
G

for the grandcanonical distribution.

1.1.4 The harmonic system

We now consider a system with one harmonic degree of freedom at constant
temperature (canonical ensemble). This could be for example a particle in a
one-dimensional laser trap with a harmonic potential E = %ka, where k is the
spring constant (trap stiffness) and z is the one-dimensional state space coordi-
nate (position). The corresponding partition sum is

Z = /oo dx exp(—BF) = /OO dx eXp(_ﬁék,x.Q) _ (27r/ZBT>§

—00 —00

(1.13)

where 3 = 1/(kpT) and we have evaluated the Gaussian integral [ dre=o®® =
(m/a)'/2. The corresponding correlation function is the mean squared displace-
ment (MSD):

<2?> = ;/dxe exp(—,@%ﬁ) (1.14)
1 -2 -2 T
= 707 =G0z~ k’% (1.15)

Thus the larger temperature T and the smaller trap stiffness k, the larger the
excursions of the particle. In fact this relation is used to calibrate laser traps:
kT

h=—s (1.16)
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Figure 1.1: Laser traps as harmonic systems. (a) A dielectric bead is attracted to the
center of the laser beam. The force F' is proportional to the distance from this center.
For calibration of trap stiffness k, one uses the relation < x? >= kgT'/k for a harmonic
system. This is the principle of the optical tweezer as developed in the 1970s by Arthur
Ashkin at Bell Labs (Nobel prize physics 2018). The optical tweezer can be used e.g. to
measure the force-velocity relation of a molecular motor. Using a feedback system that
keeps force F' constant, one can measure the corresponding velocity v of the motor. (b)
Force-velocity relation for the molecular motor kinesin as measured by Mark J. Schnitzer,
Koen Visscher and Steven M. Block, Force production by single kinesin motors, Nature
Cell Biology 2, 718 - 723, 2000. The free velocity (without force) is vg. The larger F,
the small v. Eventually the motor gets stalled (v = 0) at the stall force Fj.

Because <  >= 0, the variance of position is

ol=<(z—<z>)’>=<@?-2z<z>+<z>})> (1.17)
kT
=<r?> - <z>?=<a?>= % (1.18)

The average energy is

1 -1 kpT
<E>=- /deeXp(—ﬁE) =057 = ~0gInZ = % (1.19)

This is an example of the equipartition theorem: every harmonic degree of free-
dom carries an energy of kg7 /2. Here we have one degree of freedom, for a
harmonic oscillator it would be two (potential and kinetic energy) and for an
ideal gas with N particles it would be 3N (only kinetic energy, but N particles
in three dimensions). The specific heat is constant:

k
cy =0p < E >= ?B (1.20)
For the variance of the energy we find
1 1
2 2 2 2 2

=< E*>—-< E>=—-05Z— (=032 1.21
op =< ><>Zag (Zc’)@) (1.21)

(kpT)?
=05InZ =—05 <E>= """ (1.22)

12



For the harmonic system, the free energy follows as

kT k —kpT
F=_—kgTlhZ = 1 _
kpT'In 2 n(zkaT 2

In(2m < 2% >) (1.23)

In field theory, this corresponds to the free energy of a Gaussian theory. The
harmonic system is the simplest approximation for a bound system and we will
encounter it frequently in this script.

1.1.5 The ideal gas

Biomolecules are always in solution and if their concentration is low, the solution
is diluted and can be described as an ideal gas. We consider N point particles in
a volume V' at temperature 7' (canonical ensemble). The partition sum is

1 N BH( ZN
7 = ——= I I /dﬁid(fie H{p,m) _ (1.24)
3N
N'h bale N!

where H = 3, p7/2m is the ideal gas Hamiltonian (only kinetic energy), p; and
¢; are momenta and positions, respectively, of the different particles (1 < i <
N). h is Planck’s constant. It enters here because the different possible states
are assumed to be squeezed together in phase space as closely as permitted by
Heisenberg’s uncertainty principle, ApAqg > h. The factor N! accounts for the
indistinguishability of the particles. z is the partition sum for one particle and
again it is simply a Gauss integral:

g 2
_ [T P

s % (2rkpTm)*? = v (1.25)

)\3

h2
= — 1.
A 2rmkpT (1.26)

is the thermal (de Broglie) wavelength. A typical value for an atom is 0.1
Angstrom and below this scale, quantum mechanics become relevant. The free
energy follows with the help of Stirling’s formula In N! = N In N — N for large N
as

where

N %4
F=—-kgTInZ=—-kgTlh (N') = —kgTN (ln <)\3N) + 1> (1.27)

The Euler fundamental form for the Helmholtz free energy F' = F(N,V,T) is
dF = —SdT — pdV + uN (1.28)

From the statistical mechanics result for the free energy F = F(N,V,T), we can
thus now calculate the pressure p as

N
p=—0yF = k‘BTV = pV = NkgT (1.29)
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The result is known as the thermal equation of state or simply as the ideal gas
law.

The average energy is the caloric equation of state:

N
<E>=-93lnZ=-Noglnp>? = %kBT (1.30)

which is another example of the equipartition theorem (3N harmonic degrees of
freedom).

Finally we calculate the chemical potential as

AN
i=0NF =kpTIn () = kgTln (p) (1.31)
Vv Po

with pg = kgT/A3 (note that from the three terms, two have canceled each other).
Thus chemical potential and pressure are related logarithmically.

We can write our fundamental equation F'(7,V, N) and the three equations of
state in a very compact way using density p = N/V:

F 3
f=1=ksTp (n(pr*) - 1) (1.32)
p = pkpT (1.33)
<E> 3
= = —pkpT 1.34
€ v 5 PkB (1.34)
p=kpTln (p)\g) (1.35)

1.1.6 The law of mass action

From the ideal gas, we get for the chemical potential of species ¢ in dilute solution:

e
i = pio + kT In () (1.36)
Ci0

Thus the change in Gibbs free energy at constant 7" and constant p is
i ON; i i

where v; are the stoichiometric coefficients of the reaction and AN is the reaction
coordinate. At equilibrium, AG = 0 and AN drops out:

0=, <mo +kpTln (”)) (1.38)

: Gio
From this we get the law of mass action:

e, = (ick)e™ 22Vl = copst = K, (1.39)

z7eq -

where we have defined the equilibrium constant K.

14



We next consider a reaction with AN = 1. The corresponding change in Gibbs
free energy is

AG = kpTln ( He; ) (1.40)
Hci,leq
This leads to
AG = AGo + kpTln (Ile]") , AGo = —kpTIn K, (1.41)

with the understanding that to get a dimensionless argument of the logarithm,
we might have to insert some reference concentration (typically 1 M).

A very important example is ATP-hydrolysis, for which we have varp = —1,
vapp = +1 and vp, = +1. Thus we get

AG = AGy + kgT'In <[ADP][PZ'])

ATP (1.42)

With a reference concentration of 1M, the first term is —12.5kgT. For cellular
concentrations ([ADP] = 10uM, [P;] = mM,[ATP] = mM), the second term is
—11.5kpT, so together we have AG = —24kgT.

1.1.7 Phase transitions

If the concentration of a solution increases, the particles start to interact and
form a real gas. We briefly discuss the van der Waals gas as the most prominent
example of a real gas that is undergoing phase transitions. For particles inter-
acting through some potential U, the partition sum can be divided into an ideal
part and an interaction part:

Z = ZidealZinter (143)
where
VN
Zideal = N3N (1.44)

as above and
1 N B,
Zinter = V'N/ (H d‘jl) e_BU({qi}) (145)
i=1

This term does not factor into single particle functions because the potential U
couples all coordinates. Yet all thermodynamic quantities separate into an ideal
gas part and a correction due to the interactions. In particular, we have

F =—kpTInZ = Figeai + Finter (146)
p = —0vF = Pideal + Dinter (147)

The formulae for the ideal expressions have been given above. For the pressure,
one expects that the correction terms should scale at least in second order in
p, because two particles have to meet in order to give a contribution to this

15



term. This suggests to make the following ansatz of a Taylor expansion in p, the
so-called wvirial expansion:

Dinter = kBT Z BZ (T)pl (148)
=2

where the B;(T) are called virial coefficients. For many purposes, it is sufficient to
consider only the first term in this expansion, that is the second virial coefficient
By(T). We then have

F = NkgT [ln(p)\g) —1+ ng} (1.49)
p = pkpT [1+ Bap] (1.50)

For pairwise additive potentials, one can show

By(T) = —% /df(e—ﬁuﬁ ~1) (1.51)

For the van der Waals model, one considers two effects: a hard core repulsion
with particle diameter d and a square well attractive potential with an interaction
range 0 and a depth e. Then one gets, in the limit §/d < 1 and fe < 1,

€ _,__a
kgT kgT

2
Bo(T) ~ gd?’ — 27 (d%5) (1.52)
where we have introduced two positive constants b (four times the repulsive eigen-
volume) and a (representing the attractive part). This general form of Bo(T") has
been confirmed experimentally for many real gases. It now allows to rewrite the
gas law in the following way:

N
pV = N]{:BT(l + BQV) (1.53)
N. N2
=NkgT(1+b—) — — 1.54
T(1+b37) - —; (1.54)

_ NkgT  NZ%a

~ - - (1.55)
1-pX vV
thus T
B a

where v = V/N = 1/p is the volume per particle. This is the van der Waals
equation of state: the volume per particle is reduced from v to v — b due to
excluded volume, and pressure is reduced by the attractive interaction, that is
less momentum is transfered onto the walls due to the cohesive energy.

The van der Waals equation of state is characterized by an instability. For
a stable system, if a fluctuation occurs to higher density (smaller volume), then
a larger pressure should result, which can counteract the fluctuation. Therefore
thermodynamic stability requires

%)

1.
< 0 (1.57)
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However, below the critical temperature T, = (8a)/(27bkp) the van der Waals
isotherms from have sections in which this stability criterion is violated.
This indicates a fluid-fluid phase transition. The transition region can be cal-
culated by the Maxwell construction from thermodynamics. The van der Waals
gas thus predicts the fluid-fluid (gas-liquid) phase coexistence observed at low
temperatures.

a b
A A
T S S
F F
G L / \
[ \
\ f \\
IL \ e lﬁ
> >
p p
c d
A A
P _ p

\
\
®

\

e
I I > T T >
Tt Tc T Tt TC T

Figure 1.2: (a) A van der Waals fluid has both a fluid-fluid coexistence at low density
(due to attraction) and a fluid-solid coexistence at high density (due to eigenvolume).
(b) Combining the fluid-fluid and the fluid-solid phase transitions, we get the complete
phase diagram of a simple one-component system. (c) We now swap T and p axes. (d) By
replacing p by p, we get the phase diagram in its standard form. Two-phase coexistence
regions become lines in this representation. Such a phase diagram is shown e.g. by carbon
dioxide (C'O3). The phase diagram by water (H2O) is similar, but different, because the
solid-fluid coexistence line has a different slope.

Interacting systems also show a phase transition to a solid at high densities.
Together, one gets the generic phase diagram for a one-component fluid. It fits
nicely to the experimental results for simple fluids such as carbon dioxide (C'O2).
However, the phase diagram for water is different, as we will see later.
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1.2 Electrostatics

1.2.1 Electrostatic potential

In electrostatics, the force on a test particle with charge ¢» is given by Coulomb’s

law

o 7 _ -
F= 192 T — B = — VO

dmege 13

where ¢ is the electric permitivity of the vacuum and ¢ is the relative permitivity
of the medium, and where E and @ are the electrostatic field and the electro-
static potential, respectively, generated by the point charge ¢;. Both are additive
quantities (superposition principle), therefore for an arbitrary charge distribution
with volume charge density p(r_j we have:

B — [ampmn -1 — o 1.58

471'606/ TP(T)|F—F/|37_ (1.58)
1 p(i7)

o(7r) = drt 1.59

(") 47reoef " |7 — 7| (1.59)

The foundation of electrostatics is formed by the four Maxwell equations.
These are partial differential equations that usually are derived from experimental
observations. Here we are interested only in electrostatic fields. The Maxwell
equations then come down to:

VxE=0 (1.60)

—\

V- -E=-V20=|-Ad = @ Poisson equation (1.61)

€0€

One can verify this from the explicit representation for E given above.

The Poisson equation implies that charges are the sources for the electrostatic
potential. For instance, the potential of a point charge with volume charge dis-
tribution p(7) = @ - §(F) can directly be calculated from Eq.

spherical
o symmetry 1d*(r®)

r dr?
d(T(I)) A2
= = A1 = &= A1 4+ —
dr T

As an appropriate boundary condition we choose ®(o0) = 0, hence A; = 0. By
comparing our result with the Poisson equation, we finally get

= &(r) = @ 1

 Adwege T

so we recover the Coulomb law. From a mathematical point of view, the Coulomb
law is the Green’s function (or propagator) for the Laplace operator in 3D. The
given solution can be checked to be true because A (1/r) = —47d(r).
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Sometimes it is useful to rewrite Eq. in an integral form, using the diver-
gence theorem known from vector calculus. Denoting the outward-pointing area
element of a closed surface as dA, we find

divergence Poisson
. o theorem - . equation 7
/ Fad = /dFV-E e /dfp(r)
1% 1% €0€
= |/ E dA = @ Gauss law (1.62)
Gl coc

where OV is a closed surface, V its enclosed volume and @y the enclosed charge.

As an example, Eq. can be used to compute the radial component E, of the
electric field of rotationally symmetric charge distributions (note that the angular
components vanish due to spatial symmetry). For a large sphere the Gauss law

reads:
Fai=am?E, =2 & g 9
)% €0€ dmeger

thus we again recover Coulomb’s law.
1.2.2 Multipolar expansion

Consider the work to move a charge g in an electrostatic potential ®:

2 2
W = —/ quF:q/ Vodr = q [®(7) — ©(71)]

1 1

The reference position 7; can be taken to be at infinity, where the potential
vanishes. For a continuous charge distribution, we therefore have

Byt = [ d'p(7)(7)

We now consider a charge distribution localized around the position 7 and perform
a Taylor expansion around this point:

Epor :/df'p(f*) [0(7) + (7 = PVO[) + ... | = Q) — 5 E+ ...

where the monopole () is the overall charge and the dipole is defined as
p= [ dr'p() -7

We now write the interaction potential between two charge distributions. For a
monopole ()1 at the origin interacting with a monopole ()9 at 7, we simply get
back Coulomb’s law:

@1Q21

dmege r

Epot =
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by using the first term and the potential from a monopole. For a dipole p at
interating with a monopole ) at the origin, we use the second term:

Q p-1
Aege 13

Epot:_ﬁ'E:

For two dipoles interacting with each other, we first take the potential resulting
from a dipole at the origin, which can be read off from the preceding equation:

We then get for the interaction

— = ]. 7 - D 3 _».r _’.,’,—.‘
Epot:_pQ'Elz (pl b2 (pl _)(pQ ))

dmepe r3 7o

The dipolar interaction is very prominent in biological systems. In particular,
water carries a permanent dipole and thus water molecules interact with this
potential function.
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Chapter 2

Biomolecular interactions and
dynamics

From the different types of forces known in physics, only the electrostatic (Coulomb)
interaction is directly relevant in biological systems, for two reasons. First it leads
to the Schroedinger equation for atoms and molecules, which explains the sta-
bility and properties of atoms, ions and biomolecules, which are the microscopic
components of biological systems. Second it leads to the interactions and dynam-
ics between these biomolecules; it is this aspect that we discuss in this chapter.
Despite the apparent simplicity of only the electrostatic force being relevant, it
comes in many different forms and combined with statistical physics leads to the
high complexity of biomolecular interactions. The main issue here is that biologi-
cal systems need to be highly dynamic, so they have to bring the strong Coulomb
interaction down to smaller values, for which they use different mechanisms. We
start with a discussion of the mechanical properties of biomaterial and immedi-
ately see that we are dealing with very weak interactions on the order of thermal
energy kpT', rather than with the eV-scale of electronic phenomena. We then
review the details of these interactions and how they can be used in molecular
and Brownian dynamics simulations to predict the behaviour of biomolecules,
most prominently of proteins.

2.1 The importance of thermal energy

Theoretical biophysics uses mathematical models to study the physics of biolog-
ical systems. Biophysical length scales cover many orders of magnitude, from
atoms (Angstrom) and biomolecules (nanometer) through cells (micrometer) and
tissues (centimeter) to multicellular organisms (meter) and populations (kilome-
ters). Biomolecules form supramolecular assemblies like lipid membranes and
the polymer networks of the cytoskeleton. Collectively these materials can be
classified as soft matter, which is a subfield of condensed matter physics. Soft
materials are easily deformed by forces which are sometimes only in the range of
thermal forces at room temperature, as we shall see in the following.

21



N
—~= -

Figure 2.1: Different ways to measure the mechanical rigidity of single cells. (a) Cell
stretching between two microplates. A related setup is pulling with an atomic force
microscope (AFM), especially when one uses a flat cantilever. (b) Cell stretching with
the optical stretcher. A cell is placed between two divergent laser beams. The physical
reason for stretching is similar to the one for optical tweezers, namely momentum transfer
at interfaces with dielectric contrast.

In order to measure the mechanical stiffness or rigidity of cells, different stretch
experiments have been conceived, two of which are illustrated in Fig. To first
order, the mechanical response to a force is an elastic one. A force F' applied
over an area A reversibly stretches the material from length L to length L + AL
(compare Fig. ) Force per area and relative deformation are the essential
quantities to study, because they do not depend on system size. Also we assume
that the first is the cause for the second. We therefore define stress and strain as
follows:

. _F _ N _
cause : stress o= [0] = -5 = Pa
effect: strain €= 5% [e] =1

The simplest possible relation between the two quantities is a linear one:
c=FE-¢ (2.1)

where F is the Young’s modulus or rigidity of the material with [F] = Pa.
For cells, this elastic constant is typically in the order of 10 kPa. This is also
the typical stiffness of connective tissue, including our skin. In general, tissue
stiffness is in this range (on the cellular scale, the softest tissue is brain with 100
Pa, and the stiffest tissue is bone with 50 kPa).

Eq. might be recognized as Hooke’s law, and in fact we can think of the
macroscopic deformation as the effect of the stretching of a huge set of microscopic
springs which correspond to the elastic elements within the material. Eq.[2.I] can

be rewritten as
_E-A

L

thus k = FE - A/L is the effective spring constant of the material. EA is often
called the 1D modulus of the material.

F AL (2.2)
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Let us now assume that the system is characterized by one typical energy U and
one typical length a. A dimensional analysis of E gives E = U/a3. As an example
a crosslinked polymer gel as illustrated in Fig. can be considered.

0 5

Figure 2.2: ) A slab of elastic material of length L and cross sectional area A is
stretched by a force F. The force acting on the material will result in a deformation.
In the case shown here, the box will be stretched by the length AL. (b) Illustration of
a polymer gel with a meshsize a, defining its typical length scale. In this example, the
typical energy U is the elastic energy stored in one cell of the mesh.

The elasticity of cellular material is determined by supramolecular complexes
forming the structural elements of the cell with a typical scale a = 10 nm. There-
fore we get for the typical energy

U=E- a®=10kPa- (10nm)* = 1072 (2.3)

This is in the order of the thermal energy at ambient or body temperature (300 K)
known from statistical mechanics:

J
kpT =1.38 10723 2o 300K =4.1- 1072 J = 4.1pN nm (2.4)

where kg = 1.38 - 10723 % is the Boltzmann constant.

In physical chemistry, one usually refers to moles rather than to single molecules:

kJ kcal
kpT -Noa=R-T =252 =0.6 - (2.5)
mol mol
with Ny = 6.002 - 10?3 being Avogadro’s number and R = Ny - kg = 8.31

being the molar gas constant.

mol K

Comparing the Young’s modulus of biological material to that of an atomic crys-
tal, it becomes clear why we speak of "soft" matter. The energy scale in a crystal
usually is in the range of 1eV ~ 40 kT and it has a typical length a of a few A.
This yields a Young’s modulus in the order of 100 GPa. The most rigid material
known today is graphene with a Young’s modulus of TPa; therefore it has been
suggested to be used for building a space elevator.

From the range of the typical energy in supramolecular structures (compare
Eq. 2.3) it can be concluded that biological material is held together by many
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’ Chemical Bond ‘ Bond Energy

c-cC 140 kT
c=C 240 kT
c=C 330 kT
H-CHO 144 kT
H-CN 200 kT

Table 2.1: Some chemical bonds and their corresponding bond energies (at T~ 300 K)

weak interactions. However, U cannot be smaller than kT, because otherwise
the entropy of the system would destroy the structure.

Cells are elastic only on the timescale of minutes and later start to flow like
viscoelastic material. The constitutive relation of a viscous system is

o=1-¢é (2.6)

and a typical value for the viscosity of cells is 1 is 10° Pa s, which is 8 orders
of magnitude larger than for water. This high viscosity comes from the polymer
networks inside the cell. The corresponding time scale is

7 =n/E =10° Pa s/kPa = 100s (2.7)

and corresponds to the time the system needs to relax from the external per-
turbations by internal rearrangements. However, these consideration are only
relevant on cellular scales. If we make rheological experiments on the scale of
molecules, then we are back to the viscosity and relaxation times of water.

2.2 Review of biomolecular interactions

2.2.1 Covalent (”chemical”) bonding

Due to the small length scale of a few A on which covalent interactions occur,
one needs quantum mechanics to explain chemical bonding. Usually, calcula-
tions concerning chemical bonding are performed using density functional theory
(DFT) which was developed by the physicist Walter Kohn in 1965 (he received
the Nobel prize in chemistry in 1998).

The energy of chemical bonds is usually in the range of ~ 100kgT (several
eV = 40kpT, comparable to energy scales in solids) and does not only depend
on the kind of bonding (single bond, double bond,...), but also on the electronic
environment (Tab. [2.1).

2.2.2 Coulomb (”ionic”) interaction

Most interactions on biophysical scales are based on the Coulomb interaction,
whose central law is Coulomb’s law:

4192 €0 : permittivity of vacuum

_ 2.8
deger € : dielectric constant (28)
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with the resulting force
au q192
=—— ~ + 5
dr r
which is repulsive if the two electric charges ¢q; and g2 have the same sign and
attractive otherwise.

(2.9)

The Coulomb interaction is a "long-ranged" interaction in 3D. To illustrate this,
consider the cohesive energy density of a bulk material of diameter L:

L 1 L 3—n
Usor / dr r2r—n ~ 3L = g3 () -1 (2.10)
a

a

where a is a microscopic cutoff due to the Born repulsion. Taking the limit L. — oo
in Eq. shows that U, does not diverge for n > 3, corresponding to a short-
ranged interaction where only the local environment significantly contributes to
the force on a point-like object. On the other hand, for n < 3 the interaction
is long-ranged which means that remote objects cannot be neglected. This is
especially true for a pure Coulomb interaction (the situation is even worse for
gravitation, which not only has n = 1 like the Coulomb interaction, but moreover
does have only positive charges, so there is not cancellation due to opposite
charges). For the special case n = 3, we find a logarithmic divergence Uy o
log(L/a).

Biological interactions are usually short-ranged for several reasons. One impor-
tant aspect is that biological systems always operate in water, thus charges such
as ions are shielded due to the polarization of the water molecules and, hence, the
Coulomb interaction is weakened. This effect is expressed by the large dielectric
constant of water (e = 80). Thus the interaction strength is reduced by almost
two orders of magnitude in water. Generally, the more polarizable a medium, the
larger is its dielectric constant:

1 air
€= 2 hydrocarbon (oil, fatty acids,...)
80 water

Temperature also has an influence on the dielectric constant. With increasing
T, the constant decreases due to the thermal motion which disturbs the order in
the surrounding medium. This leads to the surprising effect that the interaction
can become effectively stronger at higher temperature because polarization goes
down.

Due to the difference in dielectric constant of water and hydrocarbons, biological
membranes are natural capacitors. This electrical property forms the basis of
electrophysiology and the neurosciences.

Biological systems frequently use metal ions such as Ca®t, Mg?* etc. In a solid
crystal the ionic interaction is as strong as chemical bonding. For instance, the
energy of two neighbouring ions in a sodium (Na*) chloride (C1™) crystal with
a lattice constant a = 2.81 A is U = =200 kT (Eq. mwith g1 = —q2 =e). For
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Figure 2.3: (a) Diameter of a typical cell in comparison to the thickness of the biological
lipid bilayer membrane. Note the very strong separation of length scales: a very thin oily
layer holds together the very large cell. (b) There is a drop of € across the membrane.
The situation is similar to two metal sheets separated by plastic. Thus the membrane
forms a capacitor.
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the total energy density of a crystal, one has to sum over all interactions between
nearest, next-nearest,... neighbours within the crystal. Let us first consider only

one row (compare Fig. 2.4h).

Vv = & 2<1+1 . )— 2 o (2.11)

" Arega 2 3 ) Adwepa . ’
Although this summation is mathematically ill-defined (Riemann showed that
changing the order of the summation can give any desired value), physically it
makes sense. Continuing this calculation to the full three-dimensional crystal, we
get

2N keal
Utot = — uﬂ yr— —206 — (2.12)
Madelung
constant

From the negative sign of the total energy in Eq. 2:12]it can be concluded that
the crystal is stable. The vaporization energy of a NaCl crystal was experimen-
tally determined to be 183 Ifggll Hence, although Eq. is the result of strong
assumptions, it nevertheless agrees relatively well with the experimental value.

2.2.3 Dipolar and van der Waals interactions

Many biomolecules do not have a net charge, but rather a charge distribution.
In the sense of a multipolar expansion, the most important contribution is the
dipolar interaction. For the interaction of two identical dipoles like in Fig. 2.4p,
one gets for the interaction energy:

U=l s (@7 (7)) (213)

 Awege 3

f(©,8,...)
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Figure 2.4: (a) Schematic drawing of a simple ionic crystal (such as NaCl). (b) Two
dipoles with dipole moments p; = e-a-nj and p, = e-a-ns , respectively.

a%@@@@@@bQ@x';fg

Figure 2.5: (a) f-values of different geometrical arrangements of two dipoles. The more
negative the f-value becomes, the more favourable is the arrangement. (b) Interaction
between a single charge and a rotating dipole.

The factor f(0©,¢,...) does not depend on distance, but on all angles involved.
It is thus determined by the geometrical arrangement of the two dipoles and
its sign determines whether a certain orientation is favourable or not. Fig. 2.5
shows some dipole arrangements and their corresponding f-values. The most
favorable orientation is a head-tail-alignment. In water, but also in dipolar fluids
and ferrofluids, this leads to dipole chains, network formation and spontaneous
polarization.

The interaction between charge distributions is further weakened by thermal mo-
tion. If the dipoles are free to rotate, the interaction becomes weaker. For
example, if a charge Q is separated by a distance r from a dipole with dipole
moment i = q - a, as depicted in Fig. the electrostatic energy of the system
is given by

Qu
Ur,0)=———- © 2.14
(7,0) = s cos(O) (214)
P orientation factor
0

The dipole is rotating due to thermal forces, that is why we calculate an effective
interaction law by a thermal average weighted with the Boltzmann factor:

S sin(©)dOU (7, 0) exp (—H52)
7 sin(©)d6 exp (~UE)

U7 = (2.15)
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U(7,0)

If we assume that the interaction is weak compared to thermal energy, _kT <

1, then we can simplify the above expression:
foﬂ —d(cos(©))Uy cos(O) (1 — UO%ST(@))
T cos(©
J —d(cos(@)) (1 - o))

_ w1 (Qu>21
 3kgT  3kpT \4dmepe rd

v =

(2.16)

So we see the change in the interaction potential from %2 for a static dipole to
%4 for a rotating one. The thermal motion weakens the Coulomb interaction also
for dipole-dipole interaction. A similar calculation can be made for dipoles that
are free to rotate with a centre-to-centre separation of r. We then obtain

= 2 12 )2 1
= — - — 2.1
) 3kgT (47‘1’606 76 (2.17)

Thus two permanent dipoles interact with an attractive and short-ranged 1/7% -
potential.

Figure 2.6: Lenard-Jones Potential. We see two different regimes in the interaction

between two particles at distance r — the attraction regime o r—% and repulsion regime
—12

oxrTe,

A universal and short-ranged 1/r%-attraction also arises for completely neutral
atoms due to quantum fluctuations. A neutral atom can always form a dipole by
quantum fluctuations, and this induces another dipole in a near-by atom, with
an interaction potential

«

U:ﬂﬁ:—dﬂﬂw—ﬁ (2.18)

Here « is the polarizability and E(7) ~ %3 is the electric field of a dipole. Even

spherical and uncharged gas atoms like argon condense into liquids at very low
temperatures due to these “dispersion forces” (Fritz London 1937).

The different %G—interactions are collectively called “van der Waals forces”. As a
convenient model for these forces one often uses the “Lenard-Jones potential”:

ﬂ (2.19)

U(r) = e ()12 - (

r
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As one can see in Fig. the interaction between atoms is attractive, if they are
situated at distances greater than a certain distance o. If the two particles come
closer and closer together, they start to repel each other due to the Born repulsion.
This part of the interaction curve is described by the 1/r!2 - potential. The 12th
power was not measured, but is rather an arbitrary dependency accepted for
convenience. For argon, the parameters are € = 0.4 kgT and o = 3.4A.

2.2.4 Hydrophilic and hydrophobic interactions
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Figure 2.7: (a) A network of water molecules connected by hydrogen bonds. (b) Tetrahe-
dral structure of ice and water, due to the hydrogen bonds between the water molecules.

Much of the complexity of biological systems arises from the peculiar properties
of water, in particular from its tendency to form hydrogen bonds. In a hydro-
gen bond, a hydrogen atom is situated between two other atoms. Water forms
hydrogen bonds with itself, as depicted in Fig. Because hydrogen bonds can
open and close, a lot of entropy is stored in such networks. In three dimensions,
the water networks are locally tetrahedral, as depicted in Fig. This means
that every water molecule has only four neighbors. In comparison, argon atoms
have 10 and in close packing structure there are 12.

While the van der Waals interaction tends to condense water molecules, the
network of hydrogen bonds creates a more open structure. Because the second
effect dominate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>