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Important numbers

Quantity Meaning Value
NA Avogadro constant 1 mol = 6.022 × 1023

Da mass of hydrogen atom 1 g/mol = 1.6 × 10−24g

M molar mol / l ≈ 1/nm3

nM nanomolar ≈ 1/µm3

water concentration 55 M
cellular ATP / ADP / Pi conc mM / 10 µM / mM

cS physiological salt concentration 100 mM
pH pH in human cell 7.34
λ de Broglie or thermal wavelength 0.1 A
lDH Debye Hückel screening length 1 nm
kBT thermal energy 4.1 × 10−21J = 2.5kJ/mol =

0.6kcal/mol = 4.1pNnm =
25meV = eV/40

∆V voltage difference kBT/e = 25mV
ℏω red photon (700 nm) 70kBT
ℏω blue photon (450 nm) 110kBT

ATP-hydrolysis 20 − 30kBT
work in motor cycle 8 nm × 5 pN = 10 kBT
metabolism of glucose 30 ATP molecules
number of human cells 3 × 1013

regeneration rate human cells 107 Hz
human metabolic rate 90 W = 2.000 kcal / day
size of human genome 3.2 Gbp
length of human genome 2 × 3.2G× 0.34nm = 2m
mutation rate per bp humans 10−8

mutation rate per bp HIV 3 10−5

D diffusion constant small protein (10µm)2/s
v velocity molecular motor µm/s

velocity blood flow capillaries 0.3 mm/s
velocity blood flow aorta 0.4 m/s
velocity action potential 10-100 m/s
thickness plasma membrane 4 nm
tension plasma membrane 0.3 pN/nm = 0.3 mN/m
cortical tension 2 nN/µm = 2 mN/m
bending rigidity plasma membrane 20 kBT
d / lp DNA 2 nm / 50 nm
d / lp actin 7 nm / 17 µm
d / lp intermediate filaments 10 nm / 200 nm - 1 µm
d / lp microtubule 25 nm / 1 mm

6



Some history (NP = Nobel Prize)

1665 Hooke’s book Micrographia shows biological cells
1774 Franklin’s oil drop experiment demonstrates the nanometer size of

molecules
1827 thermal motion of microscopic particles observed by Brown
1873 Plateau experiments on soap films, minimal surfaces
1876 Koch discovered bacteria, germ theory of disease (NP 1905)
1905 Einstein paper on Brownian motion (NP 1921)
1906 Smoluchowski theory on Brownian motion
1908 Langevin equation
1910 Perrin experiments on colloids and Avogadro constant (NP 1926)
1917 Fokker-Planck equation
1920 Staudinger shows that polymers are chain molecules (NP 1953)
1931 Ruska invented the electron microscope (NP 1968)
1940 Kramers reaction-rate theory
1941 DLVO theory for colloids
1944 Onsager solution of the 2D Ising model (NP 1968)
1952 Hodgkin and Huxley papers on action potentials (NP 1963)
1953 structure of DNA by Watson and Crick (NP 1962)
1954 Huxley sliding filament hypothesis for muscle (could have earned him a

second NP)
1958 central dogma of molecular biology by Crick
1959 X-ray structure of hemoglobin by Perutz and Kendrew (NP 1962)
1960 FitzHugh and (later) Nagumo phase plane analysis of Hodgkin Huxley

model
1965 Density functional theory by Walter Kohn (NP 1998)
1969 Israelachvili surface force apparatus
1969 Oesterhelt discovers light-sensitive proton pumps in bacteria; this is the

starting point of optogenetics
1970 Canham curvature elasticity explains discocyte shape
1972 Warshel and Karplus molecular dynamics of biomolecules (NP 2013)
1973 Helfrich Hamiltonian with spontaneous curvature
1976 Neher and Sakmann Nature paper on patch clamp technique for ion chan-

nels (NP 1991)
1976 Roger Tsien discovers the Green Fluorescent Protein (GFP) (NP 2008)
1978 Helfrich interaction between membranes
1978 Doi and Edwards reptation model for polymer melts
1979 book Scaling Concepts in Polymer Physics by de Gennes (NP 1991)
1981 Binnig and Rohrer invent scanning probe microscopy (NP 1986)
1981 Evans micropipette aspiration of red blood cells
1982 de Gennes and Taupin persistence length of membranes
1983 Howard Berg book on Random Walks in Biology
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1985 Peliti and Leibler renormalization of bending rigidity
1986 Safinya and Roux X-ray on membranes
1986 Lipowsky and Leibler unbinding transition of membranes
1986 book The Theory of Polymer Dynamics by Doi and Edwards
1990 Seifert and Lipowsky paper on vesicle adhesion
1991 spontaneous curvature phase diagram of vesicles (Seifert et al.)
1994 book Statistical Thermodynamics of Surfaces, Interfaces, and Membranes

by Safran
1994 area difference elasticity (ADE) model for vesicles (Miao et al.)
1995 Marko and Siggia model for stretching the WLC
1997 NP physics 1997 for laser cooling includes Steven Chu, who also works

on biomolecules
1997 RMP review by Jülicher, Armand and Prost on molecular motors
1998 MacKinnon Science paper on the structure of the K+ channel (NP 2003)
2002 Lim et al. PNAS paper on shape of red blood cells
2005 Karl Deisseroth induce action potentials by light (neuronal optogenetics)
2014 NP chemistry for super-resolution microscopy to Eric Betzig, Stefan Hell

and Bill Moerner
2016 NP chemistry for the synthetic molecular motors (still missing is one on

biological molecular motors)
2017 Stefan Hell invented MINFLUX
2018 NP physics for optical tweezers to Arthur Ashkin
2021 NP physics for complex systems to Giorgio Parisi
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Chapter 1

Physics background

In this script on theoretical biophysics we will make use of concepts and methods
from many different fields of physics, which we will introduce when they are
needed. However, there are two parts of basic physics which we will need right
from the start, and therefore we briefly review them in this chapter. The first
one is statistical mechanics, and the second one is electrostatics.

1.1 Statistical mechanics

1.1.1 The microcanonical ensemble

The most basic principle of statistical physics is the fundamental postulate that
states that a closed system maximizes its entropy. One way to arrive at this
conclusion is by starting from information theory. This approach to statistical
mechanics has been pioneered by Claude Shannon (founder of information theory)
and Edwin Jaynes (inventor of the maximum entropy principle). We start from
the Shannon entropy

S = −
∑
i

pi ln pi (1.1)

where i numbers all states of the system and pi is the probability of a state with∑
i pi = 1. By multiplying with kB, we would get the physical (or Gibbs) entropy

S. For the microcanonical ensemble, we would have pi = 1/Ω being constant (Ω
is the number of states) and thus

S = kB ln Ω (1.2)

which is the famous formula by Boltzmann, which you also find on his grave at
the Wiener Zentralfriedhof. One can show that entropy S is a unique measure for
the disorder or information content in the probability distribution {pi}. From a
more physics point of view, it is a measure for phase space volume that is additive
over subsystems. A system that explores all possible states to an equal extent has
maximal entropy. The microcanonical ensemble assumes that a physical system
at equilibrium has exactly this property. The physical basis of this postulate is
not completely clear, but a hand-waving explanation is that all dynamical systems
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develop more structure with time, because they sample more of interaction space,
and thus higher order correlations develop that lead to apparent disorder on the
coarse-grained scale on which we can observe them.

1.1.2 The canonical ensemble

In general, biological systems are not in equilibrium and driven by energy that
is supplied by the environment (food, light, etc). However, often state variables
change only slowly and therefore the system can be described by the laws of
thermodynamics and statistical physics, albeit often only on local and temporary
scales. Biological systems operate at relatively high and constant (body or room)
temperature and therefore the canonical ensemble is relevant, in which we do not
prescribe energy (like in the microcanonical ensemble), but averaged energy.
We now want to maximize entropy under the constraint of constant average en-
ergy, ⟨E⟩ = U = ∑

iEipi. We add normalization and average energy constraints
with Lagrange multipliers to the Shannon entropy, giving the function

S = −
∑
i

pi ln pi − β
∑
i

Eipi − α
∑
i

pi (1.3)

and maximize it

δS = −
∑
i

(ln pi + 1 + α+ βEi) δpi = 0 (1.4)

leading to
pi = e−(1+α+βEi) (1.5)

From the normalization we get

e−(1+α) = const = 1
Z

(1.6)

with
Z =

∑
i

e−βEi (1.7)

From the average condition U = (1/Z)∑iEie
−βEi we get that β should be a

function of U . We can make the connection to temperature T and identify β =
1/(kBT ). Now we have the Boltzmann distribution:

pi = 1
Z
e−βEi (1.8)

where Z is the partition sum. For a continuous state space, we would replace the
sum over states by an integral over states. We conclude that the canonical dis-
tribution is the one that maximizes entropy under the condition that the average
energy has a fixed (observed) value.
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1.1.3 The grandcanonical ensemble

We now generalize to the case of particle exchange with a reservoir, for example
molecules in a bulk fluid that can adsorb or bind to a surface. Other examples
might be the molecules in an open beer bottle lying on the floor of a lake or
the molecules in the cell that is in exchange with its surrounding medium. We
now have a second side constraint, namely for the average number of particles,
⟨N⟩ = ∑

iNipi, resulting in the function

S = −
∑
i

pi ln pi − β
∑
i

Eipi − α
∑
i

pi − γ
∑
i

Nipi (1.9)

where we have introduced a third Lagrange parameter γ. Variation of this func-
tion gives

δS = −
∑
i

(ln pi + 1 + α+ βEi + γNi) δpi = 0 (1.10)

With the same arguments as above, we can identify γ = −βµ with the chemical
potential µ. We then get

ZG =
∑
i

e−β(Ei−µNi) (1.11)

for the grandcanonical partition sum and

pi = 1
ZG

e−β(Ei−µNi) (1.12)

for the grandcanonical distribution.

1.1.4 The harmonic system

We now consider a system with one harmonic degree of freedom at constant
temperature (canonical ensemble). This could be for example a particle in a
one-dimensional laser trap with a harmonic potential E = 1

2kx
2, where k is the

spring constant (trap stiffness) and x is the one-dimensional state space coordi-
nate (position). The corresponding partition sum is

Z =
ˆ ∞

−∞
dx exp(−βE) =

ˆ ∞

−∞
dx exp(−β 1

2kx
2) =

(2πkBT
k

) 1
2

(1.13)

where β = 1/(kBT ) and we have evaluated the Gaussian integral
´
dxe−ax2 =

(π/a)1/2. The corresponding correlation function is the mean squared displace-
ment (MSD):

< x2 > = 1
Z

ˆ
dxx2 exp(−βk2x

2) (1.14)

= 1
Z

−2
β
∂kZ = −2

β
∂k lnZ = kBT

k
(1.15)

Thus the larger temperature T and the smaller trap stiffness k, the larger the
excursions of the particle. In fact this relation is used to calibrate laser traps:

k = kBT

< x2 >
(1.16)
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Figure 1.1: Laser traps as harmonic systems. (a) A dielectric bead is attracted to the
center of the laser beam. The force F is proportional to the distance from this center.
For calibration of trap stiffness k, one uses the relation < x2 >= kBT/k for a harmonic
system. This is the principle of the optical tweezer as developed in the 1970s by Arthur
Ashkin at Bell Labs (Nobel prize physics 2018). The optical tweezer can be used e.g. to
measure the force-velocity relation of a molecular motor. Using a feedback system that
keeps force F constant, one can measure the corresponding velocity v of the motor. (b)
Force-velocity relation for the molecular motor kinesin as measured by Mark J. Schnitzer,
Koen Visscher and Steven M. Block, Force production by single kinesin motors, Nature
Cell Biology 2, 718 - 723, 2000. The free velocity (without force) is v0. The larger F ,
the small v. Eventually the motor gets stalled (v = 0) at the stall force Fs.

Because < x >= 0, the variance of position is

σ2
x =< (x− < x >)2 >=< (x2 − 2x < x > + < x >2) > (1.17)

=< x2 > − < x >2=< x2 >= kBT

k
(1.18)

The average energy is

< E >= 1
Z

ˆ
dxE exp(−βE) = −1

Z
∂βZ = −∂β lnZ = kBT

2 (1.19)

This is an example of the equipartition theorem: every harmonic degree of free-
dom carries an energy of kBT/2. Here we have one degree of freedom, for a
harmonic oscillator it would be two (potential and kinetic energy) and for an
ideal gas with N particles it would be 3N (only kinetic energy, but N particles
in three dimensions). The specific heat is constant:

cV = ∂T < E >= kB
2 (1.20)

For the variance of the energy we find

σ2
E =< E2 > − < E >2= 1

Z
∂2
βZ − ( 1

Z
∂βZ)2 (1.21)

= ∂2
β lnZ = −∂β < E >= (kBT )2

2 (1.22)
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For the harmonic system, the free energy follows as

F = −kBT lnZ = kBT

2 ln( k

2πkBT
) = −kBT

2 ln(2π < x2 >) (1.23)

In field theory, this corresponds to the free energy of a Gaussian theory. The
harmonic system is the simplest approximation for a bound system and we will
encounter it frequently in this script.

1.1.5 The ideal gas

Biomolecules are always in solution and if their concentration is low, the solution
is diluted and can be described as an ideal gas. We consider N point particles in
a volume V at temperature T (canonical ensemble). The partition sum is

Z = 1
N !h3N

N∏
i=1

ˆ
dp⃗idq⃗ie

−βH(p⃗,r⃗) = zN

N ! (1.24)

where H = ∑
i p⃗

2
i /2m is the ideal gas Hamiltonian (only kinetic energy), p⃗i and

q⃗i are momenta and positions, respectively, of the different particles (1 ≤ i ≤
N). h is Planck’s constant. It enters here because the different possible states
are assumed to be squeezed together in phase space as closely as permitted by
Heisenberg’s uncertainty principle, ∆p∆q ≥ h. The factor N ! accounts for the
indistinguishability of the particles. z is the partition sum for one particle and
again it is simply a Gauss integral:

z =
ˆ
dp⃗dq⃗

h3 e−β p⃗2
2m = V

h3 (2πkBTm)3/2 = V

λ3 (1.25)

where

λ =
√

h2

2πmkBT
(1.26)

is the thermal (de Broglie) wavelength. A typical value for an atom is 0.1
Angstrom and below this scale, quantum mechanics become relevant. The free
energy follows with the help of Stirling’s formula lnN ! ≈ N lnN −N for large N
as

F = −kBT lnZ = −kBT ln
(
zN

N !

)
= −kBTN

(
ln
(

V

λ3N

)
+ 1

)
(1.27)

The Euler fundamental form for the Helmholtz free energy F = F (N,V, T ) is

dF = −SdT − pdV + µN (1.28)

From the statistical mechanics result for the free energy F = F (N,V, T ), we can
thus now calculate the pressure p as

p = −∂V F = kBT
N

V
⇒ pV = NkBT (1.29)
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The result is known as the thermal equation of state or simply as the ideal gas
law.
The average energy is the caloric equation of state:

< E >= −∂β lnZ = −N∂β ln β−3/2 = 3N
2 kBT (1.30)

which is another example of the equipartition theorem (3N harmonic degrees of
freedom).
Finally we calculate the chemical potential as

µ = ∂NF = kBT ln
(
λ3N

V

)
= kBT ln

(
p

p0

)
(1.31)

with p0 = kBT/λ
3 (note that from the three terms, two have canceled each other).

Thus chemical potential and pressure are related logarithmically.
We can write our fundamental equation F (T, V,N) and the three equations of
state in a very compact way using density ρ = N/V :

f = F

V
= kBTρ

(
ln(ρλ3) − 1

)
(1.32)

p = ρkBT (1.33)

e = < E >

V
= 3

2ρkBT (1.34)

µ = kBT ln
(
ρλ3

)
(1.35)

1.1.6 The law of mass action

From the ideal gas, we get for the chemical potential of species i in dilute solution:

µi = µi0 + kBT ln
(
ci
ci0

)
(1.36)

Thus the change in Gibbs free energy at constant T and constant p is

∆G =
∑
i

∂G

∂Ni
∆Ni =

∑
i

µi∆Ni =
∑
i

µiνi∆N (1.37)

where νi are the stoichiometric coefficients of the reaction and ∆N is the reaction
coordinate. At equilibrium, ∆G = 0 and ∆N drops out:

0 =
∑
i

νi

(
µi0 + kBT ln

(
ci,eq
ci0

))
(1.38)

From this we get the law of mass action:

Πic
νi
i,eq = (Πic

νi
i0) e−β

∑
i
νiµi0 = const = Keq (1.39)

where we have defined the equilibrium constant Keq.

14



We next consider a reaction with ∆N = 1. The corresponding change in Gibbs
free energy is

∆G = kBT ln
(

Πcνi
i

Πcνi
i,eq

)
(1.40)

This leads to

∆G = ∆G0 + kBT ln (Πcνi
i ) , ∆G0 = −kBT lnKeq (1.41)

with the understanding that to get a dimensionless argument of the logarithm,
we might have to insert some reference concentration (typically 1 M).
A very important example is ATP-hydrolysis, for which we have νATP = −1,
νADP = +1 and νPi = +1. Thus we get

∆G = ∆G0 + kBT ln
( [ADP ][Pi]

[ATP ]

)
(1.42)

With a reference concentration of 1M , the first term is −12.5kBT . For cellular
concentrations ([ADP ] = 10µM, [Pi] = mM, [ATP ] = mM), the second term is
−11.5kBT , so together we have ∆G = −24kBT .

1.1.7 Phase transitions

If the concentration of a solution increases, the particles start to interact and
form a real gas. We briefly discuss the van der Waals gas as the most prominent
example of a real gas that is undergoing phase transitions. For particles inter-
acting through some potential U , the partition sum can be divided into an ideal
part and an interaction part:

Z = ZidealZinter (1.43)

where
Zideal = V N

N !λ3N (1.44)

as above and

Zinter = 1
V N

ˆ (
N∏
i=1

dq⃗i

)
e−βU({q⃗i}) (1.45)

This term does not factor into single particle functions because the potential U
couples all coordinates. Yet all thermodynamic quantities separate into an ideal
gas part and a correction due to the interactions. In particular, we have

F = −kBT lnZ = Fideal + Finter (1.46)
p = −∂V F = pideal + pinter (1.47)

The formulae for the ideal expressions have been given above. For the pressure,
one expects that the correction terms should scale at least in second order in
ρ, because two particles have to meet in order to give a contribution to this
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term. This suggests to make the following ansatz of a Taylor expansion in ρ, the
so-called virial expansion:

pinter = kBT
∞∑
i=2

Bi(T )ρi (1.48)

where the Bi(T ) are called virial coefficients. For many purposes, it is sufficient to
consider only the first term in this expansion, that is the second virial coefficient
B2(T ). We then have

F = NkBT
[
ln(ρλ3) − 1 +B2ρ

]
(1.49)

p = ρkBT [1 +B2ρ] (1.50)

For pairwise additive potentials, one can show

B2(T ) = −1
2

ˆ
dr⃗
(
e−βu(r⃗) − 1

)
(1.51)

For the van der Waals model, one considers two effects: a hard core repulsion
with particle diameter d and a square well attractive potential with an interaction
range δ and a depth ϵ. Then one gets, in the limit δ/d ≪ 1 and βϵ ≪ 1,

B2(T ) ≈ 2π
3 d3 − 2π(d2δ) ϵ

kBT
= b− a

kBT
(1.52)

where we have introduced two positive constants b (four times the repulsive eigen-
volume) and a (representing the attractive part). This general form of B2(T ) has
been confirmed experimentally for many real gases. It now allows to rewrite the
gas law in the following way:

pV = NkBT (1 +B2
N

V
) (1.53)

= NkBT (1 + b
N

V
) − N2a

V
(1.54)

≈ NkBT

1 − bNV
− N2a

V
(1.55)

thus
p = kBT

(v − b) − a

v2 (1.56)

where v = V/N = 1/ρ is the volume per particle. This is the van der Waals
equation of state: the volume per particle is reduced from v to v − b due to
excluded volume, and pressure is reduced by the attractive interaction, that is
less momentum is transfered onto the walls due to the cohesive energy.
The van der Waals equation of state (1.56) is characterized by an instability. For
a stable system, if a fluctuation occurs to higher density (smaller volume), then
a larger pressure should result, which can counteract the fluctuation. Therefore
thermodynamic stability requires

∂p

∂V
< 0 (1.57)
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However, below the critical temperature Tc = (8a)/(27bkB) the van der Waals
isotherms from (1.56) have sections in which this stability criterion is violated.
This indicates a fluid-fluid phase transition. The transition region can be cal-
culated by the Maxwell construction from thermodynamics. The van der Waals
gas thus predicts the fluid-fluid (gas-liquid) phase coexistence observed at low
temperatures.

Figure 1.2: (a) A van der Waals fluid has both a fluid-fluid coexistence at low density
(due to attraction) and a fluid-solid coexistence at high density (due to eigenvolume).
(b) Combining the fluid-fluid and the fluid-solid phase transitions, we get the complete
phase diagram of a simple one-component system. (c) We now swap T and ρ axes. (d) By
replacing ρ by p, we get the phase diagram in its standard form. Two-phase coexistence
regions become lines in this representation. Such a phase diagram is shown e.g. by carbon
dioxide (CO2). The phase diagram by water (H2O) is similar, but different, because the
solid-fluid coexistence line has a different slope.

Interacting systems also show a phase transition to a solid at high densities.
Together, one gets the generic phase diagram for a one-component fluid. It fits
nicely to the experimental results for simple fluids such as carbon dioxide (CO2).
However, the phase diagram for water is different, as we will see later.
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1.2 Electrostatics

1.2.1 Electrostatic potential

In electrostatics, the force on a test particle with charge q2 is given by Coulomb’s
law

F⃗ = q1q2
4πϵ0ϵ

· r⃗
r3 = q2E⃗ = −q2∇⃗Φ

where ϵ0 is the electric permitivity of the vacuum and ϵ is the relative permitivity
of the medium, and where E⃗ and Φ are the electrostatic field and the electro-
static potential, respectively, generated by the point charge q1. Both are additive
quantities (superposition principle), therefore for an arbitrary charge distribution
with volume charge density ρ(r⃗) we have:

E⃗ =
1

4πϵ0ϵ

ˆ
dr⃗′ ρ(r⃗′)

r⃗ − r⃗′
|r⃗ − r⃗′|3

= −∇⃗Φ (1.58)

Φ(r⃗) =
1

4πϵ0ϵ
´
dr⃗′

ρ(r⃗′)
|r⃗ − r⃗′|

(1.59)

The foundation of electrostatics is formed by the four Maxwell equations.
These are partial differential equations that usually are derived from experimental
observations. Here we are interested only in electrostatic fields. The Maxwell
equations then come down to:

∇⃗ × E⃗ = 0 (1.60)

∇⃗ · E⃗ = −∇2Φ = −∆Φ =
ρ(r⃗)
ϵ0ϵ

Poisson equation (1.61)

One can verify this from the explicit representation for E⃗ given above.
The Poisson equation implies that charges are the sources for the electrostatic
potential. For instance, the potential of a point charge with volume charge dis-
tribution ρ(r⃗) = Q · δ(r⃗) can directly be calculated from Eq. 1.61:

∇2Φ

spherical
symmetry

=
1
r

d2(rΦ)
dr2 = 0

⇒
d(rΦ)
dr

= A1 ⇒ Φ = A1 +
A2

r

As an appropriate boundary condition we choose Φ(∞) = 0, hence A1 = 0. By
comparing our result with the Poisson equation, we finally get

⇒ Φ(r) =
Q

4πϵ0ϵ
·

1
r

so we recover the Coulomb law. From a mathematical point of view, the Coulomb
law is the Green’s function (or propagator) for the Laplace operator in 3D. The
given solution can be checked to be true because ∆ (1/r) = −4πδ(r).
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Sometimes it is useful to rewrite Eq. 1.61 in an integral form, using the diver-
gence theorem known from vector calculus. Denoting the outward-pointing area
element of a closed surface as dA⃗, we find

ˆ
∂V
E⃗ dA⃗

divergence
theorem

=
ˆ
V
dr⃗ ∇⃗ · E⃗

Poisson
equation

=
ˆ
dr⃗

ρ(r⃗)
ϵ0ϵ

⇒
´
∂V E⃗ dA⃗ =

QV

ϵ0ϵ
Gauss law (1.62)

where ∂V is a closed surface, V its enclosed volume and QV the enclosed charge.
As an example, Eq. 1.62 can be used to compute the radial component Er of the
electric field of rotationally symmetric charge distributions (note that the angular
components vanish due to spatial symmetry). For a large sphere the Gauss law
reads: ˆ

∂V
E⃗ dA⃗ = 4πr2Er =

QV

ϵ0ϵ
⇒ Er =

QV

4πϵ0ϵr2

thus we again recover Coulomb’s law.

1.2.2 Multipolar expansion

Consider the work to move a charge q in an electrostatic potential Φ:

W = −
ˆ r⃗2

r⃗1

qE⃗dr⃗ = q

ˆ r⃗2

r⃗1

∇⃗Φdr⃗ = q [Φ(r⃗2) − Φ(r⃗1)]

The reference position r⃗1 can be taken to be at infinity, where the potential
vanishes. For a continuous charge distribution, we therefore have

Epot =
ˆ
dr⃗′ρ(r⃗′)Φ(r⃗′)

We now consider a charge distribution localized around the position r⃗ and perform
a Taylor expansion around this point:

Epot =
ˆ
dr⃗′ρ(r⃗′)

[
Φ(r⃗) + (r⃗′ − r⃗)∇⃗Φ(r⃗) + . . .

]
= QΦ(r⃗) − p⃗ · E⃗ + . . .

where the monopole Q is the overall charge and the dipole is defined as

p⃗ =
ˆ
dr⃗′ρ(r⃗′)(r⃗′ − r⃗)

We now write the interaction potential between two charge distributions. For a
monopole Q1 at the origin interacting with a monopole Q2 at r⃗, we simply get
back Coulomb’s law:

Epot = Q1Q2
4πϵ0ϵ

1
r
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by using the first term and the potential from a monopole. For a dipole p⃗ at r⃗
interating with a monopole Q at the origin, we use the second term:

Epot = −p⃗ · E⃗ = Q

4πϵ0ϵ
p⃗ · r⃗
r3

For two dipoles interacting with each other, we first take the potential resulting
from a dipole at the origin, which can be read off from the preceding equation:

Φ = 1
4πϵ0ϵ

p⃗1 · r⃗
r3

We then get for the interaction

Epot = −p⃗2 · E⃗1 = 1
4πϵ0ϵ

(
p⃗1 · p⃗2
r3 − 3(p⃗1 · r⃗)(p⃗2 · r⃗)

r5

)
The dipolar interaction is very prominent in biological systems. In particular,
water carries a permanent dipole and thus water molecules interact with this
potential function.
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Chapter 2

Biomolecular interactions and
dynamics

From the different types of forces known in physics, only the electrostatic (Coulomb)
interaction is directly relevant in biological systems, for two reasons. First it leads
to the Schroedinger equation for atoms and molecules, which explains the sta-
bility and properties of atoms, ions and biomolecules, which are the microscopic
components of biological systems. Second it leads to the interactions and dynam-
ics between these biomolecules; it is this aspect that we discuss in this chapter.
Despite the apparent simplicity of only the electrostatic force being relevant, it
comes in many different forms and combined with statistical physics leads to the
high complexity of biomolecular interactions. The main issue here is that biologi-
cal systems need to be highly dynamic, so they have to bring the strong Coulomb
interaction down to smaller values, for which they use different mechanisms. We
start with a discussion of the mechanical properties of biomaterial and immedi-
ately see that we are dealing with very weak interactions on the order of thermal
energy kBT , rather than with the eV -scale of electronic phenomena. We then
review the details of these interactions and how they can be used in molecular
and Brownian dynamics simulations to predict the behaviour of biomolecules,
most prominently of proteins.

2.1 The importance of thermal energy

Theoretical biophysics uses mathematical models to study the physics of biolog-
ical systems. Biophysical length scales cover many orders of magnitude, from
atoms (Angstrom) and biomolecules (nanometer) through cells (micrometer) and
tissues (centimeter) to multicellular organisms (meter) and populations (kilome-
ters). Biomolecules form supramolecular assemblies like lipid membranes and
the polymer networks of the cytoskeleton. Collectively these materials can be
classified as soft matter, which is a subfield of condensed matter physics. Soft
materials are easily deformed by forces which are sometimes only in the range of
thermal forces at room temperature, as we shall see in the following.
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Figure 2.1: Different ways to measure the mechanical rigidity of single cells. (a) Cell
stretching between two microplates. A related setup is pulling with an atomic force
microscope (AFM), especially when one uses a flat cantilever. (b) Cell stretching with
the optical stretcher. A cell is placed between two divergent laser beams. The physical
reason for stretching is similar to the one for optical tweezers, namely momentum transfer
at interfaces with dielectric contrast.

In order to measure the mechanical stiffness or rigidity of cells, different stretch
experiments have been conceived, two of which are illustrated in Fig. 2.1. To first
order, the mechanical response to a force is an elastic one. A force F applied
over an area A reversibly stretches the material from length L to length L+ ∆L
(compare Fig. 2.2a). Force per area and relative deformation are the essential
quantities to study, because they do not depend on system size. Also we assume
that the first is the cause for the second. We therefore define stress and strain as
follows:

cause : stress σ = F
A [σ] = N

m2 = Pa

effect: strain ϵ = ∆L
L [ϵ] = 1

The simplest possible relation between the two quantities is a linear one:

σ = E · ϵ (2.1)

where E is the Young’s modulus or rigidity of the material with [E] = Pa.
For cells, this elastic constant is typically in the order of 10 kPa. This is also
the typical stiffness of connective tissue, including our skin. In general, tissue
stiffness is in this range (on the cellular scale, the softest tissue is brain with 100
Pa, and the stiffest tissue is bone with 50 kPa).
Eq. 2.1 might be recognized as Hooke’s law, and in fact we can think of the
macroscopic deformation as the effect of the stretching of a huge set of microscopic
springs which correspond to the elastic elements within the material. Eq. 2.1 can
be rewritten as

F = E ·A
L

· ∆L (2.2)

thus k = E · A/L is the effective spring constant of the material. EA is often
called the 1D modulus of the material.
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Let us now assume that the system is characterized by one typical energy U and
one typical length a. A dimensional analysis of E gives E = U/a3. As an example
a crosslinked polymer gel as illustrated in Fig. 2.2b can be considered.

Figure 2.2: (a) A slab of elastic material of length L and cross sectional area A is
stretched by a force F . The force acting on the material will result in a deformation.
In the case shown here, the box will be stretched by the length ∆L. (b) Illustration of
a polymer gel with a meshsize a, defining its typical length scale. In this example, the
typical energy U is the elastic energy stored in one cell of the mesh.

The elasticity of cellular material is determined by supramolecular complexes
forming the structural elements of the cell with a typical scale a = 10nm. There-
fore we get for the typical energy

U = E · a3 = 10kPa · (10nm)3 = 10−20J (2.3)

This is in the order of the thermal energy at ambient or body temperature (300K)
known from statistical mechanics:

kBT = 1.38 · 10−23 J

K
· 300K = 4.1 · 10−21 J = 4.1 pN nm (2.4)

where kB = 1.38 · 10−23 J
K is the Boltzmann constant.

In physical chemistry, one usually refers to moles rather than to single molecules:

kBT ·NA = R · T = 2.5 kJ

mol
= 0.6 kcal

mol
(2.5)

with NA = 6.002 · 1023 being Avogadro’s number and R = NA · kB = 8.31 J
mol·K

being the molar gas constant.
Comparing the Young’s modulus of biological material to that of an atomic crys-
tal, it becomes clear why we speak of "soft" matter. The energy scale in a crystal
usually is in the range of 1 eV ≈ 40 kBT and it has a typical length a of a few Å.
This yields a Young’s modulus in the order of 100 GPa. The most rigid material
known today is graphene with a Young’s modulus of TPa; therefore it has been
suggested to be used for building a space elevator.
From the range of the typical energy in supramolecular structures (compare
Eq. 2.3) it can be concluded that biological material is held together by many
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Chemical Bond Bond Energy
C − C 140 kBT
C = C 240 kBT
C ≡ C 330 kBT

H − CHO 144 kBT
H − CN 200 kBT

Table 2.1: Some chemical bonds and their corresponding bond energies (at T ≈ 300K)

weak interactions. However, U cannot be smaller than kBT , because otherwise
the entropy of the system would destroy the structure.
Cells are elastic only on the timescale of minutes and later start to flow like
viscoelastic material. The constitutive relation of a viscous system is

σ = η · ϵ̇ (2.6)

and a typical value for the viscosity of cells is η is 105 Pa s, which is 8 orders
of magnitude larger than for water. This high viscosity comes from the polymer
networks inside the cell. The corresponding time scale is

τ = η/E = 105 Pa s/kPa = 100s (2.7)

and corresponds to the time the system needs to relax from the external per-
turbations by internal rearrangements. However, these consideration are only
relevant on cellular scales. If we make rheological experiments on the scale of
molecules, then we are back to the viscosity and relaxation times of water.

2.2 Review of biomolecular interactions

2.2.1 Covalent (”chemical”) bonding

Due to the small length scale of a few Å on which covalent interactions occur,
one needs quantum mechanics to explain chemical bonding. Usually, calcula-
tions concerning chemical bonding are performed using density functional theory
(DFT) which was developed by the physicist Walter Kohn in 1965 (he received
the Nobel prize in chemistry in 1998).
The energy of chemical bonds is usually in the range of ∼ 100 kBT (several
eV = 40 kBT, comparable to energy scales in solids) and does not only depend
on the kind of bonding (single bond, double bond,...), but also on the electronic
environment (Tab. 2.1).

2.2.2 Coulomb (”ionic”) interaction

Most interactions on biophysical scales are based on the Coulomb interaction,
whose central law is Coulomb’s law:

U =
q1q2

4πϵ0ϵr
ϵ0 : permittivity of vacuum
ϵ : dielectric constant (2.8)
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with the resulting force

F = −
dU

dr
∼ +

q1q2

r2 (2.9)

which is repulsive if the two electric charges q1 and q2 have the same sign and
attractive otherwise.
The Coulomb interaction is a "long-ranged" interaction in 3D. To illustrate this,
consider the cohesive energy density of a bulk material of diameter L:

Utot ∝
ˆ L

a
dr r2 1

rn
∼ r3−n|La = a3−n

[(
L

a

)3−n
− 1

]
(2.10)

where a is a microscopic cutoff due to the Born repulsion. Taking the limit L → ∞
in Eq. 2.10 shows that Utot does not diverge for n > 3, corresponding to a short-
ranged interaction where only the local environment significantly contributes to
the force on a point-like object. On the other hand, for n < 3 the interaction
is long-ranged which means that remote objects cannot be neglected. This is
especially true for a pure Coulomb interaction (the situation is even worse for
gravitation, which not only has n = 1 like the Coulomb interaction, but moreover
does have only positive charges, so there is not cancellation due to opposite
charges). For the special case n = 3, we find a logarithmic divergence Utot ∝
log(L/a).
Biological interactions are usually short-ranged for several reasons. One impor-
tant aspect is that biological systems always operate in water, thus charges such
as ions are shielded due to the polarization of the water molecules and, hence, the
Coulomb interaction is weakened. This effect is expressed by the large dielectric
constant of water (ϵ = 80). Thus the interaction strength is reduced by almost
two orders of magnitude in water. Generally, the more polarizable a medium, the
larger is its dielectric constant:

ϵ =


1
2
80

air
hydrocarbon (oil, fatty acids,...)
water

Temperature also has an influence on the dielectric constant. With increasing
T , the constant decreases due to the thermal motion which disturbs the order in
the surrounding medium. This leads to the surprising effect that the interaction
can become effectively stronger at higher temperature because polarization goes
down.
Due to the difference in dielectric constant of water and hydrocarbons, biological
membranes are natural capacitors. This electrical property forms the basis of
electrophysiology and the neurosciences.
Biological systems frequently use metal ions such as Ca2+, Mg2+ etc. In a solid
crystal the ionic interaction is as strong as chemical bonding. For instance, the
energy of two neighbouring ions in a sodium (Na+) chloride (Cl−) crystal with
a lattice constant a = 2.81 Å is U = −200 kBT (Eq. 2.8 with q1 = −q2 = e). For
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Figure 2.3: (a) Diameter of a typical cell in comparison to the thickness of the biological
lipid bilayer membrane. Note the very strong separation of length scales: a very thin oily
layer holds together the very large cell. (b) There is a drop of ϵ across the membrane.
The situation is similar to two metal sheets separated by plastic. Thus the membrane
forms a capacitor.

the total energy density of a crystal, one has to sum over all interactions between
nearest, next-nearest,... neighbours within the crystal. Let us first consider only
one row (compare Fig. 2.4a).

Urow =
e2

4πϵ0a
· 2 ·

(
−1 + 1

2 − 1
3 + . . .

)
= −

2e2

4πϵ0a
ln 2 (2.11)

Although this summation is mathematically ill-defined (Riemann showed that
changing the order of the summation can give any desired value), physically it
makes sense. Continuing this calculation to the full three-dimensional crystal, we
get

Utot = − 1.747︸ ︷︷ ︸
Madelung
constant

e2N

4πϵ0a
= −206 kcal

mol
(2.12)

From the negative sign of the total energy in Eq. 2.12 it can be concluded that
the crystal is stable. The vaporization energy of a NaCl crystal was experimen-
tally determined to be 183 kcal

mol . Hence, although Eq. 2.12 is the result of strong
assumptions, it nevertheless agrees relatively well with the experimental value.

2.2.3 Dipolar and van der Waals interactions

Many biomolecules do not have a net charge, but rather a charge distribution.
In the sense of a multipolar expansion, the most important contribution is the
dipolar interaction. For the interaction of two identical dipoles like in Fig. 2.4b,
one gets for the interaction energy:

U = (ea)2

4πϵ0ϵrr3

[
n⃗1 · n⃗2 − 3

(
n⃗1 · ˆ⃗r

) (
n⃗2 · ˆ⃗r

)]
︸ ︷︷ ︸

f(Θ,ϕ,... )

(2.13)
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Figure 2.4: (a) Schematic drawing of a simple ionic crystal (such as NaCl). (b) Two
dipoles with dipole moments p⃗1 = e · a · n⃗1 and p⃗2 = e · a · n⃗2 , respectively.

Figure 2.5: (a) f-values of different geometrical arrangements of two dipoles. The more
negative the f-value becomes, the more favourable is the arrangement. (b) Interaction
between a single charge and a rotating dipole.

The factor f(Θ, ϕ, . . . ) does not depend on distance, but on all angles involved.
It is thus determined by the geometrical arrangement of the two dipoles and
its sign determines whether a certain orientation is favourable or not. Fig. 2.5
shows some dipole arrangements and their corresponding f-values. The most
favorable orientation is a head-tail-alignment. In water, but also in dipolar fluids
and ferrofluids, this leads to dipole chains, network formation and spontaneous
polarization.
The interaction between charge distributions is further weakened by thermal mo-
tion. If the dipoles are free to rotate, the interaction becomes weaker. For
example, if a charge Q is separated by a distance r from a dipole with dipole
moment µ⃗ = q · a, as depicted in Fig. 2.5, the electrostatic energy of the system
is given by

U(r⃗,Θ) = Qµ

4πϵ0ϵr2︸ ︷︷ ︸
U0

· cos(Θ)︸ ︷︷ ︸
orientation factor

(2.14)

The dipole is rotating due to thermal forces, that is why we calculate an effective
interaction law by a thermal average weighted with the Boltzmann factor:

U(r⃗) =
´ π

0 sin(Θ)dΘU(r⃗,Θ) exp
(

−U(r⃗,Θ)
kBT

)
´ π

0 sin(Θ)dΘ exp
(

−U(r⃗,Θ)
kBT

) (2.15)
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If we assume that the interaction is weak compared to thermal energy, −U(r⃗,Θ)
kBT

≪
1, then we can simplify the above expression:

U(r⃗) =
´ π

0 −d(cos(Θ))U0 cos(Θ)
(
1 − U0 cos(Θ)

kBT

)
´ π

0 −d(cos(Θ))
(
1 − U0 cos(Θ)

kBT

)
= − U2

0
3kBT

= − 1
3kBT

(
Qµ

4πϵ0ϵ

)2
· 1
r4 (2.16)

So we see the change in the interaction potential from 1
r2 for a static dipole to

1
r4 for a rotating one. The thermal motion weakens the Coulomb interaction also
for dipole-dipole interaction. A similar calculation can be made for dipoles that
are free to rotate with a centre-to-centre separation of r. We then obtain

U(r⃗) = − 2
3kBT

(
µ1µ2
4πϵ0ϵ

)2
· 1
r6 (2.17)

Thus two permanent dipoles interact with an attractive and short-ranged 1/r6 -
potential.

Figure 2.6: Lenard-Jones Potential. We see two different regimes in the interaction
between two particles at distance r – the attraction regime ∝ r−6 and repulsion regime
∝ r−12.

A universal and short-ranged 1/r6-attraction also arises for completely neutral
atoms due to quantum fluctuations. A neutral atom can always form a dipole by
quantum fluctuations, and this induces another dipole in a near-by atom, with
an interaction potential

U = −p⃗E⃗ = −αE2(r⃗) ∼ − α

r6 (2.18)

Here α is the polarizability and E(r⃗) ∼ 1
r3 is the electric field of a dipole. Even

spherical and uncharged gas atoms like argon condense into liquids at very low
temperatures due to these “dispersion forces” (Fritz London 1937).
The different 1

r6 -interactions are collectively called “van der Waals forces”. As a
convenient model for these forces one often uses the “Lenard-Jones potential”:

U(r) = 4ϵ
[
(σ
r

)12 − (σ
r

)6
]

(2.19)
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As one can see in Fig. 2.6, the interaction between atoms is attractive, if they are
situated at distances greater than a certain distance σ. If the two particles come
closer and closer together, they start to repel each other due to the Born repulsion.
This part of the interaction curve is described by the 1/r12 - potential. The 12th
power was not measured, but is rather an arbitrary dependency accepted for
convenience. For argon, the parameters are ϵ = 0.4 kBT and σ = 3.4Å.

2.2.4 Hydrophilic and hydrophobic interactions

Figure 2.7: (a) A network of water molecules connected by hydrogen bonds. (b) Tetrahe-
dral structure of ice and water, due to the hydrogen bonds between the water molecules.

Much of the complexity of biological systems arises from the peculiar properties
of water, in particular from its tendency to form hydrogen bonds. In a hydro-
gen bond, a hydrogen atom is situated between two other atoms. Water forms
hydrogen bonds with itself, as depicted in Fig. 2.7. Because hydrogen bonds can
open and close, a lot of entropy is stored in such networks. In three dimensions,
the water networks are locally tetrahedral, as depicted in Fig. 2.7. This means
that every water molecule has only four neighbors. In comparison, argon atoms
have 10 and in close packing structure there are 12.
While the van der Waals interaction tends to condense water molecules, the
network of hydrogen bonds creates a more open structure. Because the second
effect dominates in ice, it floats on water. This also leads to the maximal density
of water at 4 C◦. Pressure squeezes the molecules together and usually leads to
freezing; in water, it leads to melting. This is part of the explanation why you can
skate on ice, but not on glass. The feature of water is demonstrated in Fig. 2.8,
where the phase diagrams of water and carbon dioxide are compared. One sees
that the main difference is the slope of the coexistence line between solid and
liquid. Obviously the case of carbon dioxide is the standard case described by
the Lennard-Jones system, while the case of water is special. In general, water
should not be considered as a normal liquid, but rather as a network of fluctuating
and cooperative hydrogen bonds. Other hydrogen-bonded liquids are hydrogen
fluoride HF, hydrogen peroxide H202, hydrogen cyanide HCN.
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Figure 2.8: (a) Phase diagram of water. (b) Phase diagram of CO2.

Water is also a very special solvent. It is ordered by the presence of the solutes.
For a hydrophobic solute, water molecules point their hydrogen bonds away from
the solute. This decreases the entropy and therefore makes solution unfavorable
(measured by calorimetry, the effect is the strongest at 25 C◦). Because of the
“hydrophobic effect” water and oil do not mix. Non-polar solutes attract each
other in water and this phenomenon is called the “hydrophobic interaction”.
The large energy stored in the network of hydrogen bonds results in large values
for the surface tension, melting and boiling temperatures, heat capacity, etc.
Because the network of hydrogen bonds is easily polarized, water has a very
high dielectric constant (ϵ = 80). It is also important to remember that polar
solutes prefer polar solvents due to the low self-energy. In analogy to the previous
paragraph this effect is called “hydrophilic interaction”.

2.2.5 Protein folding

Figure 2.9: The two most important consequences of the hydrophobic effect in biological
systems. (a) Lipids form bilayers to shield the hydrophobic tails from the surrounding
water. (b) Proteins fold into a native conformation to shield the hydrophobic amino
acids from the surrounding water.

The special properties of water are not only the basis of membrane assembly, but
also of protein folding, compare Fig. 2.9. A simplest model for analyzing protein
folding is the HP-model by Ken Dill. It has been extensively studied on the
lattice by exact enumeration. The standard case is a 3 × 3 × 3 lattice, which can
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Figure 2.10: HP-model on an 3 × 2 - lattice. The upper panel shows the possible config-
urations on this lattice. Center panel: Possibilities to arrange the sequence HPHPHP on
the lattice. Note, that for the third configuration there exist two possible arrangements.
The energy penalty per H-P contact is ϵ (denoted as green lines). Recall that the envi-
ronment of the polymer is polar. Lower panel: PHPPHP sequence on the lattice. The
first configuration has a unique lowest energy and therefore forms the ground state.

contain 227 = 134217721 sequences and has 103346 possible configurations (this
number is non-trivial because one has to figure out all symmetry operations that
make two configurations identical in order to avoid overcounting). We pick one
configuration and fill it with a given sequence. After finishing the construct on
the lattice, for every amino acid positioned on the outside of the lattice an extra
P is added. After that every unfavorable H-P contact is assigned a free energy
penalty ϵ. This is repeated for all configurations, and then we look for the one
with the lowest energy for a given sequence. If this ground state is unique, we
call it “native structure” and the sequence is “protein-like”.
The HP-model is a very useful toy model for protein folding. We now consider
a simplier variant. This time we have a 2 × 3 lattice with 26 sequences and 3
different configurations. The solvent molecules surrounding the lattice pattern
are assumed to be P-monomers. We now try to fit two different sequences on
this lattice — HPHPHP and PHPPHP. In Fig. 2.10 all possible configurations
for both sequences are shown.
While the first sequence (HPHPHP) is degenerated, the second (PHPPHP) has
a unique ground state. The sequence is therefore protein-like. The probability
to find the chain in the native structure as function of temperature is given by a
sigmoidal function, see Fig. 2.10:

Pfold = exp(−2βϵ)
exp(−2βϵ) + 2 exp(−4βϵ) (2.20)

where β = 1/kBT as always.
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Figure 2.11: The probability to find the native structure as a function of temperature.

While the HP-model is useful to understand the conceptual basis of protein fold-
ing, it does not has real predictive power. Predicting the three-dimensional fold
of proteins from their sequence is a very large field and many methods have been
developed for this purpose. Molecular dynamics is a straight-forward approach,
but only works for small proteins. More coarse-grained approaches typically use
the contact matrix of all 20 amino acids interacting with themselves. Other im-
portant efforts are the folding at home project and the specialized hardware by
D.E. Shaw Research.
Every second year, the CASP-competition takes place (Critical Assessment of
Structure Prediction) in which the teams compete for the best structure predic-
tion for a few protein structures that has been solved experimentally, but not
been published yet. In 2020, at CASP14, the field was revolutionized by a new
software called AlphaFold2, introduced by the Google-owned company DeepMind
[1]. AlphaFold2 uses machine learning, attention networks, homology modelling
and the complete knowledge of solved structures (including their evolutionary his-
tory) to predict not only the structures from CASP14, but all known sequences
from the human and some other genomes. This effort was quickly followed by a
competing machine learning software from the Rosetta-community around David
Baker [2]

2.2.6 Steric interactions

Another important class of interactions are excluded volume interactions. Be-
cause particles cannot overlap, their entropy is reduced and this creates effective
interactions. An example of this kind of effects are polymer brushes, shown in
figure 2.12. They repel as the chains start to overlap just for entropy reasons.
Therefore they are used to stabilize colloidal suspensions like ink, but also in cell-
cell interactions. For example polymer brushes on the outside of a cell membrane
help avoiding cell attraction. This effect was understood only about 50 years ago
because of its complexity and the need of deep knowledge in statistical physics
and understanding of entropy.
Another example of steric interactions can be observed between fluctuating mem-
branes. Imagine two membranes coming closer together, as described in Fig. 2.13.
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Figure 2.12: (a) Polymer brushes as an example for steric interaction. (b) As the brushes
approach each other, the volume available for their motion and hence the entropy is
reduced, leading to an effective repulsion.

As d gets smaller the membranes start to perturb each other following the de-
pendency V (d) ∼ 1

d2 . Similar considerations apply for two soft particles (e.g.
two cells) approaching each other.

Figure 2.13: (a) The planes represent two membranes that fluctuate to and away from
each other. On (b) there are two whole cells with fluctuating membranes.

The last example given here is the depletion interaction. Imagine two large
particles (depicted as large spheres in Fig. 2.14) that are surrounded by many
small particles. The volume available to the small molecules is marked blue, the
excluded volume is marked red. When the two large particles come close together,
so that the restricted volumes on their surfaces start to overlap, the entropy of the
system increases, because the volume available to the small molecules increases.
The system tries to reach a state with higher entropy, that is why the interaction
is called entropic attraction.

2.3 Phase separation

For a long time, it was thought that biological systems tend to avoid phase
separation, in the sense of the one-component phase diagram shown in Fig. 1.2,
which has two types of phase separations at elevated temperature, namely fluid-
solid and fluid-fluid. The fluid-solid transition is of course used to make protein
crystals for diffraction studies, but for living systems, protein concentrations have
to be lower, otherwise they could not move and interact with each other anymore.
A transition to a solid is usually related to a pathological condition, like formation
of gall or bladder stones. It is actually more relevant for nucleic acids, because
viruses, bacteria, fungi, plants and a few other organisms are known to store
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Figure 2.14: Depletion interaction between two big particles in a suspension of smaller
particles.

their genetic information in crystal-like structures in order to survive very tough
conditions (spores for the cellular systems).
Given the fluid nature of the cytoplasm, a fluid-fluid phase separation would be
very natural. Different from the gas-liquid phase separation for the Lennard-
Jones system, in a biological system the different densities would only relate to
the biomolecules and the density of water would be the same, thus one would
speak of a liquid-liquid phase separation (LLPS), namely a coexistence of low
and high density solutions of proteins.
For a long time, LLPS was thought to not occur in the cytoplasm, but only in
the form of lipid rafts, and even there not as a full-fledged phase separation,
but rather of enrichment of certain lipids around transmembrane proteins [3, 4],
compare Fig. 2.15(a). Although it is hard to prove this concept beyond doubt
in cellular systems, it has been nicely confirmed for model systems using vesicles
with so-called raft mixtures [4]. These are ternary mixtures of cholesterol (a
major component of biological membranes that makes them more flexible) and
two lipids, one melting at low and one melting at high temperature. Such systems
form a two-phase liquid-liquid coexistence region with a critical point a higher
cholesterol concentration (depicted in the Gibbs triangle for ternary mixtures in
Fig. 2.15(b)), which might be the basis of lipid rafts in cellular systems.
For a long time, there was no evidence for LLPS in the three-dimensional cyto-
plasm. Recently, this notion has changed completely, starting with the first direct
observation of LLPS in embryos of the worm C. elegans [5, 6]. It was shown that
certain proteins and RNA were localized into one side of the embryo by liquid
droplets, with round shapes and recovery after photobleaching, thus satisfying
the conditions of liquids. Later it was observed that LLPS is tightly connected
to the existence of intrinsically disordered proteins (IDPs), that generically tend
to undergo LLPS. Examples include the nucleolus, P-granules and stress gran-
ules. It is now realized that LLPS are a convenient and very dynamical way to
establish compartments in the cell, as an alternative to using membranes or pro-
tein shells to create closed compartments, like in vesicles or viruses, respectively.
With autophagy and bacterial microcompartments (BMCs), there are even ex-
amples which combines both, liquid-liquid phase separation and protein capsid
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Figure 2.15: (a) Schematic representation of a raft around a transmembrane protein. The
protein induces a transition from liquid-disordered to liquid-ordered in the chains of the
closeby lipids. In addition, it attracts cholesterol. (b) Ternary phase behaviour of a raft
mixtures of a low Tm lipid (L1), a high Tm lipid (L2), and cholesterol (C), represented in
a Gibbs triangle. The different phases are liquid-ordered Lo, liquid-disordered Ld, and
solid S0. There are one three-phase region and three two-phase regions, one of them with
a critical point.

formation.

Figure 2.16: (a) Phase diagram for colloids, which are a model system for folded proteins.
The fluid-fluid phase transition is overshadowed by the fluid-solid phase transition and
thus does not occur. (b) Phase diagram for polymers of increasing chain length N , which
are a model system for intrinsically disordered proteins. No solid occurs and the fluid-
fluid phase transition dominates.

From the theoretical point of view, one can say that folded and disordered proteins
behave as colloids and polymers, respectively [7]. Both phase separate, but large
colloids do only crystallize, while polymers only have a liquid-liquid loop, compare
Fig. 2.16. Thus in each case, one of the two transitions from Fig. 1.2 is missing.
Because IDPs have so much in common with polymers, one can use Flory-Huggins
theory to understand their phase behaviour [7].

35



2.4 Molecular dynamics

Now that we are familiar with the relevant molecular interactions, we have to
understand how to combine them in one unifying framework in order to apply
them to biomolecules. The structure and dynamics of biomolecules and their
interactions can be studied with molecular dynamics (MD) computer simulations.
They integrate Newton’s equations of motion for atoms interacting through the
interaction laws detailed above:

mi
d2

dt2
r⃗i = F⃗i = −∇⃗iU({r⃗j}) (2.21)

Note that some effects are taken care implicitly (e.g. entropic effects when sim-
ulating all particles) and that for some effects one includes effective potentials
(e.g. van der Waals interaction). For the energy function we sum all energy
contributions as discussed before:

U =
∑

covalent
bonds

kr
2 (r − r0)2︸ ︷︷ ︸

bond streching

+
∑

angles

kθ
2 (θ − θ0)2︸ ︷︷ ︸
bond bending

+
∑

dihedral
angles

kϕ
2 (ϕ− ϕ0)2︸ ︷︷ ︸

torsion

+
∑

non-bonded
interactions

<ij>

( a

r12
ij

− b

r6
ij︸ ︷︷ ︸

Lenard-Jones potential
or

van der Waals interactions

+ qiqj
4πϵ0ϵ

· 1
rij)︸ ︷︷ ︸

Coulomb
interactions

(2.22)

Because MD is a Hamiltonian dynamics, energy should be conserved. If we use an
Euler scheme for the integration, we usually see deviations from this expectation,
compare Fig. 2.17. The problem lies in the algorithm:

r⃗i(t+ ∆t) Taylor expansion= r⃗i(t) + v⃗i(t) · ∆t+ F⃗i(t)
2mi

· ∆t2 + O((∆t)3)(2.23)

v⃗i(t+ ∆t) = v⃗i(t) + F⃗i(t)
mi

· ∆t+ O((∆t)2) (2.24)

This procedure is numerically unstable and does not ensure energy conservation
and time reversibility even for small time intervals ∆t.
The better solution is the “Verlet algorithm”, also called “leaping frog”:

r⃗i(t± ∆t)
T aylor

Expansion= r⃗i(t) ± d

dt
r⃗i(t) · ∆t+ 1

2
d2

dt2
r⃗i(t)∆t2 ± ...

now we add both equations and get

r⃗i(t+ ∆t) = 2r⃗i(t) − r⃗i(t− ∆t) + F⃗i(t)
mi

· ∆t2

+O((∆t)4) (2.25)

One advantage is that the odd terms drop out, but more importantly the velocities
are not needed and can be calculated independently by

v⃗i(t) = r⃗i(t+ ∆t) − r⃗i(t− ∆t)
2∆t
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Figure 2.17: Energy distribution over time. From initial condition we need certain re-
laxation time till we reach expected value with simplectic Verlet method.

Using this algorithm we get results that agree better with our expectations, as
can be seen in Fig. 2.17.
When performing MD-simulations, one has to make sure that one is familiar with
the technical pitfalls. If one deals with finite system, in order to avoid surface
effects, one can work with periodic boundary conditions, truncated Lenard-Jones
potentials and the appropriate Ewald sum for the Coulomb interaction [8].
The ensemble described here is a NVE ensemble. However, for biological systems
one typically wants constant temperature rather than constant energy (canoncial
ensemble). Therefore one has to use a thermostat. Known examples are called
after their inventors: Berendsen, Nose-Hoover, Parinello-Bussi (also known as
v-rescale thermostat). The main idea is always the same, namely to rescale ve-
locities. For a harmonic degree of freedom, we have the equipartition theorem,
mv2/2 = kBT/2. The simplest way therefore to control temperature is to calcu-
late the current value T from the kinetic energy and then to rescale all velocities
with the factor λ =

√
T0/T , where T0 is the desired temperature. In order to

avoid sudden jumps, to allow for fluctuations and to also take potential energies
into account, different refinements have been suggested.
Here is a list of the classical papers on MD-simulations:

• Alder, B. J., and TE Wainwright. "Phase transition for a hard sphere
system." The Journal of Chemical Physics 27.5 (1957): 1208.

• Rahman, A. "Correlations in the motion of atoms in liquid argon." Physical
Review 136.2A (1964): A405.

• Warshel, A., and M. Karplus. "Calculation of ground and excited state po-
tential surfaces of conjugated molecules. I. Formulation and parametriza-
tion." Journal of the American Chemical Society 94.16 (1972): 5612-5625.

• Levitt, Michael, and Arieh Warshel. "Computer simulation of protein fold-
ing." Nature 253.5494 (1975): 694-698.

• Theoretical studies of enzymic reactions: dielectric, electrostatic and steric
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stabilization of the carbonium ion in the reaction of lysozyme. Warshel A,
Levitt M. J Mol Biol. 1976 May 15;103(2):227-49.

• Karplus, Martin. "CHARMM: a program for macromolecular energy, min-
imization, and dynamics calculations." Journal of computational chemistry
4.2,187-217 (1983).

In 2013, the Nobel prize for chemistry was awarded to Karplus, Levitt and
Warshel for the development of MD for chemical and biological physics.
Books on MD-simulations:

• Daan Frenkel and Berend Smit, Understanding Molecular Simulation: From
Algorithms to Applications. Academic Press 2001

• DC Rapaport, The Art of Molecular Dynamics Simulation, Cambridge Uni-
versity Press 2004

• MP Allan, Computer Simulation Of Liquids, Oxford University Press, U.S.A.;
Auflage: Reprint (14. September 2006)

Here are some standard software packages:

• GROMACS: GROningen MAchine for Chemical Simulations (Herman Berend-
sen, Groningen)

• GROMOS: GROningen MOlecular Simulation computer program package
(Wilfred van Gunsteren, Switzerland)

• CHARMM: Chemistry at HARvard Macromolecular Mechanics (Martin
Karplus, Harvard)

• NAMD: Not just Another Molecular Dynamics program (Klaus Schulten,
Illinois)

• ESPResSo: Extensible Simulation Package for Research on Soft matter
(Kurt Kremer and Christian Holm, Mainz and Stuttgart)

Movies on molecular processes (usually based on MD, but in some cases, an
artistic component is added):

• Klaus Schulten lab: http://www.ks.uiuc.edu/Gallery/Movies/

• DNA learning center: http://dnalc.org/

• Biovisions Harvard: http://biovisions.mcb.harvard.edu

• D. E. Shaw Research: https://www.deshawresearch.com (private com-
pany with very fast hardware)

• AlphaFold2: https://alphafold.ebi.ac.uk (machine learning software
by Deep Mind)

• RoseTTaFold: https://github.com/RosettaCommons/RoseTTAFold (ma-
chine learning software by David Baker and team)
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2.5 Brownian dynamics

Brownian dynamics is an effective or coarse-grained description of how molecules
undergo random walks as they constantly collide with other molecules. Like in
MD, we start with Newton’s equation, for simplicity here for one particle of mass
m in one dimension:

mẍ = mv̇ = F = −∇U . (2.26)

We now add two new terms: a friction term describing energy dissipation into
the surrounding medium and a random force (known as the noise term) that
continuously kicks the particle:

mv̇ = F − ξv + ση(t)

Note that it is mandatory to add both terms together, because the noise term
alone would input too much energy into the system, so the damping is required
to balance this effect. This equation is the famous Langevin equation. It is a
stochastic differential equation (SDE) and conceptually different from an ordinary
(ODE) or a partial differential equation (PDE). σ is the amplitude of the noise
term and η describes Gaussian white noise which obeys:

1. ⟨η(t)⟩ = 0

2. ⟨η(t)η(t′)⟩ = 2δ (t− t′)

The formal solution for F = 0 is given by:

v(t) = e−t/t0

(
v0 +

ˆ t

0
ds es/t0

σ

m
η(s)

)

as one can check easily by insertion into the Langevin equation. Here t0 = m/ξ
is the characteristic relaxation time of the system.
Obviously v is defined only through its averages, like the noise itself:

⟨v(t)⟩ = v0e
−t/t0

〈
v(t)v(t′)

〉
= v2

0e
− t+t′

t0 +
(
σ

m

)2
e

− t+t′
t0

ˆ t

0
ds

ˆ t′

0
ds′ e

s+s′
t0 2δ

(
s− s′)︸ ︷︷ ︸

t<t′
=
´ t

0 ds 2e2s/t0 =t0(e2t/t0 −1)

= e
− t+t′

t0

(
v2
o − σ2

mξ

)
︸ ︷︷ ︸

=0 for t,t′≫t0

+ σ2

mξ
e−(t′−t)/t0

⇒
〈
v(t)2

〉
= σ2

mξ

Note that the linear terms in η have dropped out and that the autocorrelation
decays exponentially, thus the system is well-behaved.
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The equipartition theorem gives us:
1
2m

〈
v2
〉

= 1
2kBT

⇒ σ2 = ξkBT fluctuation-dissipation theorem

The noise amplitude σ (fluctuations) is related to the friction coefficient ξ (dis-
sipation) through temperature T . The higher temperture T , the stronger the
noise.
For t ≫ t0, we can neglect inertia:

⇒ ξv = ση(t) = ξẋ

⇒ x(t) = x0 + 1
ξ

ˆ t

0
dt′ση(t′)

⇒ ⟨x(t)⟩ = x0〈
(x(t) − x0)2

〉
= 1
ξ2

ˆ t

0
dt′
ˆ t

0
dt′′ 2σ2δ

(
t′ − t′′

)
= 1
ξ2 2σ2t

!= 2Dt

Here we identified the diffusion constant D from the one dimensional random
walk.

⇒ D = σ2

ξ2 = kBT

ξ
Einstein relation

If we use for the friction coefficient Stokes’ law from hydrodynamics, ξ = 6πηR
with viscosity η we get:

⇒ D = kBT

6πηR Stokes-Einstein relation

Inserting in typical numbers (T = 300 K, η = 10−3 Pa s, R = 1 nm), we get
D = (10 µm)2/s as typical diffusion constant for proteins. A recent survey of
diffusion constants in E. Coli measured by FCS has shown that this is the correct
order of magnitude and that the inverse scaling with protein mass is indeed
obeyed [9].
We are now in the position to formulate the basic algorithm for BD-simulations:

dx(t)
dt

= −M∇U +
(
kBT

ξ

)1/2
η (2.27)

= −D∇
(

U

kBT

)
+D1/2η (2.28)

Here we have introduced the mobility M = 1/ξ. Due to the FDT, we only have
one relevant parameter, which we take to be D. The discretized version now
reads:

x(t+ ∆t) = x(t) −D
d

dx

(
U

kBT

)
∆t+

√
2D∆tN (0, 1) (2.29)
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where N (0, 1) is the Gaussian distribution with vanishing mean and unit variance.
In order to be able to work with the standard Gaussian, we now explicitly use the
factor of 2 that above we have placed in the definition of the Gaussian white noise.
It is straight-forward to generalize this scheme to N particles with interaction
terms in U .
Different from the MD-community, the BD-community did not converge yet to a
few software packages and thus there are many of them. Here are a few examples:

• LAMMPS from Sandia National Labs, started as large-scale parallel MD
code, but also includes Langevin, https://www.lammps.org

• HOOMD from Sharon Glotzer’s lab, also a MD-code with Langevin mode,
https://hoomd-blue.readthedocs.io

• ESPResSo from Kurt Kremer Mainz / Christian Holms Stuttgart, coarse-
grained MD/BD for soft matter, https://espressomd.org/wordpress

• Smoldyn from Steve Andrews, point particles and arbitrary geometries,
many published projects, https://www.smoldyn.org

• MesoRD from Johan Elf, discretized on cubic lattice, diffusion as reaction,
Gillespie algorithm, https://mesord.sourceforge.net

• Greens Function Reaction Dynamics (GFRD) from Pieter Rein ten Wolde,
event-based reactions based on exact solutions to the diffusion equation,
https://gfrd.org

• Simulation of diffusional association (SDA) from Rebecca Wade, https:
//mcm.h-its.org/sda

• ReaDDy from Frank Noe, includes potentials, combination of MD and BD,
https://readdy.github.io

• Cytosim from Francois Nedelec, focus on filament mechanics, https://
gitlab.com/f-nedelec/cytosim

We finally note that in BD one deals with an effective solvent that in principle
should also mediate hydrodynamic interactions. The importance of hydrodynam-
ics for self-diffusion and molecular interactions is somehow debated and there are
many approaches to address this important issue. Because biomolecules and cells
are so small, they have a small Reynolds number:

Re = ρvL

η
≪ 1 (2.30)

if we insert typical values for density ρ and viscosity η of water as well as for
velocity v and size L. Thus viscous forces dominate over inertial ones and one
has to solve the Stokes equation rather than the Navier-Stokes equation. The
most common approaches to hydrodynamics in biological systems are

• analytical solutions, including the Oseen and Rotne-Prager tensors
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• FEM-implementations of the Stokes equation, e.g. in FEniCS (https:
//fenicsproject.org)

• Lattice Boltzmann Method (LBM)

• Dissipative Particle Dynamics (DPD)

• Multi Particle Collision Dynamics (MPCD)

For more information, compare the review by Ulf Schiller and colleagues [10].
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Chapter 3

Electrostatistics

We already discussed that polarizability and thermal rotation weakens the elec-
trostatic interaction between two molecules in the cell. We now consider this issue
further for a charged object (an ion, a biomolecule or an assembly of biomolecules)
immersed in a sea of other charges. These surrounding charges are counter-ions
(balancing the charge on the object) that can be complemented by co-ions (salt).
The fact that the counter- and co-ions are highly mobile and under permanent
thermal motion creates a cloud of charge distribution that screens and further de-
creases the electrostatic interaction between the large objects. This is especially
important for genome compactification, for example in viruses or sperm cells.

3.1 Role of geometry

In Fig. 3.1 we depict two important situations of this kind in the cell, namely the
charge distributions around a DNA and around a lipid membrane. For the DNA,
the size of a basepair is 0.34 nm and we have 6 ·109 bp in our genome (counting all
chromosome, which come in pairs), thus the DNA in each of our cells amount to
a length of 2 m. Now consider that each basepair carries a charge of 2e and that
the diameter of nuclei are in the order of µm. We therefore must ask the question
how the highly charged DNA can be compactified to this small size. The same
question arises for bacteria (they typically have one circular chromosome with
around 1 Mbp, amounting to a contour length of around 1 mm, packed into a µm
large cell body) and for DNA viruses, where the packing density is even higher.
As we will see below, the solution to this DNA riddle is provided by theoretical
physics in the form of strong coupling theory [11, 12].
For the lipid bilayer depicted in Fig. 3.1, the charge distribution is not charac-
terized by a line charge density λ, but by an area charge density σ. Here the
relevant biophysical questions are very different from the case of DNA. Because
of the barrier function of the lipid bilayer, we have to ask how charges arrange
themselves in its vicinity and how they can cross the bilayer. Obviously the dis-
tribution around charged lines and surfaces must be very different for geometrical
reasons.
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Figure 3.1: (a) DNA is a charged polymer (polyelectrolyte). Per base pair (bp, distance
between bp a = 3.4 Å), the DNA carries a charge of 2 e and hence a line charge density
of λ = 2e

3.4 Å . (b) Lipid membranes are charged plates. Negatively charged head groups
of the fatty acids in the plasma membrane result in an area charge density of σ = en2d =

e
nm2 .

As already mentioned in the beginning of this chapter, a DNA molecule can
be seen as a charged line with a linear charge density of λ = 2e

3.4Å . To simplify
matters, we assume the DNA molecule to be an infinitely long straight line. Then
the DNA exhibits a cylindrical symmetry (compare Fig. 3.2a) and Gauss law can
easily be applied to determine the radial component of the electrostatic field:

Gauss’ law: Er · 2πrL =
λL

ϵ0ϵ

Electrostatic field: Er =
λ

2πϵ0ϵr
(3.1)

Potential: Φ = −
´ r
a Er(r

′) dr′ = −
λ

2πϵ0ϵ
ln
(
r

a

)
(3.2)

where a microscopic limit a was employed. The logarithmic electrostatic potential
Φ in Eq. 3.2 diverges for r → ∞. Thus, the usual boundary condition Φ(∞) = 0
cannot be used. One often encounters this logarithmic behavior in 2D systems.
For example, this means that one cannot calculate a simple formula for the flow
of a fluid around a cylinder (as one can for the flow of a fluid around a sphere in
3D).

For the straight line charge the same result as in equations 3.2 and 3.2 can be
obtained from the direct integration of Coulomb’s law (Eq. 1.59) or from the
Poisson equation (Eq. 1.61) in cylindrical coordinates.

In the cell, the plasma membrane can be seen as a charged plane with an area
charge density σ = e

nm2 . Again, the electrostatic field can be computed with
Gauss law. Restricting oneself to an infinitely large surface with negligible curva-
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Figure 3.2: Cylindrical symmetry of (a) an infinitely long charged line and (b) charged
plane with infinite surface.

ture, the cylindrical symmetry of the plane can be made use of (compare Fig. 3.2):

Gauss’ law: |Ez| · 2A =
Aσ

ϵ0ϵ

Electrostatic field : Ez =
σ

2ϵ0ϵ
z

|z|
(3.3)

Potential: Φ = −
ˆ r

0
Ez(z′) dz′ = −

σ|z|
2ϵ0ϵ

(3.4)

Two comments can be made concerning the results in equations 3.3 and 3.4.
Firstly, Φ increases linearly with the distance from the charged plane. Secondly,
the electric field jumps by σ/(ϵ0ϵ) across the charged plane and does not de-
pend on the distance. As before, the same results can be obtained from explicit
integration or from solving the Poisson equation.

3.2 The membrane as a parallel plate capacitor

Besides its function as a diffusion barrier, the biomembrane can act as a parallel
plate capacitor (compare Fig. 3.3) if charges are separated to its both sides by
active processes such as ion pumps and transporters. Then we are actually dealing
with two oppositvely charged planes with electric fields according to Eq. 3.3:

E+ = E− =
σ

2ϵ0ϵ
(3.5)

Outside the plasma membrane, E+ and E− cancel each other, whereas within
the membrane they add up:

Electrostatic field: Einside = E+ + E− =
σ

ϵ0ϵ
(3.6)

Electrostatic potential difference: ∆Φ = −
ˆ d

0
dz

σ

ϵ0ϵ
= −

σd

ϵ0ϵ
(3.7)
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Figure 3.3: Electrostatic potential Φ and ion concentration c across the plasma mem-
brane which is modeled as a parallel plate capacitor. In the inter-membrane region, the
potential decreases linearly whereas the concentration follows ∼ e−q∆Φ/(kBT ) (equation
3.10). Since the electrical field of a charged plane does not depend on the distance from
the plane (compare equation 3.3), the net field outside the membrane vanishes. Hence,
there is a force on a charged test particle only if it is within the lipid bilayer.

intracellular (mM) extracellular (mM) Nernst potential (mV)
K+ 155 4 -98
Na+ 12 145 67
Cl− 4 120 -90
Ca2+ 10−4 1.5 130

Table 3.1: Nernst potentials for some important ions in a typical mammalian muscle
cell. Because the Nernst potentials of the different ion species differ strongly, this ionic
distribution is an out-of-equilibrium situation. Resting potentials of excitable cells are
in the range of −50 to −90mV .

From Eq. 3.7, the capacitance of the plane can be computed:

C =
Q

U
=

Aσ

|∆Φ|
=
Aϵ0ϵ

d
(3.8)

As an example, we choose a myelinated nerve cell membrane with ϵ = 2 and
d = 2nm. We then obtain for the capacitance of the nerve cell membrane:

C

A
=
ϵ0ϵ

d
≈

µF

cm2

where F denotes the physical unit Farad. This value membrane capacity has
been measured experimentally. Moreover, the measure of 1 µF

cm2 is universally
used in experiments to determine the area of any given cell or membrane patch.
The concept of the biomembrane being a parallel circuit of a capacitor and an
ohmic resistance forms the basis of electrophysiology (theory of action potentials
according to Hodgkin and Huxley).
We now consider a single species of mobile ions that is free to distribute along z
(e.g. ions diffusing through the hydrophobic part or through an ion channel of the
membrane). At finite temperature T , there is a competition between electrostatic
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forces and translational entropy. The concepts of energy stored in the form of
chemical potential µ and electrostatic potential Φ can be combined in the so-
called electrochemical potential (compare Eq. 1.31 for the chemical potential
of an ideal gas):

µ(z) = kBT ln c(z) + ZeΦ(z) (3.9)

where Z is the valency of the ion species. In equilibrium, µ(z) has to be constant:

⇒ ln
(
c(z1)
c(z2)

)
=

− Ze(Φ(z1) − Φ(z2))
kBT

⇒ c(z2) = c(z1) · e−Ze∆Φ/(kBT ) Nernst equation (3.10)

Eq. 3.10 was first formulated by the German physical chemist Walter Nernst
who won the Nobel prize in chemistry in 1920. It can be seen as Boltzmann’s
law for charges in an electrostatic potential (compare Fig. 3.3). In table 3.1
we give experimentally measured values for ion concentrations in a muscle cell.
The corresponding Nernst potentials are calculated in the last column. One sees
that they differ widely, proving that the distributions are out off equilibrium (ion
pumps and channels redistribute them against the thermal forces).
Our discussion showed that mobile charges will lead to concentration profiles
that depend on temperature and electrostatic potential. Therefore we now turn
to "electrostatistics", the field that combines these two elements.

3.3 Charged wall in different limits

Figure 3.4: Concentration profile of counter-ions (here: positive) and co-ions (here: neg-
ative) in a solution (a) without salt and (b) with salt, at a distance z from the charged
wall. The physiological concentration of salt is around cs = 100mM .

At close approach, each object is locally flat (e.g. a globular protein or a colloid).
We therefore start with the planar case as most instructive example. Consider
a wall with an area charge density of σ and the corresponding counter-ions, e.g.
dissociated groups of the charged object, in solution. Note, that the complete
system does not carry a net charge, i.e. it is always charge neutral. Two cases
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can be distinguished. First a solution containing only counter-ions, and second a
solution with additionally added salt, hence also containing co-ions (see Fig. 3.4).
These seemingly simple systems are in fact hard problems in theoretical physics.
In the following, we will treat three special cases for the planar geometry:

1. high T or small charge density σ (no salt): In this case mean field theory
(MFT) can be used to derive the Poisson-Boltzmann theory.

2. salt, cs ̸= 0: Debye-Hückel theory, will turn out to be a linearized
Poisson-Boltzmann theory

3. low T or high charge density σ (no salt): strong-coupling limit (i.e. for
DNA condensation)

All other cases are too complicated to be treated analytically and have to be
investigated with Monte Carlo simulation.
Because counter-ions and co-ions are mobile, we have to deal with thermal av-
erages. The first step is to formulate the Hamiltonian of the system, therefore
we consider N counter-ions of valency Z at an oppositely charged wall with area
density n2d (the charge density thus is σ = −en2d):

H

kBT
=
∑
i<j

Z2e2

4πϵ0ϵkBT · rij︸ ︷︷ ︸
Coulomb interaction

between 2 counter-ions

+
∑
i

Ze2n2dzi

2ϵ0ϵkBT︸ ︷︷ ︸
Coulomb interaction

between one counter-ion
and the wall

(3.11)

We introduce two new length scales to write

H

kBT
=
∑
i<j

Z2lB

rij
+
∑
i

zi

µ
(3.12)

resulting in the following definitions:

1. The Bjerrum length lB = e2

4πϵ0ϵkBT
is the distance at which two unit

charges interact with thermal energy. In water, where ϵ = 80, we find
lB = 7 Å, while in vacuum the value Bjerrum length is 5.6nm (both values
computed for T = 300K).

2. The Gouy-Chapman length µ = (2πZn2dlB)−1 marks the distance from
a charged wall at which the potential energy of the charge equals kBT .
Note that in contrast to the definition of the Bjerrum length, we do not use
a unit charge, but keep valency Z in the definition. For Z = 1, ambient
temperature T and n2d = 1/nm2, one gets µ ≈ 1nm.

Because we focus on the effect of a wall, we now rescale all distances with µ:

H

kBT
=
∑
i<j

Ξ
r̄ij

+
∑
i

z̄i (3.13)
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where

Ξ =
Z2lB

µ
= 2πZ3l2Bn2d =

Z3e4n2d

8π(ϵ0ϵkBT )2 coupling strength (3.14)

In Eq. 3.13, we rescaled the system such that only one dimensionless parameter,
namely the coupling strength (Eq. 3.14), determines the behavior of the whole
system.
At this point, we managed to end up with only one dimensionless parameter,
that defines two asymptotic limits of interest:

1. Ξ ≪ 1: This is the case if the system has a low charge density, a low
valency and/or a high temperature. One can perform an expansion in small
Ξ (mean-field theory) and ends up with the Poisson-Boltzmann theory.

2. Ξ ≫ 1: In the strong-coupling limit, the system has a high charge density,
a high valency and/or is prepared at a low temperature. Here a virial
expansion in Ξ−1 can be made.

In order to understand the difference better between the two limits, we use charge
neutrality

Ze

πa2
⊥

= σ = en2d (3.15)

to introduce the typical lateral distance a⊥ between counter-ions. Later we will
see that both for weak and strong coupling, the average distance of the counte-
rions to the wall is the Gouy-Chapman length µ. We therefore rescale also the
lateral length with the Gouy-Chapman length:

a⊥
µ

=
√

Z

n2dπµ2 =
√

2Ξ (3.16)

This shows that Ξ determines the ratio between a⊥ and µ (compare Fig. 3.5).
For Ξ ≪ 1, the lateral distance between the counter-ions is smaller than their
average distance from the wall and they form a 3D cloud that has no structure in
the lateral direction; therefore a mean field theory in z-direction is sufficient. For
Ξ ≫ 1, the lateral distance between the counter-ions is larger than their average
distance from the wall and they form a 2D layer on the wall. For very strong
coupling, this condensate can become a crystal.

3.4 Poisson-Boltzmann theory

Poisson-Boltzmann theory is a mean field theory that assumes local thermal
equilibrium. We start with the Poisson equation from electrostatics (Eq. 1.61)

∆Φ = −
ρ(r⃗)
ϵ0ϵ
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Figure 3.5: The two complementary limits considered here. (a) In the high temperature
limit, the lateral distance of the counter-ions is smaller than the vertical extension and
thus we get a liquid. This situation is described by a mean field theory in z-direction
(Poisson-Boltzmann theory). (b) In the low temperature limit, the lateral distance is
larger than the vertical extension and we get a condensate and possibly even a crystal
(strong coupling limit).

and combine it with the Boltzmann distribution:

ρ(r⃗)

for simplicity
Z = 1

= e · n(r⃗) = e · n0 · exp
(

−eΦ(r⃗)
kBT

) (3.17)

This results in

⇒ ∆Φ = −
e

ϵ0ϵ
· n0 · exp

(
− eΦ
kBT

)
Poisson-Boltzmann equation

(3.18)
The Poisson-Boltzmann equation (PBE) is a non-linear differential equation of
second order which is in general hard to solve analytically. In MD simulations,
one usually employs PB-solvers (e.g. DelPhi, APBS, MIBPB, etc). There are
only few cases for which it can be solved analytically.
Luckily, this is the case for the example of the charged wall. The boundary
conditions are given by the charge neutrality of the whole system and by |E(∞)| =
| − Φ′(∞)| = 0:

σ =
´∞

0 dz ρ(z)︸︷︷︸
charge density
of counter-ions

= −ϵ0ϵ
´∞

0 Φ′′ dz

= −ϵ0ϵ( Φ′|z=∞︸ ︷︷ ︸
= −E(∞) = 0

− Φ′|z=0)

⇒ Φ′|z=0 =
σ

ϵ0ϵ

With the boundary conditions, we get the analytical solution for the charged
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point charge charged wall with counter-ions (PBT) with salt (DH)
Φ 1/r z ln(z) exp(−κz)
E 1/r2 const 1/z exp(−κz)

Table 3.2: Distance dependence of the electrostatic potential Φ and the electrostatic field
E for different systems. Note that in comparison to a point charge a spatially extended
distribution like the charged wall strengthens the interaction, whereas the presence of
counter-ions (Poisson-Boltzmann theory) weakens the interactions. If, in addition, salt
is added to the solution, the interaction is weakened to an even higher extent.

wall:

Electrostatic potential Φ(z) =
2kBT
e

ln
(
z + µ

µ

)
+ Φ0 (3.19)

Counter-ion density n(z) =
1

2πlB
·

1
(z + µ)2 (3.20)

Recall, that without counter-ions Φ ∼ z and E = const (compare Eq. 3.2 and
Eq. 3.3; compare also table 3.2). This is now changed to a logarithmic scaling of
the potential since a cloud of counter-ions surrounds any charged object and thus
weakens the electrostatic potential. In other words, the charged wall is "screened"
by the counter-ions. Together with the cloud or layer of counter-ions, the charged
wall forms an electrostatic "double layer".

3.5 Debye-Hückel theory

Let us once again investigate the charged wall, now with a 1:1 electrolyte (i.e.
NaCl) added to the solution. In this system, counter-ions as well as co-ions are
present in the solution. Eq. 3.17 for the density of the ion species accounts for
both counter-ions and co-ions with the same n0 due to charge neutrality far from
the wall. The PBE (Eq. 3.18) then reads:

∆Φ = −
e

ϵ0ϵ
(n+ − n−)

= −
e

ϵ0ϵ

(
n0 · exp

(−eΦ
kBT

)
− n0 · exp

(
+ eΦ
kBT

))
(3.21)

=
2e
ϵ0ϵ

· n0 · sinh
(
eΦ
kBT

)
(3.22)

Note that the nice mathematical form of this equation arises because of the
boundary condition that n0 is the same for both the plus and minus co-ions at
infinity. Interestingly, there exists an analytical solution for this equation. Here
however we continue right away with a special case. For small eΦ/(kBT ), we can
linearize Eq. 3.22 by using sinh(x) ≈ x for small x. We then obtain

∆Φ = κ2Φ Debye-Hückel equation (3.23)
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lB µ lDH
7 Å 1nm 1nm

Table 3.3: Values for the three electrostatic length scales Bjerrum length lB , Gouy-
Chapman length µ and Debye-Hückel screening length lDH at physiological conditions.
Note that the three electrostatic lengths are very similar (all around 1nm).

with the Debye-Hückel screening length

lDH =
1
κ

=
(
ϵ0ϵ · kBT

2e2n0

)1/2

= (8πlBn0)−1/2 (3.24)

lDH =


1µm pure water, 10−7M , H3O

+ : OH−

10nm 1mM NaCl

1nm 100mM NaCl (cytoplasma)
3 Å 1M NaCl

which adds a third typical length scale to the two (Bjerrum length and Gouy-
Chapman length) we already introduced before (see also table 3.3).
The solution of the Debye-Hückel equation for a charged wall is simply

Φ(z) =
σ

ϵ0ϵκ
e(−κz) (3.25)

where we again employed the boundary condition Φ′(z = 0) = −σ/(ϵ0ϵ) due to
charge neutrality.
In contrast to the result obtained by the PB theory where no salt was added
to the solution, Eq. 3.25 exhibits an exponential decay. Thus, the interaction
is short-ranged. In general, the more salt is added to the solution, the smaller
is the screening length lDH and the more the charged wall is screened by the
counter-ions.
The DHE (Eq. 3.23) can also be solved analytically for other geometries than the
charged wall, for instance for spherical symmetry. Consider a sphere with radius
R (e.g. an ion, a protein, a micelle, a vesicle, a virus or a cell).

∆Φ =
1
r

d2

dr2(rΦ) = κ2Φ

⇒ Φ =
RϕR

r
· exp(−κ(r −R)) (3.26)

where ϕR denotes the surface potential. It follows from Gauss’ law (Eq. 1.62)
and charge neutrality:

ER =
QV

4πϵ0ϵR2 = −Φ′|r=R =
ϕR(1 + κR)

R

⇒ ϕR =
QV

4πϵ0ϵ · (1 + κR)R (3.27)

Two special cases of Eq. 3.26 are particularly interesting:
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1. No salt added to the solution, hence κ → 0 ⇒ Φ =
QV

4πϵ0ϵr
. This limit

results in the well-known Coulomb law.

2. Point charge (R → 0): Then the potential takes the form

Φ =
QV · exp(−κr)

4πϵ0ϵr
Yukawa potential (3.28)

Eq. 3.28 is the Green’s function (or propagator) for the linear Debye-Hückel
theory. Like for the Coulomb interaction, one can calculate Φ for any ex-
tended object (i.e. a line, a plane, etc.) by superposition of the propagator.

3.6 Strong coupling limit

To obtain a solution in the low-temperature limit for our example of the charged
wall, a virial expansion via a complicated field theory has to be performed [13].
However, since this is not subject to this course, only the result for the ion
distribution near a charged wall is given here:

n(z) = 2πlB(n2d)2e−z/µ Strong coupling limit (3.29)

It has to be noted that although Eq. 3.29 exhibits an exponential decay, it is not
comparable to the derivation of the DHE and its solution for the charged wall.
The latter was derived by the linearization of the PBE, whereas the result shown
here has been derived independently from PBT. Note that the relevant length
scale of Eq. 3.29 is the Gouy-Chapman length µ, and not the Debye-Hückel length
lDH .

3.7 Two charged walls

Now we want to investigate the case of two charged walls facing each other by
making use of the theories introduced so far, i.e. the PB, the DH and the SC
theories. The picture of two charged walls is actually the simplest model for the
interaction between two particles. The interaction of charged particle surrounded
by counter-ions is not only important in biology, but also e.g. in the earth sciences.
In Fig. 3.6 the formation of river deltas is given as an instructive example.

3.7.1 Poisson-Boltzmann solution

Consider two charged walls which both carry a charge density σ facing each other
at a distance d (compare Fig. 3.7a. We start with the PBE:

Φ′′ = −
e

ϵ0ϵ
· n0 exp

(
−
eΦ
kBT

)
︸ ︷︷ ︸

n
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Figure 3.6: The formation of river deltas as a consequence of the interaction of two
charged particles in salty solution. (a) A river flows from the mountains into the sea. On
its way, negatively charged silica particles dissolve in the water which repel each other
due to their charge. As the low-salt water of the river meets the sea water with high
salinity, the repulsion between the particles is screened. They aggregate and, hence, form
the river delta. (b) Effect of the salt ions on the potential energy. Screening lowers the
energy barrier responsible for the repulsion. The corresponding description is known as
DLVO-theory in colloidal sciences.

Figure 3.7: (a) Poisson-Boltzmann solution for the potential Φ and the counter-ion
density n between two charged walls with charge densities σ1 = σ2 = σ. (b) The human
knee is stabilized by cartilage containing hyaluronic acid (HA). Hyaluronic acid is a long,
high molecular mass polymer of disaccharids, which is negatively charged and therefore
responsible for the disjoining pressure caused by its counter-ions.

The two boundary conditions are:

symmetry : Φ′(0) = 0

charge neutrality: σ = −
ˆ d/2

0
ρ dz = ϵ0ϵ

ˆ d/2

0
Φ′′ dz = ϵ0ϵΦ′

(
d

2

)
⇒ Φ′

(
d

2

)
=

σ

ϵ0ϵ
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This results in the exact solution of the PBE:

Potential Φ(z) =
kBT

e
ln
[
cos2 (K · z)

]
(3.30)

Counter-ion density n(z) =
n0

cos2 (K · z) (3.31)

where n0 denotes the counter-ion density at the mid plane and K denotes a
constant which follows from the boundary condition:

Φ′
(
d

2

)
=

σ

ϵ0ϵ
=

2kBT ·K
e

tan
(
K · d

2

)
(3.32)

Eq. 3.32 has to be solved numerically for K. A graphical representation of the
analytic result of potential and charge density is shown in Fig. 3.7a.
Interestingly, the charges tend to accumulate at the sides, although the electro-
static forces between the two equally-charged plates cancel each other. This leads
to a strong "disjoining pressure" (counter-ion pressure).
For two membranes with σ = e/nm2 facing each other at a distance d = 2nm and
a mid-plane concentration n0 = 0.7M , the counter-ion density at the plates is
n(d/2) = 12M . This implies that the density is increased by a factor of 18.5 over
a distance of only 1nm. In this case, the potential difference is ∆Φ = −74mV .
One can also compute the disjoining pressure and in the limit of small separation
(d ≪ lB), it obeys an ideal gas equation (without proof):

p = kBT · n0 = 17 atm (3.33)

where 1 atm ∼= 105 Pa. It can be seen directly that the disjoining pressure is
very large and this has many applications in biological systems. For example,
disjoining pressure can be found in joints and is actually the reason why we can
go jogging (compare Fig. 3.7b).

3.7.2 Debye-Hückel solution

Let us now assume that there is additional salt in between the charged walls. Since
the DH equation is a linear differential equation, the solution for this system is
simply a superposition of the solution of two single charged walls (Eq. 3.25). One
then gets

Φ′′ = κ2Φ ⇒ Φ = Φ0 cosh(κz) (3.34)

Thus, the DH solution for Φ (as well as for n and p, respectively) decays expo-
nentially with the distance and, hence, the interaction is short-ranged.

3.7.3 Strong coupling limit

The counter-ion density between two charged walls in the strong coupling limit
turns out to be relatively flat. In detail it is constant in zero order and parabolic
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Figure 3.8: (a) Phase diagram showing regions of attraction and repulsion as a function
of plate separation d/µ and coupling strength Ξ [13]. (b) Small strip of two charged walls
with an in-between counter-ion.

in first order of the virial expansion. Thus superficially it appears to be similar
to the PB result. In practise, however, the results are very different, because
one finds that the two equally charged walls can in principle attract each other.
Whether the interaction between the two planes is attractive or repulsive depends
on the distance d and the coupling strength Ξ, as shown in the phase diagram in
Fig. 3.8a. The very fact that attraction can occur offers a solution to our DNA
riddle.
A simple explanation for this behavior can be given as follows: consider the
condensed situation as sketched in Fig. 3.8b. Because the counter-ions condense
with a relatively large lateral distance to each other, we neglect their interaction
and only consider the interactions of one counter-ion with the wall in a small
strip with area A = − q

2σ > 0. There are three contributions to the electrostatic
energy now: the two interactions of the counter-ion with the two walls and the
interaction of the walls with each other:

Uel

kBT
= −2π(lB/e2)qσx− 2π(lB/e2)qσ(d− x) − 2π(lB/e2)σ(σ ·A)d

= −π(lB/e2)σqd = 2π(lB/e2)σ2Ad (3.35)

The energy is minimal for d → 0 which leads to attraction of the two charged
walls. For the electrostatic and the entropic pressure we get

electrostatic pressure: pel = −
∂

∂d

(
Uel
A

)
= −2πlBσ2kBT

e2

entropic pressure: pen =
kBT

A · d
= −

2σkBT
qd

⇒ balanced at equilibrium distance d = −
e2

πlBqσ
= 2µ (3.36)

The strong coupling limit is biologically relevant, because for n2d = 1nm−2 it
can be reached with trivalent counter-ions. In fact, the charged polymer DNA
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uses many multivalent counter-ions such as speridine and spermine which support
DNA condensation in the nucleus. Again the existence of an equilibrium distance
also has consequences in other sciences. E.g. it explains why clay particles can
be swollen only to a certain distance.

3.8 Electrostatistics of viruses

In the beginning of this chapter, we asked the question how DNA as a charged
polymer can be kept spatially confined such that the distance between the charges
is in the range of nm (which is the case in a nucleus or in a virus). We can answer
this now with the help of the previous section: the DNA can be in a condensed
state due the effect of counterions with high valency. In the nucleus, it is organized
in highly complex structure with several levels of organization in order to form
chromosomes. Therefore a more accessible model system is DNA-organisation in
viruses.

3.8.1 The line charge density of DNA

We already know that DNA is highly charged. Until now we assumed that every
base pair carries two negative charges, in other words we assumed that every
segment of the DNA was fully dissociated and therefore the linear charge density
was λ = 2e/(3.4 Å). We will now see why this assumption can indeed be made.
In water, DNA dissociates H+ as a counter-ion into the surrounding solution:

DNA ⇌ DNA− + H+ (3.37)

The law of mass action gives us the dissociation constant for reaction formula
3.37.

KD =
[
H+] ·

[
DNA−]

[DNA] (3.38)

Due to the many orders of magnitude spanned by KD values, a logarithmic
measure of the dissociation constant is more commonly used in practice.1

pK := − log10KD = − log10

[
H+
]

︸ ︷︷ ︸
=pH

− log10
[
DNA−]+ log10 [DNA] (3.39)

⇒ pK = pH − log10

[
DNA−]
[DNA]

Henderson-Hasselbalch
equation (3.40)

The pK corresponds to the pH at which half of the groups have dissociated
(
[
DNA−] = [DNA]).

1pure water:
[
H+] = 10−7 M ⇒ pH = 7
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Figure 3.9: Simple model of viral DNA packed in the capsid of the ϕ29 bacteriophage.

For DNA, we find pK = 1 which implies that DNA is a very strong acid. In cells,
pH = 7.34. With the Henderson-Hasselbalch equation the fraction of dissociated
DNA can immediately be calculated.[

DNA−]
[DNA] = 106.34

Thus, DNA in the cell is completely dissociated and, therefore, carries a line
charge density of

λ =
2e

3.4 Å
linear charge density

of DNA (3.41)

3.8.2 DNA packing in ϕ29 bacteriophage

Now we want to focus on DNA packing in viruses. Actually, a virus is not a living
object per definition, but rather genetic material, i.e. DNA or RNA, packed into
a protein shell, the so-called capsid. Typically, the diameter of a capsid is in
the range of tens to hundreds of nm. Some viruses, e.g. HIV, are in addition
wrapped by a lipid bilayer (and are then called "enveloped virus").
As we shall see in the following, the RNA and DNA in viruses is very densely
packed. Take for instance the ϕ29 bacteriophage (a virus infecting E.Coli): Its
capsid can be approximated as a sphere of radius Rcapsid = 20nm containing
20 kbp (corresponding to L = 2 · 104 · 0.34nm = 7µm) DNA. We assume Vbp ≈
1nm3 (compare Fig. 3.9). The packing ratio in the capsid can be computed
directly:

2 · 104 nm3

4π
3 (20nm)3 ≈ 0.6 (3.42)

Comparing this value with the maximal packing density of spherical objects into a
crystal (≈ 0.71) it can be concluded that DNA packed into a viral capsid must be
close to a crystalline structure. Indeed this can be shown by electron microscopy.
If we now pack DNA with the line charge density λ = 2e/(3.4 Å) into the virus,
how much electrostatic energy do we have to put into the system? Electrostatic
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energy is the work to bring a charge distribution into its own field and is known
to be

Uel = 1
2
´

Φ(r⃗) · ρ(r⃗) dr⃗ (3.43)
where the factor 1/2 is needed to avoid double-counting each interaction. We
model the DNA in the virus as a fully charged sphere. The potential at the
surface of a sphere with radius r and charge density ρ follows from Gauss law as

Φ(r) =
1

4πϵ0ϵ
·

1
r︸ ︷︷ ︸

point charge in origin

· ρ ·
4π
3 r

3︸ ︷︷ ︸
charge in smaller sphere

= ρr2

3ϵ0ϵ
(3.44)

For the total work, we have to add up shell after shell of the sphere:

⇒ Uel =
ˆ R

0
drΦ(r) ·

(
ρ · 4πr2

)
=
ˆ R

0
dr

4π
3ϵ0ϵ

ρ2r4 =
4π

15ϵ0ϵ
ρ2R5

=
1

4πϵ0ϵ
·

3Q2

5R (3.45)

where we have used Q = ρ4π
3 R

3. Here the factor 1/2 does not arise because every
contact is counted only once as we gradually build up the sphere. 2 For our
example of the ϕ29 bacteriophage, we have Q = 2e/bp · 20kbp and hence

Uel = 108pN · nm (3.46)

The work needed to pack the DNA into the viral capsid has been measured in
a single molecule experiment [14]. However, in this experiment the work was
determined to be much smaller than the one estimated above:

Wexp ≈ 1
27000 nm · 60 pN = 2.1 · 105 pN · nm (3.47)

Obviously the above estimate was much too high because we neglected the effect
of the counter-ions.
There are N = 4 · 104 counter-ions packed with the genome (corresponding to
2 counter-ions/bp). We now assume complete neutralization of the charges and
consider only the loss of entropy due to the DNA volume:

Uci = NkBT · ln
Vfree

Vcapsid
(3.48)

The volume Vfree is that of the screening cloud (recall that L ≈ 7µm, RDNA ≈
1nm, Rcapsid ≈ 20nm and lDH ≈ 1nm).

Vfree = Lπ
[
(RDNA + lDH)2 −R2

DNA

]
= 6.6 · 104 nm3 (3.49)

Vcapsid =
4π
3 R

3
capsid − LπR2

DNA = 1.2 · 104 nm3 (3.50)

⇒ Uci = 3 · 105 pN · nm (3.51)
2Eq. 3.43 can still be used and leads to the same result if we use in it the expression for the

potential inside a uniformly charged sphere, ϕ(r) = ρ(3R2−r2)
6ϵ0ϵ

(valid for r < R).
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Figure 3.10: Left panel: Experimental set-up of the portal motor force experiment. A
single ϕ29 packaging complex is tethered between two microspheres. Optical tweezers
are used to trap one microsphere and measure the forces acting on it, while the other
microsphere is held by a micropipette. Right panel: Internal force as the function of %
genome packed. Note that 100% of the genome corresponds to 7µm DNA and that the
work is obtained by integration of the force (grey area). Images and caption text (partly)
taken from reference [14].

This result is much closer to the experimental value. A full analysis had to also
include the effect of bending the DNA, which requires polymer physics.
Finally the pressure inside the capsid can be calculated:

p =
NkBT

V
=

4 · 104 · 4.1 pN · nm
4π
3 (20nm)3

≈ 5 pN

nm2 = 50 atm (3.52)

This is a huge counter-ion pressure inside the capsid, as was also experimentally
confirmed.

3.8.3 Electrostatistics of viral capsid assembly

Before the DNA can be inserted into the viral capsid by a molecular motor, the
capsid itself has to be assembled (for RNA viruses, genome and capsid are often
co-assembled, because RNA is more flexible than DNA and therefore more easy
to bend during assembly). Viral capsids assemble from so-called capsomers and
often form an icosahedral lattice, because this is close to the shape of a sphere
which gives the optimal volume to area ratio. For many viruses like Hepatitis B
virus (HBV, compare Fig. 3.11a), assembly is sufficiently robust to also occur in
the test tube from the capsomers alone. This proves that it is a spontaneously
occuring process that is driven by some gain in Gibbs free energy. We consider
two major contributions: a contact energy between the capsomers driving the
process and an electrostatic energy opposing it (note that charges are required to
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stabilize the capsomers and the capsid in solution against aggregation, although
this is unfavorable for assembly):

∆G = ∆Gcontact + ∆Gelectro (3.53)

The equilibrium constant K then follows as (assuming a dilute solution)

lnK = − ∆G
kBT

(3.54)

For HBV, K has been measured as a function of temperature T and salt con-
centration cs [15], compare Fig. 3.11b-d. Because this virus assembly from 120
capsomers in an all-or-nothing manner, we do not have to consider intermediates
and can write a law of mass action:

K = [capsid]
[capsomer]120 (3.55)

The fraction of complete capsids can be measured by size exclusion chromatog-
raphy and then be fitted to the corresponding isotherm (with a Hill coefficient of
120). This procedure works very well and gives curves for K(T, cs).
The experimental data gives two main results. First the slope of K(T, cs) as a
function of T does not depend on cs, suggesting that assembly is driven mainly
by contact interactions. The strong temperature dependence points to entropic
effects and suggests a hydrophobic interaction, similar to the one driving micelle
formation, protein folding or lipid membrane assembly. Second K increases with
cs, suggesting that increased salt screens the electrostatic repulsion and thus
promotes assembly.
In a theoretical analysis, it has been shown that these experimental results can be
fitted nicely using Debye-Hückel theory [16]. We start from the surface potential
of a sphere of radius R in Debye-Hückel theory (Eq. 3.27):

ϕR =
QV

4πϵ0ϵ · (1 + κR)R =
QV

4πϵ0ϵ
lDH

R(R+ lDH) . (3.56)

The electrostatic energy of the charged spherical shell is now

U = 1
2QϕR = 1

2kBT
(
Q

e

)2 lDH lB

R(R+ lDH) . (3.57)

With lDH = 1nm and R = 14nm we can write (R + lDH) ≈ R. Therefore our
final result for the salt-dependent part of the equilibrium constant reads

lnK = −∆Gelectro
kBT

= −1
2

(
Q

e

)2 lDH lB

R2 (3.58)

Thus lnK should scale linearly with the screening length lDH and therefore with
c

−1/2
s , exactly as it is observed experimentally, compare Fig. 3.11d.
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(a)

(c) (d)

(b)

Figure 3.11: (a) Molecular rendering of the structure of the capsid of hepatitis B virus
(HBV). (b) Assembly isotherms at different salt concentrations. (c) Fit of equilibrium
constant as a function of temperature and salt concentration. (d) Scaling of equilibrium
constant with salt concentration. Experimental data from Zlotnick group, theory by van
der Schoot group.
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Chapter 4

Binding and assembly

Due to the high temperature and low interaction energies, the biomolecules in
the cell are in constant motion and continuously bump into each other. Once
this happens, their biomolecular interactions decide whether they bind to each
other or not. The main functions of binding are information transfer, transport
and assembly. We now ask how one can describe the statistics arising from
many binding events. We will see that the appropriate formalism is essentially
the grandcanonical ensemble and that this will allow us to calculate binding
curves as function of monomer concentration, using the concept of the binding
polynomial. The most important example for such a binding processes is the
cooperative binding of oxygen to hemoglobin, which we will discuss in detail,
including the MWC-model by Monod, Wyman and Changeux. We then turn to
the assembly of cytoskeletal filaments, especially actin, which not only can grow
to large sizes, but also solved the problem of polarized growth and treadmilling.
Finally we discuss the assembly of micelles and viruses, which again have a finite
size, but complex assembly pathways, that need to avoid kinetic trappling and
malformed structures.

4.1 Binding polynomial

Consider a protein P that has t binding sites for a ligand X with concentration
[X] = x. For each complex we write a reaction equation:

P +X → PX1 (4.1)
P + 2X → PX2 (4.2)

. . . (4.3)
P + tX → PXt (4.4)

Note that these equations do not describe the actual dynamics, but only the
binding equilibria that have to exist in a statistical sense. For each equation we
have a law of mass action:

[PXi]
[P ]xi = Ki (4.5)

63



which reaction constants Ki, which have units of [concentration]−i. The larger
Ki, the more favorable the reaction.
We now ask which fraction is in state i:

[PXi]
[P ] + [PX1] + · · · + [PXt]

= Kix
i

Q(x) (4.6)

where a factor of [P ] has canceled and we have defined the binding polynomial

Q(x) = 1 +K1x+ · · · +Ktx
t =

t∑
i=0

Kix
i (4.7)

with K0 := 1. We next calculate the number of bound ligands:

⟨i⟩ =
∑
i iKix

i

Q
= x

Q

dQ

dx
= d lnQ
d ln x . (4.8)

So we see that the binding polynomial generates this result simply by a derivative,
using a trick which is well known from statistical mechanics: xdx generates the
number i when applied to xi. The function of Q(x) is exactly the one of the
grandcanonical partition sum ZG in statistical physics or of a generating function
G in probability theory.
For the second moment we have

⟨i2⟩ =
∑
i i

2Kix
i

Q
= x

Q

d

dx

(
x
dQ

dx

)
. (4.9)

The mean squared deviation (MSD) then follows from

⟨(∆i)2⟩ = ⟨(i− ⟨i⟩)2⟩ = ⟨i2⟩ − ⟨i⟩2 (4.10)

and is a measure for the size of the fluctuations.
In the following we will discuss this formalism for three different cases: t = 1, 2
and 4, with the last one being the case of hemoglobin.

One binding site

We now have only one reaction

P +X → PX (4.11)

and one reaction equilibrium
[PX]
[P ]x = K (4.12)

We then find

Q(x) = 1 +Kx (4.13)

⟨i⟩ = Kx

1 +Kx
(4.14)

⟨i2⟩ = Kx

1 +Kx
= ⟨i⟩ (4.15)

64



thus the first two moments are identical. The result for the first moment is known
as the Langmuir isotherm because it also arises from the grandcanonical ensemble
of a two-state system. It has a hyperbolic shape on a linear scale and a sigmoidal
shape on a logarithmic scale. The MSD has a maximum at intermediate values
of x, similar to the specific heat of a two-state system (Schottky hump).

Figure 4.1: (a) First and second moment as a function of concentration x = [X]. (b)
First and second moment on a logarithmic scale.

Two binding sites

We start with the site-based approach and distinguish between binding sites a
and b. We now have three equilibrium reaction

P +X → PaX (4.16)
P +X → PbX (4.17)
P + 2X → PX2 (4.18)

and three corresponding laws of mass action. We consider the average number of
bound ligands:

⟨i⟩ = [PaX] + [PbX] + 2[PX2]
[P ] + [PaX] + [PbX] + [PX2] = d lnQ

d ln x (4.19)

with
Q(x) = 1 +Kax+Kbx+Kcx

2 . (4.20)

For two independent binding sites (no cooperativity) we have Kc = KaKb and
thus

Q(x) = 1 +Kax+Kbx+KaKbx
2 = (1 +Kax)(1 +Kbx) . (4.21)

For the binding curve we get the sum of two Langmuir isotherms:

⟨i⟩ = Kax

1 +Kax
+ Kbx

1 +Kbx
. (4.22)
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Positive cooperativity would imply c = Kc/(KaKb) > 1 and the binding polyno-
mial would not factorize.
In the stochiometric approach, we do not distinguish between sites a and b and
only consider two reaction:

P +X → PX1 (4.23)
PX1 +X → PX2 (4.24)

with reaction constants K1 and K2. The binding polynomial Q now reads

Q(x) = 1 +K1x+K1K2x
2 . (4.25)

Comparing with the site-based approach gives K1 = Ka +Kb and K1K2 = Kc.

Four binding sites

This is the case of hemoglobin, which can bind four oxygen atoms with high
cooperativity. Without cooperativity, we would have

Q(x) = (1 +Kx)4 = 1 + 4Kx+ 6(Kx)2 + 4(Kx)3 + (Kx)4 (4.26)

where the binomial coefficients reflect the different ways to distribute the zero to
four ligands over the four binding sites. For the first moment we would simply
have

⟨i⟩ = 4Kx
1 +Kx

. (4.27)

that is a Langmuir isotherm with four ligands in saturation. Experimentally,
however, it was realized early on that the binding curve is much steeper, more
closely to a Hill binding curve

⟨i⟩ = 4Kxn
1 +Kxn

(4.28)

with an effective Hill coefficient of n ≈ 3. In the literature, different suggestions
have been made to explain such binding curves. While Adair (1925) simply
used four different reaction constants, Pauling (1935) came up with a model that
has only one more parameter, namely the energy gain for a pairwise interaction
between two neighboring ligands on a tetrahedron. Although this model fits
the experiments nicely, it does not reflect the additional experimental fact that
hemoglobin is allosteric, which means that it can exist in two states called T
(tense) and R (relaxed). In 1965, Monod, Wyman and Changeux introduced a
model based on this observation. Today the MWC-model is the standard model
for cooperativity in binding curves.
We assume that the T-state is more stable than the R-state in the absence of
oxygen, [T ]/[R] = L > 1. On the other hand, however, oxygen X binds better to
R than to T:

R+X → RX (4.29)
T +X → TX (4.30)
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with KR > KT . Thus once X is present, the whole system shifts towards R,
which in turn binds even more X, thus having positive cooperativity. The binding
polynomial for this model is

Q(x) = (1 +KRx)4 + L(1 +KTx)4

1 + L
(4.31)

leading to

⟨i⟩ = d lnQ
d ln x = 4KRx(1 +KRx)3 + 4LKTx(1 +KTx)3

Q(1 + L) (4.32)

which indeed is similar to a Hill curve with n ≈ 3.

4.2 Growth of cytoskeletal filaments

We now turn our attention to a supramolecular complex that can grow to large
size, which holds true for cytoskeletal filaments like actin. We denote the ag-
gregates by Pn (because they are polymers) and we only consider growth by
monomer addition (alternatively, all sizes could interact with each other, lead-
ing to the coagulation-fragmentation equation going back to Smoluchowski and
Kolmogorov; the monomer addition scheme treated here is a special case known
as the Becker-Döring equations). Again choosing the stochiometric approach, we
have

[Pn]x
[Pn−1] = Kd (4.33)

where now we do not use the reaction constant K, but its inverse Kd = 1/K, the
dissociation constant. Note that Kd has the dimension of concentration and in
fact it is the concentration at half-occupancy (when [Pn] = [Pn−1]). The smaller
Kd, the stronger the reaction (the larger the reaction constant K) and the fewer
monomers are required to reach half-occupancy. We also assume that the reaction
constant does not depend on the aggregate size n, because to first approximation,
only the local interface should matter. In marked contrast to micelle and virus
assembly, now the aggregate can grow to infinite size, which means that n can
run to infinity.
Like before, by iteration we can write the concentration of the intermediates:

[Pn] = Kd

(
x

Kd

)n
= Kde

−αn (4.34)

where we have defined α = − ln(x/Kd), which is possible for x < Kd. Thus
for a fixed concentration x below the dissociation constant Kd, there will be an
exponential distribution of polymer sizes. However, if concentration approaches
Kd from below, polymer size will diverge. Thus xc = Kd is the analogue to the
critical micelle concentration where assembly suddenly kicks in, similar to a phase
transition, but for a finite-sized system.
For actin, an order of magnitude estimate is Kd = koff/kon = (1/s)/(10/µMs) =
0.1µM . However, the typical actin monomer concentration in cells is x = 30µM .
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This means that actin in cellular conditions always wants to grow. To regulate
this process, cells use capping proteins that locally suppress growth. Addition
of one actin monomers corresponds to a increase in length of a = 2.75 nm. The
growth velocity follows as v = konax = µm/s, which indeed is a typical value
observed experimentally.
Growth velocity is reduced by dissociation, leading to

dL

dt
= akonx− akoff (4.35)

again resulting in the critical concentration xc = koff/kon = Kd. Growth would
be further reduced if monomer starvation existed, that is if overall actin con-
centration would be fixed and monomers were used up during growth. Here we
assume that we have a unlimited reservoir for monomers which fixes concentration
x.
We now ask the question how biological filaments manage to treadmill, that is
one end shrinks while the other end grows such that overall length is constant.
In our simple model, dL/dt = 0 is only possible at xc, but then both ends are
stalled. To break this symmetry, both ends have to have different rates, that
is k+

off and k+
on at the plus end and k−

off and k−
on at the minus end (for actin,

these two ends are called the barbed and pointed ends, respectively). However,
the ratio of these rates at each side should be the same, because they have the
same binding interface and therefore the same free energy difference ∆G, leading
to the same reaction constant. This in turn implies that both ends either shrink
or grow, thus they have no possibility to have different behaviour at the same
monomer concentration x.
Here nature has invented an ingenious solution, namely a different chemical na-
ture for the two ends using ATP-hydrolysis. The barbed end mainly binds ATP-
actin, forming an ATP-cap at the barbed end, which is also the fast growing end.
With time ATP is converted into ADP and the pointed end mainly binds ADP-
actin. In this way, the two interfaces have different binding energies and therefore
two different critical concentrations emerge: K+

d = 0.5µM and K−
d = 8µM . For

one unique value in this window, one now can get treadmilling, namely when the
growth velocities at the two ends are exactly equal and opposite.
For microtubules, the situation is slightly different, here treadmilling is not re-
quired and one end typically is fixed to some nucleation center, e.g. the centro-
some. In order to still keep average length constant while allowing for growth,
nature has invented another trick, namely occasional catastrophes, when sud-
denly the whole polymer collapses back to a small size.

4.3 Micelle assembly

Cytoskeletal filaments essentially have a linear assembly pathway. As an example
of self-assembly into a complex that does not have a linear assembly pathway,
we now discuss the formation of micelles, which are spherical assemblies of sur-
factants (surface active molecules), e.g. tensides or lipids, which shield their
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hydrophobic tails from the contact with water by forming a droplet. Typicallly a
micelle contains 60 surfactant molecules with cone shapes, that means with bulky
head groups of molecular surface area above 60 Å2. Below this value cylindrical
micelles will form, and planar bilayers below 40 Å2. Here however we only discuss
the spherical case.
In principle, the surfactants could assemble into aggegrates An of arbitrary size
n = 1, 2, 3, . . . . For each size we have an reaction equilibrium as above. The
monomer concentration is x = [A1] and the fraction of molecules in aggregates is

ν(x) = x+ 2K2x
2 + 3K3x

3 + . . .

x+K2x2 +K3x3 + . . .
= 1 + 2K2x+ 3K3x

2 + . . .

1 +K2x+K3x2 + . . .
(4.36)

and as before Kn = e−β∆µ0
n . A famous model by Tanford and Israelachvili

suggests that the chemical potential should single out an optimal micelle size
through surface effects. The larger the micelle, the larger the surface energy
desribed by the surface tension γ between the oily and aqueous parts. A too
small surface area however is also unfavorable because then the polar headgroups
would start to repel each other too much. They suggested the following equation

∆µ0(a) = γa+ c

a
(4.37)

which leads to an optimal micelle surface area a = a∗ = (c/γ)1/2. Then we can
rewrite the chemical potential as

∆µ0(a) = γ

a
(a− a∗)2 + 2γa∗ ≈ γ

a∗ (a− a∗)2 + 2γa∗ (4.38)

where the approximation would be a Taylor expansion around a = a∗. If we now
insert this result into the Boltzmann factor, we can conclude that the micelle
size will have a Gaussian distribution around a = a∗. This suggests that micelle
formation is essentially a two-state process, with monomers coexisting with fully
assembled micelles of size a = a∗. Indeed this is observed experimentally: at the
critical micelle concentration (CMC), fully developed micelles start to develop
and monomer concentration plateaus. The CMC can be deduced from a two-
state equilibrium between A1 and An with K = [An]/xn. Then

ν(x) = x+ nKxn

x+Kxn
= 1 + nKxn−1

1 +Kxn−1 (4.39)

and the CMC is xc = K−1/(n−1).

4.4 Virus capsid assembly

Viruses come in many different sizes and shapes, but a typical virus is spherical
and has a diameter of 100 nm. As a rule of thumb, animal RNA-viruses like
Influenza A, Ebola, HIV 1 or SARS-CoV-2 tend to be enveloped by a membrane
and therefore assemble at some membrane of the host cell. They also tend to
have structural proteins that form a capsid, but this capsid often assembles at
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the membrane. Here SARS-CoV-2 is a bit special because its structural proteins
do not form a completely connected capsid, in contrast to Influenza A, Ebola
or HIV-1. RNA-viruses also tend to assemble their capsid together with the
genome, because RNA is relatively easy to bend (see the chapter on biopolymers).
In contrast, DNA is relatively hard to bend and therefore DNA-viruses tend to
first assemble a capsid and then to fill it with the genome (e.g. bacteriophages,
Papilloma, Herpes or smallpox), often with the help of a portal motor. Non-
enveloped viruses tend to have a very stable protein capsid that often can assemble
in the test tube without any other proteins than the ones needed for the coat.
Note however that these are only rules of thumb and that the real situation is
much more complex, with many exceptions to these rules. For example, hepatitis
B is a DNA-virus and has a very regular capsid that can be assembled in the
testtube, but in addition it is enveloped. Many plant viruses such as cowpea
mosaic virus (CPMV) or cowpea chlorotic mottle virus capsid (CCMV) form
beautiful capsids and are not enveloped, but they are RNA-viruses. Disregarding
this diversity, in the following we discuss the assembly of protein capsids from
few proteins as a paradigm for the assembly of supramolecular complexes with
clear cut structure.
Virus capsid assembly is similar to micelle assembly, in the sense that it also turns
out to be essentially a two-state system between monomers and the assembled
capsid (see below), but the target structure is even more defined because it is
a solid protein lattice and not a fluid droplet. It has been noted by Francis
Crick and Jim Watson (who also discovered the structure of DNA) that most
viruses are spherical or cylindrical because they are made essentially from one
protein, so each point on the surface must be equivalent. In addition, however,
they must form a lattice. Closed shells with a lattice in which each point is
equivalent are the five Platonic solids. Donald Kaspar and Aaron Klug therefore
concluded that spherical viruses must have icosahedral symmetry, because the
icosahedron is the Platonic solid that comes closest to the sphere (largest number
of subunits, namely 20 triangles). As a simple model for a virus capsid, we now
discuss a dodecahedron (12 pentagons)1. As the dual to the icosahedron, it
has the same symmetry properties, but it is easier to treat because it has fewer
subunits. Examples for real world viruses which have similar structures would be
Polio, Hepatitis B or CCMV. If the capsomeres (monomers for the capsid) are
pentagons, this implies that they already have preassembled (typically from five
identical viral proteins) before the real capsid assembly starts.
We first argue that there is a linear pathway to assembly, from the monomer A1
through the intermediates An to the final capsid A12. The reason is that each
addition of an additional monomer takes the route of maximal energy gain, which
corresponds to the maximal number of new edges in the lattice. For example,
A3 should be a rosette rather than a chain of three pentagons, because then the
gain is f3 = 2 and not only f3 = 1 new edges. In the table, we list the number
of new edges which one gets over the whole sequence. Note that energy goes
always downhill and that the last addition (filling in one missing pentagon in

1This model has been published as Adam Zlotnick, To build a virus capsid - an equilibrium
model for the self-assembly of polyhedral protein complexes, J. Mol. Biol. 241: 59-67, 1994.
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n 2 3 4 5 6 7 8 9 10 11 12
fn 1 2 2 2 3 2 3 3 3 4 5
Sn 5/2 2/3 3/2 4/2 1/5 5/1 2/4 2/3 3/2 2/5 1/12

Table 4.1: Two important numbers characterizing the step An−1 → An in the assembly
of a dodecahedral virus capsid: the number fn of newly established edges characterizing
the energy gain, and the entropic degeneracy Sn, which is the ratio of number of ways
to build up An to the number of ways to dissociate An.

the dodecahedron) leads to the largest gain in energy. Each edge comes with an
energy gain around ∆ϵ ≈ −5kBT and typically results from hydrophobic patches
at the sides of the capsomers (compare the chapter on electrostatistics).
Taking the stochiometric approach, we can write the reaction equilibrium for each
step as (x = [A1] as before)

[An]
[An−1]x = Kn = K0SinSne

−βfn∆ϵ (4.40)

which includes two statistical factor. Sin = 5 is the number of ways an incoming
pentagon can dock. Sn is the ratio of the number of ways to form the new
intermediate to the number of ways to dissociate it. For example, we can add a
third pentagon to A2 in two ways, and there are three ways to remove one of the
pentagons from A3. Thus we would have

K3 = K052
3e

−β2∆ϵ . (4.41)

Note that because ∆ϵ is negative, this gives a relatively large Boltzmann weight.
As before, we now can obtain an equation of the concentration of all aggregates
by iteration:

[An] = Kn−1
0 Sin

n−1
(

n∏
i=2

Si

)
e−β∆ϵ

∑n

i=2 fixn (4.42)

If one plots this distribution, one sees that all values are very low, except the ones
for A1 (monomers are always present due to entropy) and A12 (the full capsid is
the end point and has the highest energy gain). Like for micelles, we can look
at this as a two-state system. We write the concentration of the capsid using all
the numbers given above

[A12] = K11
0 511 1

12e
−30β∆ϵx12 . (4.43)

Note that the number of edges should be 12 · 5/2 = 30, as seen here, but also
follows from the factor fn given in the table. The statistical factors present the
entropy of building the capsid. In particular, the factor 1/12 is the product of
all Sn given in the table. We now define an effective reaction constant and an
effective free energy difference by

Keff = [A12]
x12 ,∆Geff = −kBT ln Keff

K0
, (4.44)
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leading to

∆Geff = 30∆ϵ− kBT ln
(

511

12

)
. (4.45)

Obviously the first term is the overall energy gain, and the second defines the
entropy of building a capsid.
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Chapter 5

Physics of membranes and red
blood cells

In a cell, lipid bilayers partition space into functional compartments. This central
aspect of lipid bilayers must have been crucial for the development of life. Lipid
bilayers are the carriers of many vital processes, including ion separation and
transport as well as protein activity. In general, cell membranes regulate the
transfer of material and information in and out of cells.
Due to its low bending energy and the thermal environment, the lipid bilayer
is in continuous motion. In order to describe the energetics and statistics of
membranes, we have to introduce a mathematical description of surfaces and then
to identify the corresponding energy (Helfrich bending Hamiltonian). Therefore,
we start with a crash course in differential geometry1. We then discuss the
Helfrich bending Hamiltonian in much detail and its consequences for shapes
of minimal energy and thermal fluctuations around these shapes. As a reference
point, we always discuss surfaces under tension (e.g. soap bubbles or oil droplets).
Finally we discuss the physics of red blood cells, whose shapes and fluctuations
can be described well by surface Hamiltonians. However, in contrast to pure
membranes, the presence of the actin-spectrin network makes it necessary to add
additional terms to the interface Hamiltonian.

1There are many books on differential geometry, for example the one by Michael Spivak
(Comprehensive introduction to differential geometry, vols 1-5, 1979). Here are two books in
German that are especially helpful for membrane physics: MP do Carmo, Differentialgeometrie
von Kurven und Flächen, 3rd edition Vieweg 1993; JH Eschenburg and J Jost, Differentialge-
ometrie und Minimalflächen, 2nd edition Springer 2007. The classical review on vesicle shapes
is Udo Seifert, Configurations of fluid membranes and vesicles, Advances in Physics 46: 13-137,
1997. A great resource is also the script by JL van Hemmen, Theoretische Membranphysik:
vom Formenreichtum der Vesikel, TU Munich 2001, available at http://www.t35.physik.tu-
muenchen.de/addons/publications/Hemmen-2001.pdf from the internet.
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5.1 A primer of differential geometry

5.1.1 Curves in 3D

Figure 5.1: Polymers can be mathematically described as one-dimensional curves in a
three-dimensional space.

Parametrization and arc length of curves

Consider a curve in 3 dimensions, e.g. a helical curve with radius R and pitch
z0 = b · 2π

ω (figure 5.2, parametrized by an internal coordinate t:

r⃗(t) =

 x1(t)
x2(t)
x3(t)

 =

 R · cos(ωt)
R · sin(ωt)

b · t

 (5.1)

Figure 5.2: a Helical curve with radius R and pitch zo = b · 2π/ω. The tangential vector
t⃗, the normal vector n⃗ and the binormal vector b⃗ are sketched in blue. b Kissing circle
at a point P (s) with radius R(s) = κ−1(s).

In the limit b → 0, the helix becomes a circle, and in the limit b → ∞, it becomes
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a straight line. For the velocity of the helix we get:

v⃗ =
dr⃗

dt
= ˙⃗r =

 −Rω · sin(ωt)
Rω · cos(ωt)

b


⇒ v =

√
R2ω2 + b2 > Rω

An important quantity when describing a curve is its arc length L which is inde-
pendent of the parametrization that was chosen.

L =
ˆ t1

t0

dt
∣∣∣ ˙⃗r∣∣∣ t=t(u)=

ˆ t1

t0

dt

∣∣∣∣∣ dr⃗du
∣∣∣∣∣ ·
∣∣∣∣∣dudt

∣∣∣∣∣
=
ˆ u1

u0

du

∣∣∣∣∣ dr⃗du
∣∣∣∣∣ (5.2)

The arc length along a curve

s(t) =
ˆ t

t0

dt′
∣∣∣ ˙⃗r(t′)∣∣∣ (5.3)

can be used to parametrize the curve since it increases strictly with t (ṡ =
∣∣∣ ˙⃗r∣∣∣ > 0)

and can therefore be inverted to t = t(s).

⇒ r = r(s) = r(t(s)) parametrization by
arc length (PARC) (5.4)

For example, for the helical curve we find

v =
√
R2ω2 + b2 =

ds

dt
= const

⇒ s = v · t ⇒ t =
s

v
⇒ r⃗ =

 R · cos(ωsv )
R · sin(wsv )

bs
v



The co-moving frame

The co-moving frame (also called "Frenet frame") of a curve consists of three
mutually perpendicular unit vectors:

tangential vector t⃗(s) :=
˙⃗r

| ˙⃗r|
PARC=

dr⃗
ds ·

∣∣∣dsdt ∣∣∣∣∣∣dsdt ∣∣∣ = dr⃗

ds
(5.5)

normal vector n⃗(s) :=
dt⃗

ds
·
∣∣∣∣∣ dt⃗ds

∣∣∣∣∣
−1

=
1
κ

dt⃗

ds
(5.6)

binormal vector b⃗(s) := t⃗(s) × n⃗(s) (5.7)
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The normalization in equation 5.5 is not required for PARC. Therefore, PARC is
also called the "natural parametrization". In equation 5.6 we defined the curva-
ture κ of the curve at a given point

κ :=
∣∣∣∣∣ dt⃗ds
∣∣∣∣∣ (5.8)

which defines the radius of curvature R(s) = κ−1. This is the radius of the
so-called "kissing circle" at that specific point (figure 5.2.
E.g. for the helical path we get:

t⃗ =
dr⃗(s)
ds

=

 −Rω
v · sin(ωsv )

Rω
v · cos(ωsv )

b
v

 ⇒ |⃗t| =
R2ω2

v2 +
b2

v2 = 1
√

dt⃗

ds
=

 −Rω2

v2 · cos(ωsv )
−Rω2

v2 · sin(wsv )
0

 ⇒
κ = Rω2

v2 = Rω2

R2ω2+b2

= 1(
R+ b2

Rω2

) <
1
R

The curvature of the helical path is smaller than for a circle. In the limit b → 0,
we have κ = 1/R, denoting a perfect circle. In the limit b → ∞, κ vanishes,
denoting a straight line.
The derivatives of the vectors of the co-moving frame are described in the same
basis through the Frenet formulae:

dt⃗

ds
= κn⃗

dn⃗

ds
= −κt⃗ +τ b⃗

d⃗b

ds
= −τ n⃗

(5.9)

where we introduced the torsion τ :

τ = −
d⃗b

ds
· n⃗ =

dn⃗

ds
· b⃗ (5.10)

τ measures how strongly the curve is twisted out of the plane. E.g. for the helical
path

τ = −n⃗ ·
d⃗b

ds
=
bω

v2 =
bω

R2ω2 + b2
b→∞−−−−→

or b→0
0

5.1.2 Surfaces in 3D

Tangential vectors, normal and curvatures

We next consider a surface in 3 dimensions. For the parametrization, we need
two internal parameters x and y:

f⃗(x, y) =

 f1(x, y)
f2(x, y)
f3(x, y)

 (5.11)
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Figure 5.3: Membranes can be mathematically described as two-dimensional surfaces in
a three-dimensional space.

The tangential vectors ∂xf⃗ and ∂yf⃗ span the tangential plane (compare figure
5.4a). The unit normal vector then is defined as

n⃗ =
∂xf⃗ × ∂yf⃗∣∣∣∂xf⃗ × ∂yf⃗

∣∣∣ (5.12)

Note that in contrast to the case of space curves, we do not normalize the tan-
gential vectors.

In order to introduce definitions for the curvature, we can construct a plane
containing n⃗ which we then rotate by 180 degrees through a given point (x, y)
on the surface, as sketched in figure 5.4b. The kissing circle for each span curve
defined by a rotation angle Θ of the plane gives us a curvature in this certain
direction (figure 5.4c).

Figure 5.4: a) Surface in a 3D space with tangential vectors ∂xf⃗ and ∂y f⃗ and unit
normal vector n⃗ perpendicular to the tangential vectors. b) Plane (gray) containing n⃗
and rotating. c) For each position Θ of the rotating plane a curvature can be determined.

The curvature will have a minumum κ1 and a maximum κ2, the so-called "principal
curvatures". With these two curvatures and the radii of the corresponding kiss-
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ing circles R1 and R2, respectively, we can define two important concepts:

Mean curvature: H :=
κ1 + κ2

2 =
1
2

(
1
R1

+
1
R2

)
(5.13)

Gaussian curvature: K := κ1 · κ2 =
1

R1 ·R2
(5.14)

H and K can be used to classify a point (x, y) on a surface: If K(x, y) > 0, it is
called elliptic point or sphere-like, if K(x, y) < 0, it is called hyperbolic or saddle-
like, and if K(x, y) = 0, it is called parabolic or cylinder-like. Three examples
with constant K are shown in table 5.1.

Sphere (elliptic) Saddle (hyperbolic) Cylinder (parabolic)

Example

Radii of
kissing
circles

R1 = R2 = R R1 = −R2
R1 = R, R2 = ∞

(straight line)

Mean
curva-
ture

H = 1
R H = 0 H = 1

2R

Gaussian
curva-
ture

K = 1
R2 > 0 (cannot

be mapped onto
plane)

K = − 1
R2

1
< 0 K = 0 (can be

mapped onto plane)

Table 5.1: H and K can be used to classify surfaces. For the examples shown here,
K is constant, and hence each point on the surface is elliptic, hyperbolic or parabolic,
respectively.

For the Gaussian curvature K, Gauss formulated two important theorems:

1. Theorema egregium (Latin: "remarkable theorem"): K depends only
on the inner geometry of the surface. The normal n⃗ is not required to
calculate it. In fact there exists an explicit formula to calculate K from
the two tangent vectors and their derivatives, without the need to use the
normal.

2. Gauss-Bonnet theorem: K integrated over a closed surface is a topo-
logical constant.

˛
dAK = 2πχ (5.15)

where χ is the so-called "Euler characteristic". It can be used to calculate
the number of handles G ("genus") of a surface:

χ = 2 − 2 ·G (5.16)
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Because χ is a topological quantity, one can calculate it from topologically equiv-
alent polyhedra (for examples, see table 5.2). Then one can use the Euler the-
orem:

χ = F − E + V
F: Number of faces
E: Number of edges
V: Number of vertices

(5.17)

Recipe from differential geometry

In order to evaluate integrals like
´
dAK, one needs formulae for dA = dA(x, y) =

fA(x, y) dxdy and K = K(x, y). To this end, we calculate the three 2 × 2 ma-
trices g, h and a. Let us first define the symmetric matrix g, also called "first
fundamental form" or "metric tensor":

gij := ∂if⃗ · ∂j f⃗ =


∣∣∣∂xf⃗ ∣∣∣2 ∂xf⃗ · ∂yf⃗

∂xf⃗ · ∂yf⃗
∣∣∣∂yf⃗ ∣∣∣2

 metric tensor (5.18)

⇒ g−1
ij =

1
det g


∣∣∣∂yf⃗ ∣∣∣2 −∂xf⃗ · ∂yf⃗

−∂xf⃗ · ∂yf⃗
∣∣∣∂xf⃗ ∣∣∣2

 (5.19)

where det g =
∣∣∣∂xf⃗ × ∂yf⃗

∣∣∣2. gij depends on ∂xf⃗ and ∂yf⃗ , but not on the unit
normal n⃗. It describes the metrics in the surface:

A(S) =
ˆ
S
dxdy

∣∣∣∂xf⃗ × ∂yf⃗
∣∣∣ =
ˆ
S
dxdy (det g)1/2 (5.20)

The "second fundamental form" is defined as

hij := −∂in⃗ · ∂j f⃗
n⃗·∂if⃗=0= n⃗ · ∂i∂j f⃗

⇒ hij = n⃗ · ∂ij f⃗ second fundamental form (5.21)

which, in contrast to the metric tensor, depends on the unit normal n⃗.
With the matrices g and h, the matrix a can be defined:

a := h · g−1 Weingarten matrix (5.22)

Like curvature κ and torsion τ tell us how the normal changes along a space
curve, the Weingarten matrix tells us how the normal changes along a surface:

∂in⃗ = −
∑
j aij∂j f⃗ (5.23)

From the Weingarten matrix we now can compute the mean curvature H and
the Gaussian curvature K for any given surface f⃗ (without proof):

K = det a = deth
det g (5.24)

H = 1
2tr a (5.25)

In the following, we will use this recipe for some important examples.
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Object Topological
equivalence

Euler characteristic

χ = F − E + V

Genus

G = 2 − χ

2

a Sphere

Cube

χ = 6 − 12 + 8
= 2

G = 0

Tetrahedron
χ = 4 − 6 + 4

= 2
G = 0

b n spheres n cubes χ = 2 · n G = 1 − n

c Torus

punctured cube

χ = 16 − 32 + 16
= 0

G = 1

d Double
torus

connected
punctured cubes

χ = −2 G = 2

Table 5.2: a The sphere is topologically equivalent to a cube and a tetrahedron, re-
spectively. χ can also be calculated from the Gauss-Bonnet theorem (equation 5.15):¸
dAK = 4πR2 · 1

R2 = 2π · 2. b The Euler characteristic is additive over multiple bodies.
The more bodies, the larger χ and the more negative G. c The torus is topologically
equivalent to toroidal polyhedra, e.g. a punctured cube. Note that G = 1, denoting
that the object has one handle. d For topologically more complex structures, like the
double or triple torus, it is more reasonable to determine the number of handles G and
then calculate χ from equation 5.16 than to find a topologically equivalent polyhedron.
Generally we find: The more handles, the larger G and the more negative χ.
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Figure 5.5: Parametrisation of different objects: a plane, b cylinder, c sphere, d monge
parametrisation of a nearly flat surface.

1. Plane (figure 5.5a)

f⃗ =

 x
y
0

 ⇒ ∂xf⃗ =

 1
0
0

 , ∂yf⃗ =

 0
1
0

 , n⃗ =

 0
0
1


⇒ g =

(
1 0
0 1

)
⇒ det g = 1, dA =

√
det g dxdy = dxdy

h = a =
(

0 0
0 0

)
⇒ H = K = 0
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2. Cylinder (figure 5.5b, internal coordinates ϕ and z)

f⃗ =

 R · cosϕ
R · sinϕ

z

 ⇒ ∂ϕf⃗ =

 −R · sinϕ
R · cosϕ

0

 , ∂z f⃗ =

 0
0
1

 , n⃗ =

 cosϕ
sinϕ

0


⇒ g =

(
R2 0
0 1

)
⇒ det g = R2, dA = Rdϕdz

h =
(

−R 0
0 0

)
a =

(
− 1
R 0

0 0

)

⇒ H = −
1

2R, K = 0

3. Sphere (figure 5.5c, internal coordinates φ and θ)

f⃗ = R ·

 cos θ · cosφ
cos θ · sinφ

sin θ

 ⇒ ∂φf⃗ = R ·

 − cos θ · sinφ
cos θ · cosφ

0

 ,
∂θf⃗ = R ·

 − sin θ · cosφ
− sin θ · sinφ

cos θ

 ,
n⃗ =

1
R

· f⃗

⇒ g =
(
R2 · cos2 θ 0

0 R2

)
⇒ det g = R4 · cos2 θ, dA = R2 · cos θ dφdθ

h = −
1
R

· g a = −
1
R
Î

⇒ H = −
1
R
, K =

1
R2

4. Monge parametrization (figure 5.5d). This parametrization is valid for
surfaces without overhangs (such a surface is also called a graph). The
surface is described by a height function h(x, y). In the following we will
assume the surface to be nearly flat, i.e.

∣∣∣∇⃗h(x, y)
∣∣∣ ≪ 1.

f⃗ =

 x
y

h(x, y)

 ⇒ ∂xf⃗ =

 1
0
∂xh

 , ∂yf⃗ =

 0
1
∂yh

 ,
n⃗ =

1√
1 + (∂xh)2 + (∂yh)2

 ∂xh
∂yh
1


⇒ g =

(
1 + (∂xh)2 ∂xh · ∂yh
∂xh · ∂yh 1 + (∂yh)2

)
⇒ det g ≈ 1 + (∂xh)2 + (∂yh)2 = 1 + (∇⃗h)2
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Figure 5.6: Sketch of a bent lipid double layer.

dA ≈
√

1 + (∇⃗h)2 dxdy ≈ [ 1︸︷︷︸
reference

plane

+1
2(∇⃗h)2︸ ︷︷ ︸

excess area, >0

] dxdy (5.26)

h =
1

√
det g

(
∂xxh ∂xyh
∂xyh ∂yyh

)
≈ a

For calculating the Weingarten matrix, in lowest order we have g ≈ 1 and
thus a ≈ h. Therefore the mean and Gaussian curvatures are

H ≈
1
2(∂xxh+ ∂yyh) =

1
2∆h (5.27)

K ≈ ∂xxh · ∂yyh− (∂xyh)2 (5.28)

5.2 Curvature energy and minimal energy shapes

5.2.1 Bending Hamiltonian

What is the energy of a biomembrane? Because the membrane is fluid, it has
no in-plane elastic energy (the shear modulus vanishes). As a fluid, it has in-
plane compression, but the corresponding energy cost is so high due to the dense
packing of the hydrocarbon chains, so that we can neglect this mode compared
to others. Assuming mechanical equilibrium, the viscosity of the fluid membrane
also does not count. As a fluid, the membrane has no physical coordinate system
and thus its energy cannot depend on its parametrization. Thus the only relevant
energy contribution we are left with is out-off-plane bending of the membrane.
Hence, the Hamiltonian must be a function of the curvatures H and K

H =
ˆ
dAf(H,K)

One can expand the Hamiltonian in small curvatures (or, in other words, in small
1/R) up to order 1/R2 to obtain [17, 18, 19, 20]

H =
´
dA {σ + 2κ(H − c0)2 + κ̄K} Helfrich-Canham

Hamiltonian

Recall that H ∼ O(1/R) and K ∼ O(1/R2). Higher order terms have also been
investigated but lead to very complex structures.
The Helfrich-Canham Hamiltonian contains four material parameters:
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1. σ denotes the surface tension. H = σ
´
dA governs the physics of liquid

droplets and soap bubbles. It can be interpreted as a chemical potential
for the area. For liquid droplets and soap bubbles, surface area can be
generated by simply changing film thickness. This is not possible for lipid
bilayers, but there too reservoirs for surface area exist: first there is excess
area stored in membrane fluctuations, and second lipids can flow into the
area of interest. In cells, there are more biological reservoirs for area, like
protein-mediated membrane invaginations called caveolae and vesicles close
to the membrane that fuse on demand. The value of the surface tension
of the water-air interface is very high (73 mN/m = 73 dyn/cm) because
water is such a cohesive fluid. In our body, such a high surface tension can
harm biomolecules and cells avoid to have direct contact to air; a notable
exception are our lungs, where this cannot be avoided and special precau-
tions have to be taken to prevent collapse. Usually cells are surrounded
by aqueous medium and the surface tensions in the plasma membrane are
much smaller (of the order of 300 pN/µm = 0.3 mN/m as measured by
tether pulling, see below). The cortical tension of human cells is around 2
mN/m, but this should not be confused with the membrane tension, the
lipid bilayer would rupture at that value, so it has to be protected from
such high values (cortex and plasma membrane are connected by linkers
which couple them).

2. κ denotes the bending rigidity. H = 2κ
´
dAH2 is the bending Hamiltonian

which governs the physics of vesicles. As a typical value one finds κ =
20 kBT , both for vesicles and cells. κ is a classical elastic modulus that also
emerges in elasticity theory of thin plates.

3. c0 reflects any asymmetry of the bilayer, hence denoting the spontaneous
(mean) curvature of the membrane. Asymmetries can be caused for instance
by embedded or adsorbed proteins or different lipid composition of the two
opposing layers of the bilayer, to name but a few.

4. κ̄ is called the saddle-splay modulus and is related to the topology by the
Gauss-Bonnet theorem (equation 5.15). κ̄ denotes a chemical potential for
the number of objects and hence describes the membrane’s tendency to
merge or split.

If we consider σ = 0 and c0 = 0, then :

H =
ˆ
dA {2κH2 + κK}

=
ˆ
dA {2κ(κ1 + κ2

2 )2 + κ · κ1κ2}

=
ˆ
dA {κ+

2 (κ1 + κ2)2 + κ−
2 (κ1 − κ2)2}

with κ+ = κ+ κ
2 and κ− = −κ

2 . This indicates two topological instabilities:

• κ+ < 0 =⇒ κ1 = κ2 −→ ∞, describes a system of many small droplets.
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(a)

(b)

Figure 5.7: Spontaneous curvature of the membrane due to asymmetries caused by (a)
embedded proteins (adsorbed proteins would have similar effect) and by (b) different
lipid compositions in outer versus inner leaflet.

• κ− < 0 =⇒ κ1 = −κ2 −→ ∞, describes a saddle-like surface with very
small lattice constant (e.g sponge or egg-carton).

This is why stability requires κ+ and κ− both to be larger than zero. This implies
−2κ < κ < 0, so κ is expected to be small and negative.
One can use the elasticity theory for linear isotropic material to derive the two
elastic moduli of the thin membrane as a function of the two elastic moduli of
the bulk material:

κ = Ed3

12(1 − ν)2 , κ = −Ed3

6(1 + ν) (5.29)

where E is the Young’s modulus of the material and ν its Poisson’s ratio. The
bulk material relevant here is the hydrocarbon fraction of the bilayer. d = 4nm
is its thickness. With the value ν = 0.5 for incompressible material, a bending
rigidity κ of 20 kBT is achieved for a Young’s modulus around E = 10 MPa, which
is a very reasonable value. For the saddle splay modulus we have κ/κ = −1/3,
which lies in the range between −2 and 0 discussed above.
The bending Hamiltonian is an energy functional — it is a scalar that depends
on a function, e.g. in Monge representation H = H[h(x, y)]. We now have to deal
with two important issues that complement each other:

• Energetics deals with the question what is the surface with minimal en-
ergy. These surfaces have to solve the Euler-Lagrange equations, also called
shape equations δH

δh = 0. Here δ
δh is a functional derivative.

• Statistics answers the question what is the effect of thermal fluctuations on
membranes. Here the starting point is the partition sum Z =

´
Dh exp(−βH[h]),

which is a path integral or functional integral (integral over all possible func-
tions).

Together the minimal energy state and the fluctuations around it describe the
main features of interest.
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Figure 5.8: Schematics of a lipid vesicle with constant surface A and volume V . Although
lipid bilayers are permeable to water, there are always some ions caged in the vesicle,
fixing an osmotic pressure, which keeps the volume constant. Also the number of lipids
on the outside Nout and inside Nin is constant, because of the energy barrier that does
not allow for the lipids to jump from one side of the membrane to the other or to escape.

5.2.2 Minimal energy shapes for vesicles

In this section we are looking at closed surfaces; therefore κ is irrelevant due to the
Gauss-Bonnet theorem. Also c0 = 0 because we assume symmetric membranes.
We add a term −pV to control the volume. In practice, one prepares a suspension
of vesicles, e.g. by ultrasound or electroporation acting on a lipid-water mixture,
and then selects vesicles of interest, e.g. with optical tweezers or a micropipette.
Each vesicle then has fixed values for area and volume which can be measured
with e.g. video or fluorescence microscopy. Using A = 4πR2

0, one can define the
radius of the equivalent sphere. Then the only relevant parameter of the system
is the reduced volume v:

v = V
4π
3 R

3
0

Each vesicle class has an individual value for v, and v ≤ 1 should be always
fulfilled; v < 1 describes a deflated vesicle with excess area for non-trivial shapes.
Shape with v = 1 is a sphere and has the optimal A

V ratio. Note that

H = 2κ
ˆ
dAH2 =︸︷︷︸

for sphere

2κ 4πR2 · 1
R2 = 8πκ = const.

which indicates that the solutions are independent of rescaling (this is part of a
more general property called conformal invariance).
In order to obtain a phase diagram as a function of v, we have to solve the
corresponding Euler-Lagrange equations (shape equations). These are derived by
varying the surface in normal direction

f⃗(x, y) = f⃗0(x, y) + ϵϕ(x, y)n⃗(x, y) (5.30)

and then asking for the first ϵ-derivative of the energy functional to vanish for
arbitrary ϕ(x, y) (one can show that a tangential variation does not matter in
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Figure 5.9: Catenoid as an example of a minimal surface, which is not compact and has
H = 0.

this order). The result can be written as [21]

p+ 2σH − 2κ(2H
(
H2 −K

)
− ∆H) = 0 Euler-Lagrange equation (5.31)

where ∆ is the Laplace-Beltrami operator (only for the almost flat membrane
we get the Laplace operator ∆ = ∂2

x + ∂2
y). The Euler-Lagrange equation is a

partial differential equation (PDE) of the 4th order with a famous limit for κ = 0,
namely the Laplace law for soap bubbles

H = − p
2σ Laplace law for soap bubbles (5.32)

Here a simple derivation of the Laplace law

σ dA = −p dV

σ d(4πR2) = −p d
(4π

3 R3
)

σ 4π 2RdR = −p 4π
3 3R2 dR

⇒ 1
R

= − p

2σ (5.33)

As the only compact surface with constant mean curvature (CMC-surface) is the
sphere, a soap bubble is spherical. CMC-surfaces are critical points of the area
functional under the constraint of a constant volume.
For p = 0 the shape equation is simply H = 0 , which describes a minimal
surface, i.e. a surface under tension with minimal energy given a particular
boundary curve. Those surfaces are always saddle-like, because H = 0 means
R1 = −R2⇒ K = − 1

R2
1
, which is always negative. The implication is that those

surfaces cannot be compact, because a surface that is saddle-shaped cannot be
enclosed by a boundary. A well-known example for a minimal surface is the
catenoid connecting two wireframes, compare figure 5.9.
The solutions to the Euler-Lagrange equation for σ = 0 and finite κ are called
Wilmore surfaces. Because they are solutions to H = 2κ

´
dAH2, minimal sur-

faces with H = 0 are included. But due to their saddle-like shape, minimal

87



Figure 5.10: The shape diagram represents the minimal energy shapes for given points in
the phase space. Starting at small v we observe stomatocyte, oblate, prolate and sphere
at v = 1. There are two bifurcation points at 0.059 and 0.65. Oblate resembles RBC,
but exists only over a small range of v.

surfaces without edges cannot be compact, so we are interested in Wilmore sur-
faces with H ̸= 0 as solutions for the vesicle shape problem. Note that these
solutions will not be CMC-surfaces, which arise from another energy function.
The main methods to solve the shape equations for the vesicles are solution of
the shape equations for axisymmetric shapes (4th order ODE), solutions for the
shape equations with FEM-methods for arbitrary shapes (4th order PDE) or min-
imization for triangulated surfaces (e.g. with the software Surface Evolver from
Ken Brakke). Each of these methods gives the one-dimensional shape diagram
shown in figure 5.10 [22]. One clearly sees a sequence of symmetry breaks as the
reduced volume goes down (in terms of the differential equations, we are dealing
with bifurcations; this is in analogy to phase transitions in thermodynamics).
The obtained shapes describe many of the observed vesicle and cell shapes, e.g.
the biconcave vesicle looks like a red blood cell (discocyte). The problem of this
theory is that it does not describe all the shapes seen in nature, e.g. budding
vesicles. This means that we are close to the right solution, but the model has
to be expanded and more features of the real system have to be added.
A more complete theory is given by the Area Difference Elasticity model (ADE
model) [23], which has two parameters. In addition to the reduced volume, we
now also consider the possibility that the number of lipids may be different in
the outside and the inside monolayers of the lipid bilayer. Until now we assumed
an infinitely thin membrane, but now we no longer disregard its thickness. We
define an area difference ∆A0 = a(Nin−Nout), where Nin is the number of lipids
on the inner side of the vesicle, Nout is the number on the outside, and a, which
is the typical area per lipid, has the dimensions of nm2. Since Ain and Aout do
not change, for energy reasons, ∆A0 stays constant for a vesicle. The bending
Hamiltonian for the ADE model is

H = 2κ
ˆ
dAH2 + α

2 (∆A− ∆A0)2

The differential geometry result for the integrated mean curvature is ∆A =
2d
´
dAH, with d being the thickness of the membrane. The resulting shape
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Figure 5.11: Two dimensional shape diagram from ADE model. For each region, minimal
energy shapes are indicated. The horizontal axis is the reduced volume v; spheres again
correspond to v = 1. The vertical axis shows the effective differential area between inside
and outside monolayers.

89



diagram is now two-dimensional as shown in Fig. 5.11. It now contains the bud-
ded shape as well as non-axisymmetric shapes like the starfish vesicle. In the
literature, many similar models have been discussed, including the spontaneous
curvature and the bilayer-couple models, to explain the zoo of vesicle shapes, but
the ADE-model seems to be the most appropriate one. Therefore it is also used
as the standard starting point to explain the shape of red blood cells, which are
known to have very asymmetric membrane leaflets.

5.2.3 Tether pulling

(a) (b)

Figure 5.12: The force to pull a tether out of a vesicle scales with the square root of the
tension [24].

We briefly discuss a first case of minimal energy shapes, namely if a tether is
pulled out of a vesicle or cell, which is a standard setup to measure membrane
tension [24]. Experimentally one first sucks a vesicle into a micropipette with
underpressure and thus sets the tension in the membrane. Then one grabs an
adhesive bead with an optical tweezer and moves it onto the membrane. If
adhesion is successful, a cylindrical tether is pulled out of the membrane upon
retraction. The corresponding force can be measured from the displacement of
the bead away from the focus of the laser bead. Experimentally it was found
that after overcoming an initial barrier, this force will be constant; in contrast
to an elastic situation, when force should rise with distance, this indicates that
membrane is flowing into the tether. Only when a very large tether is pulled, the
reservoir will be depleted and force goes up.
We write the Helfrich-Hamiltonian for a cylinder with tension and bending rigid-
ity and add a term for the pulling:

E = 2πRL
[
κ

2R2 + σ

]
− FL (5.34)

where L is the length of the cylinder and F the pulling force. We minimize for
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R to get:

R =
√
κ

2σ (5.35)

At equilibrium, membrane energy and pulling energy should balance and thus

F = 2π
√

2κσ (5.36)

Therefore the force F scales as the square root of σ, as has been shown experi-
mentally, compare Fig. 5.12. Thus the force can now be used to measure σ.

5.2.4 Particle uptake

Cells continuously take up small particles or viruses with sizes of the order of
10 − 300 nm (endocytosis). Essentially these particles are wrapped by the mem-
brane due to some gain of adhesion energy. In addition, a clathrin coat is usually
assembled on the intracellular side, which provides an additional driving force
for wrapping. This principle is universal and used by different organelles (endo-
some, Golgi apparatus, endoplasmatic recticulum), although the polymer coats
are different (e.g. COPI and II). Particle uptake and vesicle budding require that
the energetic gain of particle adhesion and coat polymerisation overcomes the
energetic cost of membrane deformations.
We first aim for a simple phase diagram of particle uptake [25, 26]. For simplicity,
for the moment being we neglect the contribution from the free membrane and
approximate the growing coat region as sphercial cap. In general, for a particle
to be taken up, it has to be adhesive and the adhesion energy has to balance the
bending energy. The Helfrich Hamiltonian reads

H =
ˆ
dA(2κH2 + σ) − wAad (5.37)

where Aad is the adherent membrane area and w the adhesion energy area density.
A typical value would be w = 0.1 mJ/m2.
We next consider a sphere of radius R. If we denote the angle α to describe where
the contact line between membrane and sphere is located (compare figure 5.13),
then the wrapping variable z = 1 − cosα will run from 0 to 2 as the membrane
wraps the particle. If we neglect the contributions from the bending of the free
membrane, we get

E = 4πzκ+ πR2z2σ − 2πR2zw (5.38)

The first term is the bending energy, which is independent of radius. The second
and last term are the surface tension and adhesion energy terms, respectively.
While both have the same R2-scaling, they have different scaling with z. The
last term has the trivial z-scaling. The second term however scales as z2, because
here the excess area Aexcess = Aad −Aprojected matters:

Aexcess = 2πR2(1 − cosα) − πR2 sin2 α = πR2(1 − 2 cosα+ cos2 α) = πR2z2

(5.39)
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Figure 5.13: Phase diagram of particle wrapping by membranes as function of surface
tension σ and adhesion energy w.

We now non-dimensionalize the energy and get

Ē = E

πκ
= 4z + σ̄z2 − w̄z = −(w̄ − 4)z + σ̄z2 (5.40)

where σ̄ = σR2/κ and w̄ = 2wR2/κ. This energy function gives rise to a phase
diagram as shown in figure 5.13. For w̄ < 4, the energy is always positive and
no wrapping can occur. This corresponds to the free state. Note that w̄ = 4
translates into a minimal radius R =

√
2κ/w ≈ 20 nm, below which uptake is

not possible. For w̄ > 4 + 4σ̄, the minimal energy is found for z = 2, the fully
wrapped state. In between there is a parameter region where the minimum lies
at a finite value of z, here the partially wrapped state is stable.

5.2.5 Free membrane around particle

Figure 5.14: Parametrisation of the free membrane around a spherical particle. The
slightly dashed curve represents the part of the membrane that adheres to the particle
and/or is covered by the coat; the solid line is the free part of the membrane, which
becomes horizontal at infinity.
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Until now we have neglected the shape of the free membrane surrounding the
contact area, where the membrane has the shape of the spherical particle that
is taken up. We now minimize the Helfrich Hamiltonian for the shape of the
free membrane using the calculus of variation [27, 28]. Because the situation is
axisymmetric, we parametrize membrane shape by cylindrical coordinates r(s)
and z(s), where s is the arc length along the shape contour of the membrane and
ϕ is the polar angle

r⃗ =

r(s) cosϕ
r(s) sinϕ
z(s)

 . (5.41)

Importantly, we can express r(s) and z(s) by means of the the tangential angle
ψ(s) as

ṙ = cosψ(s) ż = − sinψ(s) (5.42)

Our aim is to calculate the principal curvatures κ1 and κ2. Hence, we calculate the
metric g, the normal vector n⃗, the second fundamental form h and the Weingarten
matrix a. We find

g =
(

1 0
0 r2

)
(5.43)

n⃗ =

cosϕ sinψ
sinϕ sinψ

cosψ

 (5.44)

h =
(

−ψ̇ 0
0 −r sinψ

)
(5.45)

a =
(

−ψ̇ 0
0 − sinψ/r

)
(5.46)

Thus, the principal curvatures are given by the eigenvalues of a, κ1 = −ψ̇ and
κ2 = − sinψ/r. Then the Helfrich Hamiltonian reads with the mean curvature
2H = κ1 + κ2

H =
ˆ

dsdϕ
{
σ + κ

2

(
ψ̇ + sin ψ

r

)2}
r . (5.47)

In order to minimise H with respect to r(s) and ψ(s) we have to include an
additional Lagrange multiplier γ(s) to incorporate Eq. (5.42). We note that
because of the spherical geometry we do not need a second Lagrange multiplier,
as variations of the contour endpoints are independent. We define an action

S[r(s), ψ(s)] = H
2πκ +

ˆ
dsγ(s)(ṙ − cosψ) =

ˆ
dsL(ψ, ψ̇, r, ṙ) , (5.48)

with a Lagrange function L

L(ψ, ψ̇, r, ṙ) = 1
2

(
ψ̇ + sinψ

r

)2
r + r

λ2 + γ(ṙ − cosψ) , (5.49)
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where λ =
√
κ/σ defines the characteristic length scale of the membrane. The

Euler-Lagrange equations are the solutions to the variational problem

δS = 0 ↔ d
ds

∂L
∂q̇k

− ∂L
∂qk

= 0 , (5.50)

where qk = {r, ψ}. Thus,

ψ̈ = − ψ̇ cosψ
r

+ cosψ sinψ
r2 + γ sinψ

r

γ̇ = 1
2 ψ̇

2 − sin2 ψ

2r2 + 1
λ2 . (5.51)

In the usual case, the contour length is variable. Because L does not explicitly
depend on s, F = ṙ∂ṙL + ψ̇∂ψ̇L − L is conserved. Since a variation of S with
respect to the contour lengths at the two end points has to vanish, one obtains
that F has to vanish at the end points. Hence

F = rψ̇2

2 − r

2

(sinψ
r

)2
− r

λ2 + γ cosψ = 0 . (5.52)

Using Eq. (5.52) we can eliminate γ from Eq. (5.51) to get the shape equation
for axial symmetry

ψ̈ cosψ + ψ̇ cos2 ψ

r
+ ψ̇2 sinψ

2 − sinψ
2r2

(
2 cos2 ψ + sin2 ψ

)
− 1
λ2 sinψ = 0 . (5.53)

Eq. (5.53) together with Eq. (5.42) and the boundary conditions

r(0) = R sinα ,ψ(0) = α , ψ(∞) = 0 , ψ̇(∞) = 0 , z(∞) = 0 , (5.54)

then fully describe the membrane’s shape.
In general the shape equations, as a set of ODEs, can be solved numerically, for
example by means of the shooting method. The membrane parameter λ sets the
typical extension of the membrane deformation (cf. Fig. 5.15). Note that for
typical parameter values of κ and σ we get λ = 10 − 100 nm. Depending on the
λ and the particle or coat radius R one can define three membrane regimes.

• For a tense membrane (λ/R ≪ 1) the deformation is concentrated in a very
narrow and highly curved region near the particle or coat.

• For an intermediate membrane (λ/R ≈ 1) the deformation propagates some
intermediate distance into the membrane

• For a loose membrane(λ/R ≫ 1) the deformation propagates far from the
particle or coat into the membrane.
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Figure 5.15: Membrane shapes for different regimes according to λ/R. a) λ/R ≪ 1
represent tense membrane, b) λ/R ≈ 1 represents intermediate membrane and λ/R ≫ 1
represents loose membrane.

5.3 Membrane fluctuations

5.3.1 Thermal roughening of a flat membrane

In this section we will investigate the mean square deviation < h2 > of a flat
lipid membrane fluctuating at temperature T, see figure 5.16. Its square root is a
measure for the size of typical excursions. In lowest order, the energy functional
for the almost flat membrane is (compare equations 5.26 and 5.27)

H [h(x, y)] = 2κ
ˆ
dAH2 = κ

2

ˆ
dxdy(∆h(x, y))2

Calculating this correlation function is a standard problem in statistical field
theory and we solve it using Fourier transforms. Because we have d = 2 for
membranes, we now use vector notation:

h(x⃗) = 1
(2π)d/2

ˆ
dk⃗ h(k⃗) exp(ik⃗ · x⃗) (5.55)

h(k⃗) = 1
(2π)d/2

ˆ
dx⃗ h(x⃗) exp(−ik⃗ · x⃗) (5.56)

δ(k⃗) = 1
(2π)d

∞̂

−∞

dx⃗ exp(ik⃗ · x⃗) (5.57)
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Figure 5.16: Fluctuating membrane of lateral length L and typical deviation from a flat
membrane

√
< h2 >

h(x⃗) has to be real

h(x⃗) = 1
(2π)d/2

ˆ
dk⃗ h(k⃗) exp(ik⃗ · x⃗)

= h(x⃗)∗ = 1
(2π)d/2

ˆ
dk⃗ h(k⃗)∗ exp(−ik⃗ · x⃗)

⇒ h(k⃗) = h(−k⃗)∗

Now we write h(k⃗) in real and imaginary part

h(k⃗) = a(k⃗) + i b(k⃗)
⇒ a(k⃗) = a(−k⃗)

b(k⃗) = −b(−k⃗)

The Hamiltonian can be calculated as

H = κ

2(2π)d
ˆ
dx⃗

(ˆ
dk⃗ (ik)2h(k⃗) exp(ik⃗ · x⃗)

)(ˆ
dk⃗′ (ik′)2h(k⃗′) exp(ik⃗′ · x⃗)

)
= κ

2

ˆ
dk⃗

ˆ
dk⃗′ k2k′2δ(k⃗ + k⃗′)h(k⃗)h(k⃗′)

= κ

2

ˆ
dk⃗ k4h(k⃗)h(−k⃗)

= κ

2

ˆ
dk⃗ k4h(k⃗)h(k⃗)∗

H[h(k⃗)] = κ
´
k>0 dk⃗ k

4[a2(k⃗) + b2(k⃗)] (5.58)

The result is the same for k > 0 and for k < 0 and the case k = 0 is irrelevant,
because a(k⃗) = a(−k⃗) and b(k⃗) = b(−k⃗). Therefore we restrict the integration
to positive k, which gives a factor of 2. The bending energy is the sum of the
squares of the decoupled amplitudes. The k4-dependency is typical for bending.
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The partition sum is a functional integral over all possible membrane conforma-
tions

Z =
ˆ

Dh exp(−βH[h(x)])

=
∏
k>0

∞̂

−∞

da(k⃗)
∞̂

−∞

db(k⃗) exp(−βκk4[a(k⃗)2 + b(k⃗)2])

=
∏
k>0

kBT

κk4

because this is simply a product of many Gauss integrals. For the free energy
per unit area, we therefore get

F

A
= −kBT lnZ = kBT

ˆ
k>0

dk⃗ ln κk4

kBT
(5.59)

However, here we are interested in the correlation functions, not in Z or F directly.
For each k⃗, there are two independent and harmonic degrees of freedom. We
therefore have

< a2(k⃗) > = kBT

2κk4

< b2(k⃗) > = kBT

2κk4

< a(k⃗)a(k⃗′) > =
k⃗ ̸= k⃗′, k⃗ ̸= −k⃗′

< a(k⃗) >< a(k⃗′) >= 0 etc.

which is an example of the equipartition theorem for harmonic systems. For h
this means

< h(k⃗)h(k⃗′) > = <
(
a(k⃗) + ib(k⃗)

) (
a(k⃗′) + ib(k⃗′)

)
>

= < a(k⃗)a(k⃗′) > +i < a(k⃗)b(k⃗′) > +i < b(k⃗)a(k⃗′) > − < b(k⃗)b(k⃗′) >
= < a(k⃗)a(k⃗′) > − < b(k⃗)b(k⃗′) >

=


0 − 0 = 0 k⃗′ ̸= k⃗, k⃗′ ̸= −k⃗
< a2(k⃗) > − < b2(k⃗) >= 0 k⃗′ = k⃗

< a2(k⃗) > + < b2(k⃗) >= kBT
κk4 k⃗′ = −k⃗

(5.60)

where in the last line we have used b(−⃗k) = −b(k⃗). We now get in Fourier space:

< h(k⃗)h(k⃗′) >= kBT
κk4 δ(k⃗ + k⃗′) (5.61)

For the backtransform to real space, we get

< h2(x⃗) > = <

( 1
(2π)d/2

ˆ
dk⃗ h(k⃗) exp(ik⃗x⃗)

)( 1
(2π)d/2

ˆ
dk⃗′ h(k⃗′) exp(ik⃗′x⃗)

)
>

= 1
(2π)d

ˆ
dk⃗

ˆ
dk⃗′ exp(i(k⃗ + k⃗′)x⃗)kBT

κk4 δ(k⃗ + k⃗′)
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Now the space-dependence drops out due to the delta function (the underlying
reason is translational invariance) and we are left with one integral only. If we
define a as the microscopic cutoff (molecular size) and L as macroscopic cutoff
(system size) and use d = 2, we get in polar coordinates:

< h2(x, y) > = 2π
(2π)2

2π
aˆ

2π
L

k dk
kBT

κk4

= 2π
(2π)2

1
2
kBT

κ

[(
L

2π

)2
−
(
a

2π

)2
]

= kBT
16π3κL

2 =< h2 > (5.62)

Equation 5.62 shows that the mean square deviation is proportional to tempera-
ture T , inversely proportional to bending rigidity κ, and increases quadratically
with the system size L. Note that the limit a −→ 0 is unproblematic.
In order to better understand the fluctuations of membranes we can put in num-
bers:

κ = 20kBT

L = 10 nm ⇒
√
< h2 > = 1 Å

L = 1 cm ⇒
√
< h2 > = 100µm

Thus the effect is relatively weak on the scale of vesicles, but relatively strong
on macroscopic scales. For a biomembrane fluctuations are relevant, but not on
small scales.
It is instructive to compare this result to the one for interfaces under tension (e.g.
oil droplets or soap bubbles). The we start from the Hamiltonian

H [h(x, y)] = σ

2

ˆ
dxdy(∇h(x, y))2

and therefore arrive at

< h(k⃗)h(k⃗′) >= kBT

σk2 δ(k⃗ + k⃗′) (5.63)

The backtransform then gives

< h2 >= kBT

2πσ ln(L
a

) (5.64)

which is a much weaker dependence on L than for membranes. For σ = 100 erg/cm2

and a = 3 Å, a system size of L = 10 nm gives a mean deviation of 1.5 Å. For
L = 1 cm, this goes up only to 3.4 Å.
Another way to quantify membrane fluctuations is to investigate how much the
membrane loses its orientation due to fluctuations. A measure for this is the
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Figure 5.17: Persistent length Lp for fluctuating membrane, Monge representation. n⃗ is
the normal to the membrane vector.

persistence length Lp. Systems with characteristic length shorter than Lp can be
considered as elastic planes or rods (for polymers). The properties of systems with
characteristic length larger than Lp solutions can be described with statistical
methods for random walks. Formally, the persistence length is defined as the
length over which correlations in the direction of the normal are lost.
Let us again work in the Monge representation, see figure 5.17. The normal vector
is

n⃗ = 1√
detg

(
hx
hy

1

)
, with detg = 1 + (∇h)2

= 1√
1 + ∂xh2 + ∂yh2

(
hx
hy

1

)

Let us define the angle between normal vectors at different points on the mem-
brane as θ and

cos θ ⋍ 1 − θ2

2 = nz = 1√
1 + ∂xh2 + ∂yh2

≃ 1 − 1
2(∂xh2 + ∂yh

2︸ ︷︷ ︸
=(∇h)2

)

This means that

< θ2 > = < (⃗∇h)2 >︸ ︷︷ ︸
avarage over all possible h

= 2πkBT
(2π)2κ

2π
aˆ

2π
Lp

k dk
k2

k4

= kBT

(2π)κ ln
(
Lp
a

)
If we now set < θ2 >= π2 for the extreme case that orientation has turned
around, we can define a length scale at which the membrane is not flat anymore:

Lp = a exp(2π3 κ
kBT

) Persistence length
for membranes (5.65)
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Figure 5.18: Surface interaction between oil and water mediated by tensides. The ten-
sides, represented by red circles with black tails, are responsible for the dispersion of oil
droplets into water. They reduce the surface tension, that is why the interface is rough.

The persistence length for membranes was calculated by de Gennes and Taupin
in 1982 [29].
For better illustration we look again at typical numbers. As already mentioned
in this section, for biomembranes κ ⋍ 20kBT , which makes Lp ≃ a · exp(1240).
For a = 1 nm, this gives Lp ≈ 10538 m (the diameter of the observable universe
is 1027 m). Although membranes are only 4 nm thick, this thickness is sufficient
to conserve their rigidity and flatness. Another example is the water-oil interface
stabilized by tensides (substances, that reduce surface tension and allow easier
dispersion), see figure 5.18. In this case κ ≃ 1 ·kBT , Lp is small and the interface
is thermally roughened.

5.3.2 Steric (Helfrich) interactions

Figure 5.19: Steric interactions for (a) stack of membranes and (b) membrane trapped
between two walls. Characteristic dimension is the distance d for both cases. The
principal idea for the description of both cases is the same, but there are more degrees
of freedom for the stack of membranes.
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In the chapter on interactions we have learned that entropic effects might lead
to effective interactions, e.g. the attractive depletion interaction between large
particles in a sea of small particles or the crystallization of hard spheres at high
density. We now will see that entropic effects lead to an effective repulsion be-
tween membranes. Consider a stack of membranes or a single membrane trapped
between two walls, see figure 5.19. We are interested in the free energy of the
system, which in this case is a function of the distance d between the membranes
or the membrane and the wall. We already can sense that this free energy will
decrease with increasing d because the membrane will gain entropy if the con-
finement decreases.

Scaling argument

The membrane has “humps” of size h2 ∼ kBT
κ · L2

p as calculated above. For each
hump, the membrane loses entropy per area kB

L2
p

and the bending energy per area

for a hump is κ
(
h
L2

p

)2
. From this argument we can conclude, that the free energy

per area is
∆F
A

∼ κ

(
h

L2
p

)2

− T

(
−kB
L2
p

)
∼ (kBT )2

κ
· 1
h2

For a membrane in a stack or between two walls, h scales like d and therefore we
get the fluctuation or Helfrich interaction [30]:

∆F
A ∼ (kBT )2

κ · 1
d2 Helfrich 1978

Although this argument involves bending energy, this too arises from thermal
fluctuations. Therefore the whole effect is a thermal one and vanishes with T → 0.

More rigorous treatment

An exact solution is not known, but a reasonable calculation starts with the
confinement effect modeled by a harmonic potential [31]. Thus we consider the
mean squared deviation in the Monge representation for an almost flat membrane
that fluctuates under a harmonic potential:

H = κ

2

ˆ
dx dy

{
(△h)2 + 1

ξ4h
2
}

= 1
2

ˆ
dx dy

{
κ(△h)2 + γh2

}
where ξ is called the confinement length and γ the confinement parameter. We
transform the problem into Fourier space:

< h2 > = 1
(2π)2 2π

ˆ
dk k

kBT

κ(k4 + ξ−4)

= kBT

8κ · ξ2 = kBT

8√
κγ

We now assume a simple geometrical scaling of the excursion with the confinment,
< h2 >= µd2. Here µ is a constant prefactor, that has been found in Monte-Carlo
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computer simulations to be µ = 1
6 . Combining the two expressions for < h2 >,

we can solve for ξ as a function of d. Because we have a harmonic (Gaussian)
system, for the free energy difference between the confined and the free membrane
we get (compare the introduction, free energy of a harmonic system)

∆F
A

= −kBT · lnZ

= kBT

(2π)2 2π
ˆ
k dk ln

(
k4 + ξ−4

k4

)

= kBT

8 · ξ−2

From this follows:

∆F
A = (kBT )2

64κµd2 Steric interaction between membranes

This is the same result as from the scaling analysis, but now with exact pref-
actors. This result has been confirmed both with computer simulations and in
experiments.
If we repeat the same analysis for the case of surface tension, we have for the
squared mean displacement

< h2 >= 1
(2π)2 2π

ˆ
dk k

kBT

σk2 + γ
(5.66)

Now the integral is not (1/2) arctan(k2), but (1/2) ln(1 + k2), thus it diverges
for large k and we have to use a microscopic cutoff. If we combine both surface
tension and bending rigidity, however, we get a well-defined result again.

5.4 Red blood cells

5.4.1 Shape of red blood cells

We have seen above that the Helfrich Hamiltonian predicts shapes that resem-
ble the biconcave disc of a red blood cell (RBC, also known as erythrocyte).
However, this discocyte is stable only over a very small range of reduced volume
v. The ADE-model predicts a variety of additional shapes, including stomato-
cytes (shaped like a cup or mouth). However, it does not predict echinocytes
(shaped like a hedgehog), which are also often observed for RBCs. In general,
there is whole zoo of RBC-shapes seen under different conditions (pH, ATP-
concentration, temperature, lipid composition, etc). A comprehensive under-
standing of these RBC-shapes is very important because it is often used to detect
pathological situations by simply checking for shapes under the microscope. In
Fig. 5.20 we show the main shapes that are seen experimentally and how they can
be predicted computationally. The upper left part shows electron microscopy im-
ages arranged in the so-called stomatocyte-discocyte-echinocyte (SDE) sequence,
a sequence of shape transitions that can be caused by different agents that all
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Figure 5.20: Shape of red blood cells: comparison of experimentally observed and com-
putationally predicted shapes and their transitions. From the review by Gerald Lim and
colleagues.

seem to have the same physical consequences. The lower right half shows shapes
predicted by an expanded ADE Hamiltonian as explained below. It also shows
the sequence of free energy surfaces which leads to the transitions. We conclude
that the shape of RBCs can be understood very well from physical shape models2.
We start our discussion with some general remarks on RBCs. First observed
by Anton van Leeuwenhoek in 1674, they are the carriers of hemoglobin and
therefore of oxygen in our body. During their 120 days lifetime, they travel 105

2A comprehensive review is given by Gerald Lim H. W., Michael Wortis and Ranjan
Mukhopadhyay, Red Blood Cell Shapes and Shape Transformations: Newtonian Mechanics of
a Composite Membrane, in the book Soft Matter, Vol. 4: Lipid Bilayers and Red Blood Cells,
edited by G. Gompper and M. Schick, Wiley-VCH Weinheim 2008. The original paper was HW
Gerald Lim, Michael Wortis and Ranjan Mukhopadhyay, Stomatocyte-discocyte-echinocyte se-
quence of the human red blood cell, PNAS 99: 16766, 2002. A more recent treatment along
these lines is Geekiyanage et al., A coarse-grained red blood cell membrane model to study
stomatocyte-discocyte-echinocyte morphologies, PLoS One 14: e0215447, 2019.
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times through our circulation (each round trip takes 100 s) before they are sorted
out because they become stiffer. There are around 2.6 1013 RBCs in our body
(out of 3.1 1013 all together), making them the most abundant cell type3. An
amazing number of 2 106 new ones are produced in every second in our bone
marrow. A RBC has a diameter of 8 µm, a thickness of 2 µm at the rim and of 1
µm at the middle of the biconcave disc. Its volume is 100 µm3 and its area 140
µm2. This corresponds to a reduced volume of v = 0.642, in agreement with the
range from the vesicle theory in which we expect discocytes.
Under physiological conditions, area and volume do not change much and there-
fore can be taken as constant for our mathematical treatment. For area, this
results from the large area expansion modulus of KA = 0.5 J/m2. The corre-
sponding energy is (KA/2)∆A2/A0 and if we equate this with the bending energy
κ = 50 kBT of RBCs, we get ∆A/A0 = 10−5, thus area does not change signifi-
cantly. In fact the membrane would rupture at one percent relative area dilation
and the large area expansion modulus protects it from this.
Volume control is more complicated. It mainly arises from osmotic pressure
arising from c0 = 290 mM of osmotically active molecules inside the cell. This
leads to an osmotic modulus KV = RTc0 = 7 105J/m3. Equating the energy
(KV /2)∆V 2/V0 with the bending energy κ, we now get ∆V/V0 = 10−5, thus
volume is also constant for practical purposes.
The standard model for RBC-shape was established in the beautiful paper by
Lim, Wortis and Mukhopadhyay in PNAS 2002. As shown in Fig. 5.21, the
plasma membrane of the RBC is reinforced by a polymer network (made mainly
from the intermediate filament spectrin) underlying it, thus forming a composite
or sandwich structure. The overall thickness however is so small that the system
can still be considered to be two-dimensional on the scale of the cell. Therefore the
authors expanded the ADE-model for the membrane by an elastic energy for the
polymer network. This elastic component is modeled as an isotropic hyperelastic
material. Isotropy is justified by the hexagonal network structure, but linearity is
not because the RBC is known to strain harden under the conditions in the blood
flow. Similar to the derivation of the Helfrich Hamiltonian, we write the elastic
Hamiltonian as a Taylor expansion, but this time not as a function of curvature,
but as a function of the two in-plane strain invariants α and β:

H = Kα

2

ˆ
dA
(
α2 + α3α

3 + α4α
4
)

+ µ

ˆ
dA
(
β + b1αβ + b2β

2
)

(5.67)

where Kα is the stretch modulus and µ the shear modulus. The two strain
invariants follow from the principal extension ratios λ1 and λ2 of a deformed
ellipse as

α = λ1λ2 − 1, β = 1
2

(
λ1
λ2

+ λ2
λ1

− 2
)

(5.68)

In contrast to the Hamiltonian for the lipid bilayer, one now also needs a refer-
ence shape to calculate the elastic energy. A computational procedure has been

3Compare the book by Ron Milo and Rob Phillips, Cell biology by the numbers, Garland
Science 2016
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Figure 5.21: The shape of RBCs is determined by the nature of its composite membrane.
While the outside layer is a lipid membrane with differential lipid composition in the two
leaflets, the inside layer is a polymer network (made mainly from the polymer spectrin)
that is attached to the membrane at discrete points (band 3 tetramer, band 4.1 protein).
These anchor points form a hexagonal lattice and have a typical distance of 76 nm.

developed to estimate this shape (which is determined by microscopic defects
and cannot be measured directly) and it has been found to be an oblate (not
a sphere as used by earlier models). The final shape as shown in Fig. 5.20 is
then calculated by minimization of triangulated shapes under the combined ac-
tion of the ADE- and the elastic Hamiltonians. The excellent agreement with the
experiments validate the theory. It is also in agreement with the famous 1974 bi-
layer couple hypothesis by Sheetz and Singer who suggested that different agents
lead to the same SDE-sequence because the main control parameter is membrane
curvature. Finally the theory explains the origin of the echinocyte, which was
missing from the Helfrich-type models: it corresponds to a membrane that wants
to bud, but the budding is prevented by strong stretch in the spectrin network.

We finally can ask how RBC-shape changes as the cell is moving in shear flow,
both at low and high density (in the blood of healthy persons, RBCs make up
45 percent of the volume, the so-called hematocrit). This requires hydrodynamic
theories and has been studied recently with many different methods [32]. One
finds that single RBCs assume parachute and slipper shapes, and that multiple
RBCs arrange in zig-zack-configurations, as observed experimentally. Interest-
ingly, single RBCs at the wall are lifted up due to high Reynolds-number effects
and due to their deformability. At physiological hematocrit, they all move as a
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plug in the middle of the capillary, leaving a cell-free-layer at the side that effec-
tively lubricates the flow and thus makes it faster than expected for a Newtonian
fluid (Fahraeus effect). Other cells like white blood cells, platelets, tumour or
stem cells also circulating with the blood are expelled from the plug and tend to
contact the wall (margination).

5.4.2 Flickering spectroscopy for red blood cells

RBCs are continuously fluctuating (flickering), as can be observed and measured
with an optical microscope. There are two ways to analyze such data. First one
can assume that one observes the fluctuations of the membrane as it is constrained
by the spectrin network. Then the relevant Hamiltonian would be [33]

H [h(x, y)] =
ˆ
dxdy

{
σ

2 (∇h(x, y))2 + κ

2 (∆h(x, y))2 + γ

2h(x, y)2
}

where γ is a confinement parameter. In Fourier space we then have

< h(k⃗)h(k⃗′) >= kBT

σk2 + κk4 + γ
δ(k⃗ + k⃗′) (5.69)

This procedure has been applied successfully to RBCs under various conditions
and is has been found that shape is the main determinant of the fluctuations [34].
We note that assuming an almost flat membrane is a strong assumption and that
a more rigorous analysis had to consider also the role of curvature.
Alternatively, one can assume that the whole shell is one composite and fluctuates
as such, as we have assumed above to derive the minimal energy shape. Then one
has to work with thin shell elasticity and the results are much more complicated.
In this way, it has been shown that at low and high frequencies, the fluctuations
are dominated by active and passive fluctuations [35, 36]. Active fluctuations
depend on ATP and arise e.g. from the actin-spectrin network or ion pumps and
channels.
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Chapter 6

Physics of polymers

Polymers are chain molecules that can be described as space curves in three di-
mensions r⃗(s) using the language and tools of differential geometry as introduced
in the membrane chapter. Motivated by the phenomenological approach to mem-
branes, we could start in a continuum framework with a bending Hamiltonian:

H[r⃗(s)] = κp
2

L̂

0

ds

(
d2r⃗(s)
ds2

)2

(6.1)

where κp = kBT lp is a bending rigidity for polymers and lp is the persistence
length. This Hamiltonian describes a semi-flexible polymer (also called worm-
like chain (WLC) or Kratky-Porod model). Below we will derive it as a limit of
the freely rotating chain (FRC) model. In biophysics, this is the most relevant
polymer model as many biofilaments (actin, collagen, cellulose, etc) are semi-
flexible.
In contrast to membranes, however, this bending Hamiltonian is just one out
of several important models. Due to the variety of different types of polymers,
their microscopic physics is richer. Note that biomembranes assemble due to the
hydrophobic effect and form large structure whose mechanics does not depend on
the molecular details of the lipids, while polymers are formed by covalent bonds
between monomers who are strongly exposed to the environment. As we will see
below, there is actually a simpler phenomenological model for polymers than the
WLC:

H[r⃗(s)] = 3kBT
2b

L̂

0

ds

(
dr⃗(s)
ds

)2
(6.2)

where b is the Kuhn length (effective monomer length) of the polymer. This
Gaussian chain (GC) model is the continuum limit of the freely jointed chain
(FJC) model which is purely entropic in nature. This polymer model is appro-
priate for many synthetic polymers like for example polyethylene. In this chapter
we will discuss both cases (WLC versus GC) as the two most important classes
of polymer models1.

1The two standard textbooks on polymer physics are M Doi and SF Edwards, The theory of
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Figure 6.1: Polymerization of ethylene. Polyethylene (PE) is made by opening the double
bond between the carbon atoms in ethylene, flipping it over and thus connecting to the
next ethylene monomer. The subscript N is the degree of polymerization.

6.1 General introduction to polymers

Polymers are made by binding monomers together in a process called polymer-
ization, see figure 6.1. The number of monomers N , is called degree of polymer-
ization. A typical value for synthetic polymers is N = 105, but it can go up to
N = 1010 monomers.
Often monomers can be bonded together in different ways (“isomerism”). Isomers
are molecules with the same chemical composition, but different space configu-
ration, see figure 6.2, and hence have different physical properties. Therefore,
microscopic interactions are vital for the configurations of polymers. This is true
both for the conformation of single chains and for the interactions of different
chains.

(a) (b)

Figure 6.2: Isomers of polyvinyl chloride (PVC)

The study of polymer physics started in the 1920s (mainly through the work of
Hermann Staudinger at Freiburg, who was awarded the Nobel prize for chemistry
in 1953), when people realized that polymers are chain molecules that can be
build up of only one type of monomers (homopolymers) or of different monomers
(heteropolymers), see table 6.1.
Polymers can have different architectures, see Table 6.2. This affects many of
the physical properties of the polymers, including their size and their interaction,
e.g. their ability to slide on top of one another.
If the polymers in a melt are connected by crosslinks one gets a “polymer net-
work”. These polymer networks are elastic solids with shape memory, see figure
6.3. Therefore, we can define an elasticity modulus for this polymer gel. To first

polymer dynamics, Oxford University Press 1986 and Michael Rubinstein and Ralph H. Colby,
Polymer physics, Oxford University Press 2003.
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Type of polymer Sketch Example

homopolymer -A-A-...-A- Homopolymers are mostly
synthetic polymers, e.g. PE

heteropolymer -A-B-A-C-...- DNA, which has 4 different monomers
Proteins, which have 20 different monomers

diblock-copolymer -A-...-A-B-...-B-
Those are heteropolymers with two blocks,

each build up of a different monomer.
This structure is similar to lipids.

Table 6.1: Different types polymers, separation on type of building blocks.

Type of polymer Sketch Remarks
linear polymer

ring polymer 1D analog to vesicles

star polymer
For the description of star polymers

one needs to know the number of arms
and the length of each one of them

In the case of N → 0, it becomes a soft sphere.

comb polymer
Can be compared with

polymer brushes, which
have immobile backbones.

H-polymer

ladder polymer

dendrimer

To form a dendrimer you start with a given
number of branches, then after a certain length

from the end point of each branch evolve the
same number of branches and so on.

This is a self controling shape, because after a
certain number of branches the system becomes

too dense, and the growth stops.

branched polymer This structure is typical for sugars.

Table 6.2: Polymer architectures.
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approximation the Young’s modulus is

E = kBT

ξ3 (6.3)

where ξ is the meshsize of the network. The most common examples of perma-
nently cross-linked polymer networks are rubber (e.g. vulcanized natural rubber,
polyisoprene) and silicone elastomers (e.g. polydimethylsiloxane, PDMS).
If the crosslinkes are not permanent, which is usually the case in biological poly-
mer networks, they will flow like a fluid on a long time scale. The theory of
flowing systems is called rheology. A hydrogel is a polymer network in water. In
order to investigate the elastic properties of a hydrogel, we have to put the gel
between two plates and then rotate or shear them (in conical or parallel plate
rheometers, respectively), see figure 6.3. The prime examples for biological hy-
drogels are cytoskeleton and extracellular matrix, giving structural stability to
cells and tissues, respectively.

(a) (b)

Figure 6.3: The elastic properties of polymer gels can be studied by putting the them
between two walls and then rotating or shearing those walls against each other. The
typical mechanical behaviour of the polymer network is depicted on the right side. The
logarithm of the elastic moduli is shown as a function of the logarithm of the frequency
w. At low frequencies the material is viscous, but it becomes elastic at high frequencies.

6.2 Basic models for polymers

6.2.1 Freely jointed chain (FJC)

This is the simplest microscopic model for a polymer. It considers N segments
or links, r⃗i, each representing a monomer with a constant length a:

r⃗i = R⃗i − R⃗i−1

|r⃗i| = a

The R⃗i are the position vectors for the nodes of the chain. R⃗ is the end-to-end
vector, giving a characteristic dimension of the polymer, see figure 6.4. As each
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Figure 6.4: Freely jointed chain FJC model for polymers. A short polymer is schemati-
cally depicted, as a chain consisting of segments r⃗i, represented as vectors. All segments
have the same length a. R⃗ is the end-to-end vector.

link points in a random direction, we have

< R >=
N∑
i=1

< r⃗i >= 0 .

In analogy to the mean squared deviation < h2 > for membranes, we look at the
mean squared end-to-end distance

< R2 > = <

(∑
i

r⃗i

)∑
j

r⃗j

 >

=
N∑
i=1

< r⃗i
2 >︸ ︷︷ ︸

=a2

+
∑
i ̸=j

< r⃗i · r⃗j >︸ ︷︷ ︸
=0

= Na2 (6.4)

R =
√
Na typical extension of

polymer chain (6.5)

The square root relation is typical for a random walk. We introduce time t = Nτ
(with stepping time τ) and get

< R2 >= 2dDt

with D = a2/2τ the diffusion constant and d spatial dimension. In fact our
polymer model is exactly the prescription of how to implement a random walk.

In a real polymer there are correlations between the different bond vectors, <
r⃗i · r⃗j ≯= 0 even for i ̸= j. However, in most cases, the polymer becomes “ideal”
in the sense that there are no correlations between monomers at large distance
along the chain, < r⃗i · r⃗j >= 0 for |i − j| −→ ∞. Therefore the sum over these
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Ideal polymer C∞ b[Å]
polyethylene −CH2CH2− 7.4 14

polybutadiene −CH2CH = CH CH2− 5.3 9.6
polyisoprene (rubber) −CH2CH = CH CH CH3− 4.6 8.2
polydimethylsiloxane (elastomere) −OSi (CH3)2− 6.8 13

Table 6.3: Flory’s characteristic ratio and Kuhn lengths for different polymers

correlations converges to a finite value:

< R2 > = a2
N∑
i=1

N∑
j=1

< cos θij >

= a2
N∑
i=1

Ci

= a2N
1
N

N∑
i=1

Ci︸ ︷︷ ︸
=:CN

= CNNa
2 N−→∞−→ C∞Na

2 (6.6)

with C∞ = Ci ∀i with 1 ≤ C∞ < ∞. C∞ is called “ Flory’s characteristic ratio”,
see table 6.3.
Ideal polymers correspond to a FJC with redefined monomer length b and degree
of polymerization N :

L = N · b, < R2 >= N · b2 = b · L

b = <R2>
L

N = <R2>
b2 = L2

<R2>

Kuhn length (6.7)

The Kuhn length is a measure for the statistical segment length and tabulated
in table 6.3.

6.2.2 Freely rotating chain (FRC)

We now fix not only the monomer size a, but also the bond angle θ, see figure 6.5.
The degree of freedom that is left is the torsion angle ϕ, which keeps our polymer
flexible. For polyethylene, a = 1.54 Å and θ = 68o. Only the component along
the bond vectors is transmitted down the chain. For each bond only a component
cos θ remains:

< r⃗i · r⃗j >= a2(cos θ)|j−i|

Because cos θ < 1, the series decays exponentially:

(cos θ)|j−i| = e|j−i| ln(cos θ) = e
− |j−i|a

lp (6.8)
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Figure 6.5: Schema of the freely rotating chain model (FRC). Here the length a and the
bond angle θ, between the segments, are kept constant. The torsion angle ϕ is still free
and makes the FRC flexible.

Here lp is the persistence length:

lp = − a

ln(cos θ) (6.9)

The persistence length has the same meaning as in membrane physics, it denotes
the length scale over which the correlations decay.
We now can use this exponential decay to calculate the mean squared end-to-end
distance:

< R2 > =
N∑
i=1

N∑
j=1

< r⃗i · r⃗j > (6.10)

=
N∑
i=1

i−1∑
j=1

< r⃗i · r⃗j > + < r⃗i >
2 +

N∑
j=i+1

< r⃗i · r⃗j >

 (6.11)

= a2N + a2
N∑
i=1

i−1∑
j=1

(cos θ)i−j +
N∑

j=i+1
(cos θ)j−i

 (6.12)

= a2N + a2
N∑
i=1

(
i−1∑
k=1

(cos θ)k +
N−i∑
k=1

(cos θ)k
)

(6.13)

The two sums can be extended to infinity because at large distances, the corre-
lation has decayed. We then simply have a geometrical series:

∞∑
k=1

(cos θ)k = cos θ
1 − cos θ

Therefore
< R2 >= a2N + 2a2N

cos θ
1 − cos θ (6.14)

such that the final result reads

< R2 >= Na2 1+cos θ
1−cos θ

mean square
end-to-end distance

for freely rotating chain
(6.15)

If we compare this result with equation 6.6 , we see that C∞ = 1+cos θ
1−cos θ . The

values for C∞ are typically between 5 and 8, see table 6.3.
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6.2.3 Worm-like chain (WLC)

In the limit of θ −→ 0, the chain becomes very stiff and rod-like:

cos θ ≈ 1 − θ2

2

ln cos θ ≈ −θ2

2
That means, that the persistence length lp and Flory’s characteristic ratio C∞
both diverge:

lp = 2a
θ2 , C∞ =

2 − θ2

2
θ2

2
≈ 4
θ2 (6.16)

The WLC model as shown in figure 6.6 is defined in the limit θ → 0 and a → 0
such that lp = 2a

θ2 = const. Then also the Kuhn length will be finite and simply
twice as large as the persistence length:

b = < R2 >

L
= C∞Na

2

Na
= 4a
θ2 = 2lp (6.17)

For example a double stranded DNA (dsDNA) has persistence length lp = 50 nm
and Kuhn length b = 100 nm.
The mean-square end-to-end distance of the WLC can be evaluated using the
exponential decay of correlations between tangent vector along the chain:

< R2 > = a2
N∑
i=1

N∑
j=1

(cos θ)|j−i|

= a2∑
j

∑
i

e−|j−i|a/lp

In the continuum limit we get

< R2 > =
L̂

0

du

L̂

0

dv e−|u−v|/lp

=
L̂

0

du

uˆ

0

dv e−(u−v)/lp +
L̂

0

du

L̂

u

dv e−(v−u)/lp

= 2lpL− 2l2p(1 − e−L/lp) (6.18)

< R2 >= 2lpL− 2l2p(1 − e−L/lp) (6.19)

Looking at equation 6.19 we can distinguish two limiting cases:

1. L ≫ lp so we can neglect the exponential term and get a flexible polymer
with

< R2 >= 2lpL = bL = b2N ≪ L2 (6.20)
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2. L ≪ lp now the exponential term becomes important and we make a Taylor
expansion. Then we get a rigid chain with

< R2 >= 2lpL− 2l2p

1 − 1 + L

lp
− 1

2

(
L

lp

)2
 = L2 (6.21)

The general expression is a smooth crossover between the two, see figure6.6b:

< R2 >

L2 = 2
x

− 2
x2 (1 − e−x)

with x = L/lp. This defines three different regimes: the flexible chain at x ≫ 1,
the semiflexible chain with x ≈ 1, and the rigid polymer with x ≪ 1. Biological
examples are DNA, actin and microtubules.

(a) (b)

Figure 6.6: a.) The worm-like chain model describes an elastic rod. This polymer model
is similar to the Helfrich Hamiltonian for membranes. b.) The dependency of the mean
squared end-to-end distance on the ratio of the contour and persistence lengths of a
polymer in the WLC model.

6.2.4 Radius of gyration

The mean squared end-to-end distance < R2 > gives a measure for the extension
of the polymer, but it is very hard to measure it directly and what one usually
measures in experiments is the radius of gyration (e.g. with light scattering or
size-exclusion chromatography). We now clarify the relation between the two.
Assumed the monomer mass is constant, for the center of mass we have:

R⃗cm = 1
N

N∑
i=1

R⃗i
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Now we will calculate the mean squared radius of gyration < R2
g >:

R2
g = 1

N

N∑
i=1

(R⃗i − R⃗cm)2

= 1
N

N∑
i=1

(R⃗i
2 − 2R⃗iR⃗cm + R⃗2

cm)

= 1
N

N∑
i=1

R⃗i
2
 1
N

N∑
j=1


︸ ︷︷ ︸

=1

− 1
N

N∑
i=1

2R⃗i
1
N

N∑
j=1

R⃗j

+
(

1
N

N∑
i=1

R⃗i

) 1
N

N∑
j=1

R⃗j


= 1

N2

∑
i

∑
j

(R⃗i
2 − 2R⃗iR⃗j + R⃗iR⃗j︸ ︷︷ ︸

=−R⃗iR⃗j

) (6.22)

This expression does not depend on the choice of summation indices and we
rewrite it in a symmetric form:

R2
g = 1

N2
1
2

∑
i

∑
j

(R⃗i
2 − R⃗iR⃗j) +

∑
j

∑
i

(R⃗j
2 − R⃗jR⃗i)


= 1

2N2

∑
i

∑
j

(R⃗i
2 − ⃗2RjR⃗i + R⃗j

2)

= 1
2N2

∑
i

∑
j

(R⃗i − R⃗j)2

= 1
N2

N∑
i=1

N∑
j=i

(R⃗i − R⃗j)2

< R2
g >= 1

N2
∑N
i=1

∑N
j=i < (R⃗i − R⃗j)2 > (6.23)

The radius of gyration can be expressed in terms of the average square distance
between all pairs of monomers.
For an ideal polymer chain, the sums can be changed into contour integrals:

< R2
g >= 1

N2

N̂

0

du

N̂

u

dv < (R⃗(u) − R⃗(v))2 >

We now use the fact that the contour between u and v should behave also like a
(shorter) ideal chain, see figure 6.7:

< (R⃗(u) − R⃗(v))2 >= (v − u)b2
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Figure 6.7: Integration along the ideal polymer. Assumption that the contour between
u and v also behave like an ideal chain.

with v ≥ u, Kuhn length b and independent of the outer segments:

< R2
g > = b2

N2

N̂

0

du

N̂

u

dv (v − u)

v−u=v′
= b2

N2

N̂

0

du

N−uˆ

0

dv′ v′

= b2

N2

N̂

0

du
1
2(N − u)2

N−u=u′
= b2

2N2

N̂

0

du′ u′2 = Nb2

6 (6.24)

< R2
g >= <R2>

6 Debye result (6.25)

This is a very important result. It means that for an ideal chain we can work
both with < R2 > or < R2

g >, they are essentially the same, except for a constant
factor of 6.

6.2.5 Gaussian Chain model (GCM)

Until now we have calculated < R2 > and < R2
g > as measures for the average

spatial extension of a polymer. We now calculate the full distribution p(R⃗) for
the end-to-end distance of the FJC. We start from the probability distribution
for the segments:

p(r⃗1, . . . , r⃗N ) =
N∏
i=1

1
4πa2 δ(|r⃗i| − a) (6.26)

In the FJC, the segments have fixed length a, but free orientation. We then have:

1 =
ˆ (

N∏
i=1

dr⃗i

)
p(r⃗1, . . . , r⃗N )

p(R⃗) =
ˆ (

N∏
i=1

dr⃗i

)
p(r⃗1, . . . , r⃗N )δ(R⃗−

N∑
i=1

r⃗i) (6.27)
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with

δ(R⃗−
N∑
i=1

r⃗i) = 1
(2π)3

ˆ
dk⃗ eik⃗(R⃗−

∑
r⃗i)

We therefore obtain

p(R⃗) = 1
(2π)3

ˆ
dk⃗ eik⃗R⃗

[ˆ
dr⃗ e−ik⃗r⃗ 1

4πa2 δ(|r⃗| − a)
]N

Evaluating the integral in the brackets

ˆ
dr⃗ e−ik⃗r⃗ 1

4πa2 δ(|r⃗| − a) = 1
4πa2

∞̂

0

r2dr

2πˆ

0

dϕ

1ˆ

0

d(cos θ) e−ikr cos θδ(r − a)

= 2π
4πa2

ˆ
dr r2δ(r − a)2sin kr

kr

= sin(ka)
ka

because
ˆ 1

−1
e−ikrxdx = 1

−ikr
(e−ikr − eikr) = 2sin(kr)

kr
= 2sinc(kr)

So we get:

p(R⃗) = 1
(2π)3

ˆ
dk⃗ eik⃗R⃗

(sin(ka)
ka

)N
= 1

(2π)3

ˆ
dk⃗ eik⃗R⃗ eN ln sin(ka)

ka

For N ≫ 1 the main contribution to the integral comes for the k⃗ close to the
global maximum of ln sin(ka)

ka and we can use the saddle-point approximation or
method of steepest descent to evaluate the integral. Since sinc(x) is maximal in
x = 0, we may write:

ln sinc(x) ≈ −x2

6
yielding:

p(R⃗) = 1
(2π)3

ˆ
dk⃗ eik⃗R⃗e− Nk2a2

6︸ ︷︷ ︸
Gauss integral

= 1
(2π)3

∏
α=x,y,z

ˆ
dkαe

ikαRα−Nk2
α

a2
6

= 1
(2π)3

( 6π
Na2

) 3
2
e− 3

2
R⃗2

a2N (6.28)
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Our final result thus is

p(R⃗)=
(

3
2πNa2

) 3
2 e− 3R⃗2

2Na2 (6.29)

The distribution function of the end-to-end vector is Gaussian. The feature that
R > Na is an artifact of our expansion, but that does not matter, because the
respective weights are negligible.

(a) (b)

Figure 6.8: (a) Gaussian distribution of one component Rα of the end-to-end distance
vector R⃗. (b) Probability distribution of the radial component of R⃗ (in spherical coordi-
nates). Note the similarity to the Maxwell-Boltzmann distribution.

Note that we could have guessed beforehand that the resulting distribution is a
Gaussian since r⃗i are independent and identically distributed random variables
and R⃗ = ∑N

i=1 r⃗i should be normal distributed for large N by the virtue of the
central limit theorem.
In Cartesian coordinates, equation 6.29 reads for the single components (compare
also figure 6.8a):

p(R⃗) = ∏
α=x,y,z

(
3

2πNa2

) 1
2

exp
(

−
3R2

α

2Na2

)
(6.30)

⇒
´
dRα p(Rα) = 1

⇒ < R2
α >=

´
dRα p(Rα)R2

α =
Na2

3

In spherical coordinates, one finds for the modulus of the radius:

p(R) =
(

3
2πNa2

) 3
2

exp
(

−
3R2

2Na2

)
· 4πR2 (6.31)

This result for p(R) (figure 6.8b) is equivalent to the Maxwell-Boltzmann distri-
bution for the distribution of the modulus of the velocity for an ideal gas. The
same Gaussian distribution is obtained by starting from a symmetric random
walk on a lattice, i.e. from the binomial distribution.
These results from the FJC motivate us to define a new polymer model that as-
sumes the Gaussian property to be valid for every segment. In the Gaussian chain
model (GCM) one assumes that every bond has a Gaussian length distribution
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Figure 6.9: The Gaussian Chain Model. The Gaussian length distribution of the bond
lengths are depicted as springs with the entropic spring constant k.

(instead of a fixed length a as in the FJC):

p(r⃗) =
( 3

2πa2

) 3
2

exp
(

−
3r⃗2

2a2

)
(6.32)

That implies that < r⃗2 >= a2. With r⃗i = R⃗i − R⃗i−1 it follows that

p(r⃗1, . . . , r⃗N ) =
( 3

2πa2

) 3N
2

exp
(

−
N∑
i=1

3(R⃗i − R⃗i−1)2

2a2

)
(6.33)

This corresponds to a Boltzmann distribution for N + 1 bonds connected by
harmonic springs (compare figure 6.9). The Hamiltonian now reads:

H = 3
2a2kBT

N∑
i=1

(R⃗i − R⃗i−1)2 (6.34)

with

k = 3kBT
a2

entropic spring constant
of a single bond (6.35)

In the continuum limit:

H = 3kBT
2a2

N̂

0

dn

(
∂R⃗

∂n

)2

= 3kBT
2a

L̂

0

ds

(
∂R⃗

∂s

)2

where we have used the substitution ds = adn. Note that this Hamiltonian is
fundamentally different from the WLC Hamiltonian from equation 6.1 because it
describes stretching and not bending.
We now consider the free energy of the Gaussian chain:

F = U︸︷︷︸
=0

− TS

= −T · kB ln Ω(R⃗)

= −kBT · ln
(
p(R⃗) ·

ˆ
dR⃗Ω(R⃗)

)
Since

´
dR⃗Ω(R⃗) is independent of R⃗, the free energy F can be written as:

F =
3
2kBT

R⃗2

Na2 + F0 (6.36)
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where F0 does not depend on R⃗. The free energy of a Gaussian chain increases
quadratically with R, because the number of possible configurations and hence
the entropy decreases. This leads to Hooke’s law:

F⃗ = −
3kBT
Na2 · R⃗ (6.37)

where 3kBT/(Na2) is the entropic spring constant of the whole chain.
Note that for higher temperatures, the entropic spring constant increases or, in
other words, the bonds become harder to stretch. In the limit T → ∞, the chain
contracts into a single point. The reason for this suprising behaviour is that the
effective energy that is needed to stretch the polymer is entirely related to the
loss of entropy. It is therefore easier to stretch polymers with a larger number of
monomers N , larger monomer size a and lower temperature T . This is different
for energy-dominated materials such as metals, which become softer at higher
temperature.

6.3 Stretching polymers

6.3.1 Stretching the FJC

Figure 6.10: A force applied to two beads attached to the polymer, e.g. by optical
tweezers. The polymer is stretched and the force needed to stretch it to a certain length
is measured.

The entropic spring constant energy of the Gaussian Chain suggests to study
the behavior of a FJC under stretch. Imagine placing beads at the ends and
pulling them apart along the z-axis with optical tweezers (figure 6.10). Today,
the pulling of biopolymers with AFM, optical or magnetic tweezers, electric fields
or hydrodynamic flow, to name but a few, is a standard experiment in biophysics.
Obviously, the Gaussian result (equation 6.29) cannot be true for large extensions,
i.e. close to the contour length. In the following we will approach the problem
of calculating the force-extension curve for finite contour length first by a scaling
argument and then by an analytical calculation.

Scaling analysis

We now introduce a powerful scaling approach for polymers, namely "blobology".
Stretching the polymer changes the symmetry to an oriented random walk. On
large scales, the polymer is oriented in z-direction. On small scales ζ, however, it
is an unperturbed random walk, represented by a "blob" with ideal chain statistics
(figure 6.11):

ζ2 = gb2 (6.38)
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where ζ denotes the blob size and g denotes the number of monomers per blob.
Hence, the total number of blobs is simply N/g. From here on we use the symbol
b for the Kuhn length as the segment length.

Figure 6.11: Polymer depicted as a chain of "blobs" which on the blob scale ζ behaves as
an unperturbed random walk. On the large scale Rz, the blobs are oriented in z-direction.

The blobs are arranged sequentially:

Rz ≈ ζ ·
N

g
=
Nb2

ζ
(6.39)

⇒ ζ =
Nb2

Rz
, g =

N2b2

R2
z

(6.40)

Being extended on the large scale Rz, but not on the small scale ζ, allows the chain
to maximize its conformational entropy. On the other hand, due to stretching on
the length scale ζ a blob becomes oriented and therefore the free energy increases
with kBT :

F ≈ kBT ·
N

g
≈ kBT ·

R2
z

Nb2 (6.41)

As we have now seen, the scaling argument also results in Hooke’s law with an
entropic spring constant k = kBT/(Nb2). Except for a numerical prefactor 3
which does not affect the overall scaling, it is the same as already obtained for
the Gaussian chain (equation 6.35).
From the free energy F the force needed to stretch the chain Fz can immediately
be calculated:

Fz =
∂F

∂Rz
≈ kBT ·

Rz

Nb2 =
kBT

ζ
(6.42)

Full analytical calculation

We parametrize each bond vector r⃗i as:

r⃗i = b

 sin Θi · cosϕi
sin Θi · sinϕi

cos Θi

 (6.43)
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Figure 6.12: A force Fz applied to a freely jointed chain. The chain consists of N bond
vectors r⃗i with a fixed length b.

The FJC is purely entropic, but stretching it introduces some energy represented
by the following Hamiltonian (compare figure 6.12):

H = −Fz ·Rz = −Fz
N∑
i=1

b · cos Θi (6.44)

⇒ Z =
ˆ 2π

0

ˆ 1

−1

 N∏
i=1

dϕi d(cos Θi︸ ︷︷ ︸)
:=xi

 e− H
kBT

=
ˆ 2π

0

ˆ 1

−1

(
N∏
i=1

dϕi dxi

)
exp

 Fzb

kBT︸ ︷︷ ︸
:=f

·
N∑
i=1

xi


=

(
2π
ˆ 1

−1
dx efx

)N

=
[

2π
f

(ef − e−f )
]N

=
(4π
f

sinh(f)
)N

(6.45)

For the free energy F we find:

F = −kBT ln Z = −kBTN [ln(4π sinh f) − ln f ] (6.46)

With the free energy, the expectation value of the spatial extension in z-direction
can be computed:

< Rz >= − ∂F
∂Fz

= −∂F
∂f · ∂f

∂Fz

⇒ < Rz >= bN · [coth f − 1
f ] = bN · L(f) (6.47)

where we introduced the Langevin function L(f). Equation 6.47 has two inter-
esting limits (compare also figure 6.13):

1. The limit of small force: f ≪ 1.
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In this regime L(f) can be approximated by a linear function:

coth f =
ef + e−f

ef − e−f

≈
(1 + f + 1

2f
2) + (1 − f + 1

2f
2)

(1 + f + 1
2f

2 + 1
6f

3) − (1 − f + 1
2f

2 − 1
6f

3)
=

1
f + f

2

1 + 1
6f

2

≈ ( 1
f

+ f

2 )(1 − 1
6f

2)

≈ 1
f

+ 1
3f

⇒ L(f) ≈ f

3

⇒ < Rz >= bN
Fzb

3kBT
(6.48)

2. The limit of large force: f ≫ 1.
In this regime we find

coth f ≈ ef

ef
= 1

⇒ L(f) = 1 − 1
f

⇒ < Rz >= bN

(
1 −

kBT

Fzb

)
(6.49)

The force Fz diverges at the contour length L = bN :

Fz = kBT

b

(
L

L− < Rz >

)
(6.50)

with an exponent −1.

6.3.2 Stretching the WLC

Bending Hamiltonian

In the beginning of this chapter we already encountered the bending Hamiltonian
of the WLC in arc-length parametrization, compare equation 6.1:

H = κp
2

ˆ L

0
ds

(
d2r⃗

ds2

)2

=
κp

2

ˆ L

0
ds

(
dt⃗

ds

)2

(6.51)

where t⃗ is the tangential vector (|⃗t| = 1). There are three ways to derive this
Hamiltonian:
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Figure 6.13: The expectation value of the extension in z-direction as a function of the
(dimensionless) force parameter f = Fzb/(kBT ) (left) and vice versa. For small force
and small extension, respectively, the relation is approximately linear. For large forces
the extension approaches the contour length L and the force diverges.

1. Phenomenologically, similar to the Helfrich-Canham Hamiltonian for
membranes.

2. From beam theory: With the Young’s modulus E of the elastic rod one
finds

κp = E · I (6.52)

where

I =
ˆ
dA

r2

2 = 2π
ˆ R

0
rdr

r2

2 =
πR4

4 (6.53)

denotes its area moment of inertia (compare figure 6.6).

3. From microscopic models such as the FRC, see above.

Figure 6.14: The WLC, discretized into small segments.

The bending energy can be calculated by discretizing the WLC into small seg-
ments as shown in figure 6.14. This model is similar to the FRC. However, the
main difference is that for the FRC the angle Θ was held constant whereas now
the second moment < Θ2 >∼ kBTb/κp is a constant. The bending Hamiltonian
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in equation 6.51 then gives

Eb =
N∑
i=1

κp

2b · (⃗ti − t⃗i−1)2

=
N∑
i=1

κp

b
· (1 − cos Θi)

small curvature⇒ Eb ≈
N∑
i=1

κp

2bΘ
2
i (6.54)

Persistence length

In the continuum model the tangential vector diffuses on a sphere (theory of
rotational random walks). With Greens function formalism it can be shown that
this leads to

< t⃗(s) · t⃗(0) > = e
− kBT

κp
·s = e

− s
lp (6.55)

where

lp =
κp

kBT
persistence length (6.56)

Equation 6.56 can be made plausible by a simple scaling argument (similar to
the Bjerrum length in electrostatistics):

kBT︸ ︷︷ ︸
thermal
energy

= κp
2 L · 1

R2
bend︸ ︷︷ ︸

bending energy

on scale lp⇒
L≈Rbend

kBT = κp
2lp

⇒ lp ∼ κp
kBT

Values of the persistence length can vary from several nm (lp = 50nm for ds-
DNA) to several µm (lp = 17µm for actin) or even several mm (lp = 6mm for
microtubules).
With the persistence length we can calculate the mean-square end-to-end distance
as before (compare eq. 6.19):

< R⃗2 > =
ˆ L

0
du

ˆ L

0
dv exp

(
−

|u− v|
lp

)

= 2lpL− 2l2p(1 − e
− L

lp ) = L2f(lp/L) (6.57)

with f(x) = 2x− 2x2(1 − e−1/x). Below we will make use of the scaling function
f(x).
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Extension in z-direction

We now stretch the WLC into z-direction:

H
kBT

=
lp

2

ˆ L

0
ds

(
dt⃗

ds

)2

−
Fz

kBT︸ ︷︷ ︸
:=f

ˆ L

0
ds tz︸ ︷︷ ︸
Rz

(6.58)

⇒ extension < Rz >=
1
Z

ˆ
Dt⃗ Rze

− H
kBT =

d ln Z
df

(6.59)

In contrast to the FJC an exact solution to equation 6.59 is not known. However,
the two asymptotic limits can be treated analytically:

1. small stretch, fRz ≪ 1:

We can expand the partition sum Z in small values of f :

Z =
ˆ

Dt⃗ e
− lp

2
´ L

0 ds

(
dt⃗
ds

)2

·
[
1 + f

ˆ L

0
dstz + f2

2

ˆ L

0
du

ˆ L

0
dv tz(u)tz(v) + O(f3)

]

= Z0

1 + f

ˆ L

0
ds< tz >0︸ ︷︷ ︸

=0

+ f2

2

ˆ L

0
du

ˆ L

0
dv < tz(u)tz(v) >0


Since

ˆ L

0
du

ˆ L

0
dv < tz(u)tz(v) >0 = 1

3 < R⃗2 >
L≫lp

≈ 1
3 · 2Llp

we finally find for the partition sum:

Z = Z0

[
1 +

f2lpL

3

]
(6.60)

And hence with equation 6.59

< Rz > =
2flpL

3

1 + f2lpL
3

≈
2flpL

3

⇒ < Rz >= 2lpL
3kBT

· Fz
extension of WLC

for small forces (6.61)

Therefore the extension of the WLC in response to a small stretch exhibits, similar
to the FJC, a linear force-extension dependency with an entropic spring constant
kWLC = 3kBT/(2lpL). Recall, that for the entropic spring constant for the FJC
we found kFJC = 3kBT/(bL) (compare equation 6.48).

2. large stretch, fRz ≫ 1
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In this regime we are dealing with an almost straight chain and can therefore use
a Monge parametrization for t⃗ (compare figure 6.15a):

t⃗ =

 tx
ty

1 − 1
2(t2x + t2y)

 (6.62)

where for the z-component we have used the fact that t⃗ is normalized and a
Taylor expansion. Our Hamiltonian now reads

H
kBT

= lp
2

ˆ
ds


(
dtx

ds

)2

+
(
dty

ds

)2

+
(
dtz

ds

)2

︸ ︷︷ ︸
≈0

− f

ˆ
ds tz

= lp
2

ˆ
ds

[(
dtx
ts

)2
+
(
dty
ds

)2]
+ f

2

ˆ
ds
[
t2x + t2y

]
− f · L (6.63)

This Hamiltonian is quadratic and therefore the partition sum is a Gaussian path
integral (the constant term does not matter). In Fourier space we thus have

Fourier⇒ |tα(k)|2 =
kBT

kBT (lPk2 + f) (6.64)

⇒< Rz > =
ˆ L

0
ds < tz >=

ˆ L

0
ds < (1 − 1

2(t2x + t2y) >

= L− 1
2

ˆ L

0
ds (< t2x > + < t2y >) = L− 1

2L · 2 < t2x >

= L · (1 − 1
2π

ˆ ∞

−∞
dk

1
lpk2 + f

) = L · (1 − 1
2πf

ˆ ∞

−∞
dk

1
(
√

lp
f k)2 + 1

)

= L · (1 − 1
2πf

√
f

lp

ˆ ∞

−∞
dk′ 1

k′2 + 1︸ ︷︷ ︸
π

)

= L(1 −
1

2
√
flp

) (6.65)

⇒ L−<Rz>
L = 1

2
√
flp

(6.66)

This is a square-root divergence ∼ 1/
√
Fz (figure 6.15b). Recall that the FJC

in the large extension regime diverges with 1/Fz (compare equation 6.50) which
is crucially different. In experiments, stretching semiflexible biopolymers like
dsDNA has shown that they can not be described by the FJC2.

2Smith, Steven B., Laura Finzi, and Carlos Bustamante. Direct mechanical measurements
of the elasticity of single DNA molecules by using magnetic beads. Science 258.5085 (1992):
1122-1126; Bustamante, C., Marko, J. F., Siggia, E. D., and Smith, S. Entropic elasticity of
lambda-phage DNA. Science (1994): 1599-1599; Bustamante, Carlos, Zev Bryant, and Steven
B. Smith. Ten years of tension: single-molecule DNA mechanics. Nature 421.6921 (2003):
423-427.
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(a) (b)

Figure 6.15: (a) A WLC under large stretch. The polymer is now almost straight and
can be assumed to have no overhangs. Hence, in analogy to membrane physics, we can
chose a parametrization that is similar to the Monge parametrization. (b) Force-extension
dependence for the FJC and the WLC. For the FJC the scaling is (L− < Rz >)/L ∼ F−1

z ,
whereas for the WLC we find (L− < Rz >)/L ∼ F

−1/2
z .

Although an exact formula for the WLC is still lacking, the two limits shown here
can be combined in an interpolation formula with an error smaller than 10%3:

1. small stretch f · lp = 3 < Rz >

2L
2. large stretch f · lp = 1

4 · (1 − <Rz>
L )2

⇒ f · lp = Fzlp
kBT

= <Rz>
L + 1

4·(1− <Rz>
L

)2 − 1
4

interpolation
formula (6.67)

Scaling analysis of stretched WLC

The two limiting cases of the stretched WLC can be obtained also from a blob
scaling analysis, which helps to better understand the underlying physics. We
consider a chain segment of length l which is bent to an angle θ. As discussed
above, this costs the bending energy

Eb ∼ κp(1 − cos θ)
l

≈ κpθ
2

l
(6.68)

which diverges with l → 0, because we would get infinite curvature. In order to
work against the external force Fz, we need the stretching energy

Es ∼ Fzl(1 − cos θ) ≈ Fzlθ
2 (6.69)

that increases with l. Therefore a crossover length ξ exists at which the two
energies balance:

ξ :=
√
κp
Fz

=
√
kBT lp
Fz

. (6.70)

3JF Marko and ED Siggia: "Stretching DNA", Macromolecules 1995, 28:8759–8770
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We interpret ξ as the contour length per blob. Below it, the chain does not feel
the effect of force and is dominated by bending. Above it, the chain becomes
elongated in z-direction and is dominated by stretching. In the blob picture, we
assume that we have an unperturbed WLC below ξ and a stretched FJC of blobs
above ξ.
We next recall the two scaling functions that we have calculated above. For the
unperturbed WLC, we have defined a scaling function f(x) for the mean squared
end-to-end distance in eq. 6.57. We now use it to define the size of a blob as

b2
b := ξ2f( lp

ξ
) . (6.71)

For the FJC of blobs, we can use the Langevin function L(x) defined in eq 6.47.
We note that we have L/ξ blobs, each of size bb, and therefore the overall relative
extension will be

< Rz >

L
∼ 1
L

L

ξ
bbL(Fzbb

kBT
) (6.72)

where bb depends on the regime in which the scaling function f(x) is evaluated. A
closer look shows that the overall result is controled only by one scaling parameter,
namely f := Fzlp/(kBT ).
We now can look at the two limiting cases. For strong stretching, f ≫ 1, we have
L(x) = 1 − 1/x and f(x) = 1. Thus bb = ξ (the blob is rigid with linear scaling)
and therefore

< Rz >

L
∼ 1 −

√
kBT

Fzξ
. (6.73)

We rearrange to find
L− < Rz >

L
∼
√
kBT

Fzlp
(6.74)

exactly as found above, except that the scaling analysis misses a factor of 2.
For weak stretching, f ≪ 1, we have L(x) = x/3 and f(x) = 2x. Thus b2

b = 2ξlp
(the blob is flexible with square root scaling) and we get

< Rz >

L
∼
√
ξlp
ξ

Fz
√
ξlp

kBT
= Fzlp
kBT

(6.75)

because ξ cancels out. This is the linear response regime that we also found
above. Here we miss a numerical factor of 2/3 compared with the exact result.
Overall we conclude that the blob analysis gives the right scaling results in both
limits, in particular the inverse square root for the divergence at strong stretching,
which sets the WLC apart from the FJC, and the linear response regime at weak
stretching.

Final remarks on stretching the WLC

Experimentally, biopolymers have been shown to correspond to the WLC-model
in many different cases, most prominently in the case of dsDNA4. For dsDNA,

4Smith, Steven B., Laura Finzi, and Carlos Bustamante. Direct mechanical measurements of
the elasticity of single DNA molecules by using magnetic beads. Science 258.5085 (1992): 1122-
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but also for other biopolymers like actin, it is known that after the thermal
fluctuations in the contour length have been pulled out, the backbone can give out
additional length due to internal changes (overstretching in the case of dsDNA,
twist in the case of actin). This situation is described by the stretchable WLC-
model, which can be solved with the same methods as described above for the
WLC-model, and which is a combination of the GC and the WLC.
The following references are recommended for further reading:

• R Phillips et al., Physical biology of the cell, chapter 10; especially appendix
10.8 on the math of the WLC on page 401

• P Nelson, Biological Physics, very detailed discussion of different models

• Kroy, Klaus, and Erwin Frey. Force-extension relation and plateau modulus
for wormlike chains. Physical Review Letters 77.2 (1996): 306.

• J Kierfeld et al. Stretching of semiflexible polymers with elastic bonds, Eur.
Phys. J. E 2004, 14:17-34

• Koester, S., J. Kierfeld, and T. Pfohl. Characterization of single semiflexible
filaments under geometric constraints. The European Physical Journal E
25.4 (2008): 439-449.

6.4 Interacting polymers

6.4.1 Self-avoidance and Flory theory

Until now we have neglected the fact that the chain can encounter itself and
then becomes repelled as is the case for a real polymer. Due to this excluded
volume effect real chains are more extended than ideal ones. The Edwards-
Hamiltonian takes account of the excluded volume:

βH = k

2

ˆ L

0
ds

(
∂r⃗

∂s

)2
+ w

ˆ L

0
ds

ˆ L

0
ds′ δ(r⃗(s) − r⃗(s′)) (6.76)

where w denotes the excluded volume parameter. Unfortunately, further calcu-
lation with the Edwards Hamiltonian are rather complicated.
The Flory theory offers a very simple and powerful approach to the problem.
Here we take a look at the scaling of the involved contributions to the free energy
F , namely energy and entropy:

1. Interaction energy: we assume infinitely hard potentials that repel monomers.
Each collision of the polymer with itself costs kBT in energy. With a
monomer density of ρ = N/R3 and an excluded volume v we end up with
an internal free energy:

Fint ≈ kBTvρN = kBTv
N2

R3 (6.77)
1126; Bustamante, C., Marko, J. F., Siggia, E. D. and Smith, S. (1994). Entropic elasticity of
lambda-phage DNA. Science 1599-1599.
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Figure 6.16: The extension of DNA has been measured on supported bilayers and resulted
in an exponent 0.79 very close to 2D Flory theory. From B. Maier and J.O. Rädler, Phys.
Rev. Lett. 82, 1911, 1999.

2. Stretching: what is the counterforce avoiding that the polymers spreads
out due to excluded volume effects? Of course this costs entropy as the
polymer would be less able to fluctuate. Assuming we stretch a Gaussian
chain (compare equation 6.36):

Fstretch ≈ kBT
R2

Nb2 (6.78)

This results in a total free energy:

F = Fint + Fstretch = kBT (vN
2

R3 + R2

Nb2 ) (6.79)

The optimal size RF follows from the minimizing the free energy F with respect
to R:

∂F

∂R
= 0 = kBT

(
−3vN

2

R4
F

+ 2
RF

Nb2

)
⇒ RF = v

1
5 b

2
5N

3
5 (6.80)

⇒ RF ∼ Nν with ν = 3
5 = 0.6 (6.81)

Computer simulations and experiments yield ν = 0.588. Thus Flory theory seems
to be close to reality. In d dimensions one finds ν = 3/(d+ 2), which agrees with
the exact results in d = 2 (ν = 3/4) and d = 4 (ν = 1/2). In two dimensions,
this exponent has been measured for negatively charged DNA of various lengths
absorbed to positively charged lipid bilayers, compare figure 6.16.
However, it is very difficult to improve on Flory theory. The reason is that its
success is due to a fortuitous cancellation of errors since both the repulsion energy
and the entropic stretching are overestimated. Nevertheless it is very useful for
many situations of interest, such as polyelectrolytes, ring polymers or adsorption.
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Figure 6.17: Experimental results and scaling laws for the modulus of different polymer
networks. (a) Note that the synthetic polyacrylamide gel is the only one that does not
strain-stiffen. (b) Actin network crosslinked by scruin. (c) Neurofilament network. (d)
Polyisocyanopeptide hydrogel. The power 3/2 is the prediction of the affine thermal
model. Taken from Broedersz and MacKintosh review, figure 15.

6.4.2 Semiflexible polymer networks

The mechanical stability of cells and tissues results mainly from networks of
semiflexible polymers (e.g. actin inside the cells and collagen between the cells).
These kinds of networks are stabilized both by topological entanglement and by
crosslinkers (e.g. alpha-actinin, fascin, filamin, fimbrin, scruin etc for actin).
Despite the fact that molecular details and network architecture can vary widely
in these systems, they all share one outstanding property, namely that they stiffen
under strain, as shown in the experimental plots shown in figure 6.17. We have
seen this already for the single WLC, but it is non-trivial to find this result also
for the network. A nice review on this subject is by Chase P. Broedersz and Fred
C. MacKintosh, Reviews of Modern Physics 2014, volume 86, pages 995-1036.
We cannot go into the details here, but would like to mention one difficulty: if
one couples different polymers into a bulk material, most deformation modes will
include both stretch and compression of polymers. However, these two modes are
very asymmetric on the level of the molecules. Under compression, the polymer
does buckle at the Euler threshold. This can be seen easily by noting that the
thermal fluctuation of a beam is

H ∼ (σ + κk2)k2 (6.82)

which can become negative for σ < −κk2. Because the critical wavelength is

133



related to beam length L by k∗ = π/L, we get for the critical tension at buckling

σc = −κ(π
L

)2 = −π2E(R
L

)2 (6.83)

with bending stiffness κ = ER2, Young’s modulus E and radius R. Thus the
longer a polymer, the more easily it buckles. A complete theory of a poly-
mer gel has to incorporate this asymmetry, the scale on which the polymers
are crosslinked, and the nature of the crosslinks.
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Chapter 7

Molecular motors

Molecular motors are molecules that generate motion and force. They do this
by converting electrochemical energy into mechanical work, for example by hy-
drolysing ATP or by letting ions flow down a gradient. Thus they work like heat
engines, but they cannot be Carnot engines, because molecular diffusion is too
fast as to allow for any temperature gradients. Thus they have to achieve the
conversion without the intermediate form of heat and to operate at constant tem-
perature (isothermally). Molecular motors are extremely fascinating molecular
machines and it is still not completely clear how they have been optimized by
evolution to perform their tasks. An important aspect of understanding them
is to build new ones, for example by reengineering their different parts or by
using different material (e.g. small molecules or DNA rather than proteins). In
2016, the Nobel prize for chemistry has been awarded for the design and synthe-
sis of molecular machines and a Nobel prize for medicine for the investigation of
biological molecular motors might come in the future.

Why did nature evolve motors? Obviously this is a very direct way to generate
force, e.g. in the muscle for moving body parts or in the beating flagella of sperm
cells. In regard to transport, for examples of vesicles and organelles, but also
of viruses, motors are needed not only to provide specificity and direction, but
also to beat the physical limits of diffusion. With a typical molecular diffusion
constant of (10 µm)2/s, diffusion starts to become slow in regard to the required
response times of s on the length scale of cells (10 µm). With a typical velocity of
µm/s, molecular motors outcompete diffusion on cellular and tissue length scales.
However, we also note that for body length scales, we need other transport modes.
For example, small molecules such as hormones and many cell types (red blood
cells, platelets, white blood cells, stem cells and cancer cells) are transported with
the blood (average velocity 0.4 m/s in the aorta and 0.3 mm/s in the capillaries)
and nerve impulses are transmitted as action potentials (velocities 10-100 m/s).

In this chapter, we will discuss the theoretical basis of understanding molecu-
lar motors. As we will see, the appropriate framework is the one of stochastic
equations (master equation, Fokker-Planck equation) and the theory of molecular
motors has advanced considerably over the last two decades and still is a very
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active research area 1.

7.1 Classification

Molecular motors can be classified in the following way:

Translational motors These motors move along tracks, e.g. myosin motors
along actin filaments (e.g. in the muscle), kinesin and dynein along micro-
tubules (e.g. kinesin in axons for transport towards the synaptic cleft, and
dynein in cilia and flagella to bend them), and polymerases and helicases
along DNA.

Rotary motors These motors typically have a stator embedded into the mem-
brane and containing a rotor. The most important example is the F0 F1
ATP Synthase, which in cells of all species generates ATP from ADP and
Pi (1 ATP per 120 degree rotation, at 100 Hz this gives 300 ATP per sec-
ond). It is driven by a proton gradient and needs six protons for each turn.
An adult burns 120 W and needs 2.400 kcal / day and thus 1.7 × 1026

ATP molecules, amounting to 140 kg that are essentially produced in our
mitochondria. The required energy comes from our metabolism (aerobic
respiration of glucose, which essentially was produced before by plants us-
ing photosynthesis). If there is plenty of ATP, the motor reverses and builds
up the proton gradient. Another famous example is the bacterial flagellar
motor, which is basically constructed like a ion turbine using 1.000 protons
to drive one turn. This motor has to create more torque than the ATP
Synthase because it has to turn the bulky flagellum.

Polymerization motors By (de)polymerization, biopolymers like actin or MT
can create force. The most important example is the lamellipodium of
migration cells, when a complete network is polymerized against the leading
membrane to push the cell forward. Another example are pili of bacteria
that pull against their environment by depolymerization of the base in order
to move the cell forward.

Translocation motors These are used to push biomolecules through a hole,
e.g. when an empty virus capsid is loaded with DNA, when proteins are
targeted into a proteasome for degradation, or when a folding protein is
threaded from a ribosome directly into another compartment.

Although these motors are very different on the molecular level, they share the
basic principle, namely stochastic operation at constant temperature to create
biased movement along cyclic phase space trajectories.

1In the introduction and the discussion of the force-velocity relation, we follow the book
Physical biology of the cell by Rob Phillips and coworkers. For the more mathematical discus-
sion, we follow two excellent review papers on this subject: Frank Jülicher, Armand Ajdari and
Jacques Prost, Modeling molecular motors, Reviews of Modern Physics 69, 1269-1281, 1997;
Tom Duke, Modelling motor protein systems, course 3 in Physics of bio-molecules and cells,
volume 75 of the Les Houches series, pages 95-143, 2002.
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In order to foster model building, we start with the simplest example, namely a
translational motor walking along a track. We consider a processive motor like
kinesin or myosin V, that can make many steps without falling off the track (this
is different for non-processive motors like myosin II, that stay on track only for
a short time and thus can work productively only in groups). Such motors are
typically two-headed and move in a hand-over-hand fashion. Moreover each step
is related to exactly one ATP being consumed. We label the track position by
the spatial coordinate x and assume that each motor has only a finite number of
discrete states, which we label with the index m. Thus our central quantity is
the probability pm(x, t) to be in state m and at position x at time t.

7.2 One-state model

Figure 7.1: Scheme of a one state model.

We start with a one-state model, thus we can drop the label m. We assume that
the motor jumps to the right and to the left with rates k+ and k−, respectively.
Note that in a model for passive physical particles, these two rates should be
equal; here we already assume some kind of symmetry break that for molecular
motors should be related to track polarity and ATP consumption. We allow only
for discrete binding sites at x = na. We now deal with a discrete one-dimensional
random walk with bias and can write the following flux balance:

p(n, t+∆t) = k+∆tp(n−1, t)+k−∆tp(n+1, t)+(1−k−∆t−k+∆t)p(n, t) (7.1)

The two gain terms come from motors hopping in from left and right, respectively,
and the two loss terms come from motors hopping away to the left and right,
respectively. We rearrange and take the continuum limit ∆t → 0 to get

ṗ(n, t) = k+(p(n− 1, t) − p(n, t)) + k−(p(n+ 1, t) − p(n, t)) (7.2)

We next take the continuum limit in regard to space and use the Taylor expansion

p(x± a, t) ≈ p(x, t) ± p′(x, t)a+ 1
2p

′′(x, t)a2 (7.3)

We then end up with the famous Fokker-Planck or Smoluchowski equation

ṗ(x, t) = −vp′(x, t) +Dp′′(x, t) (7.4)

with drift velocity and diffusion constant defined by

v = (k+ − k−)a, D = (k+ + k−)a
2

2 (7.5)
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For a Delta function as initial condition, this equation is solved by

p(x, t) = 1√
4πDt

e−(x−vt)2/4Dt (7.6)

Thus the motor moves with a drift velocity v to the right, but it also disperses
with a diffusion constant D.
We also note that one can derive a dispersion relation from here. We use the
Fourier ansatz p(x, t) = C exp(i(kx− ωt)) and get

(−iω + vik +Dk2)C = 0 (7.7)

which in turn leads to
ω = vk − iDk2 (7.8)

The first term is well-known from e.g. electromagnetic waves (photons) or me-
chanical waves in crystals (phonons), which have linear dispersion relations (for
phonons only for small k). The second term is special for diffusion.

7.3 Force dependence

Next we discuss the force dependence of the motor drift velocity v = (k+ −
k−)a. We go back to the discrete picture and consider steady state, so the time
dependence drops out. The principle of detailed balance says that at equilibrium,
the currents between two states should cancel each other:

k+p(n) = k−p(n+ 1) (7.9)

The state probabilities themselves should obey Boltzmann statistics in equilib-
rium:

p(n) = 1
Z
e−β(Gn+Fna) (7.10)

where Gn is the Gibbs free energy at position n and F is the external force against
which the motor has to work. Thus equilibrium dictates

k+
k−

= e−β(∆G+Fa) (7.11)

where ∆G = Gn+1 − Gn. Obviously ∆G has to be negative for the motor to
gain free energy as it moves to the right hand side (compare Fig. 7.2a). We
immediately see that the motor gets stalled (v = 0) if the force reaches the stall
force value Fs = −∆G/a (we define a positive force to pull to the left).
We now turn to non-equilibrium. As we have seen, the equilibrium considerations
only determine how the ratio of the two rates should depend on F . In the absence
of more information, we now consider two extreme cases. We first consider the
possibility that the force dependence resides completely in k+. Then we get for
the force-velocity relation

v(F ) = a(k+(F ) − k−) = ak−
(
e−β(∆G+Fa) − 1

)
(7.12)
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Figure 7.2: Force dependence. a) Scheme how force will change the free energy landscape
of a motor hopping to the right. b) Force-velocity relation when force dependence is in
k+. c) Force-velocity relation when force dependence is in k−. d) Some experimentally
measured force-velocity relations: kinesin (green), RNA polymerase (blue), phage pack-
aging motor (red). All four graphs taken from the book Physical Biology of the Cell,
chapter 16 on molecular motors.

using the equilibrium condition from equation 7.11. Thus we get a finite free
velocity at F = 0, then a convex up decay to the stall force Fs and finally a
plateau at negative values (compare 7.2b). Indeed such a force-velocity relation
is known from many motors, e.g. for myosin II (although this is a non-processive
motor, so this is the average result when working in a group) and to some extent
for kinesin.

An alternative scenario would be that the force dependence resides completely in
k−. We then get

v(F ) = a(k+ − k−(F )) = ak+
(
1 − eβ(∆G+Fa)

)
(7.13)

This force-velocity relation is convex down (compare Fig. 7.2c) and is similar to
the one measured for myosin V, although the divergence to negative values at
large F is of course unrealistic. Fig. 7.2d) shows some examples for measured
force-velocity curves and demonstrates that we were able to capture their general
features well with our simple one-state model.
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7.4 ATP dependence

Figure 7.3: ATP dependence. a) When the ATP-dependence is only in the forward
rate, then only the free energy barrier height ∆G+ changes when ATP concentration
is changed. b) When the ATP-dependence is only in the backward rate, then only the
free energy barrier height ∆G− changes when ATP concentration is changed. b) The
experimental results for kinesin show the linear dependence at low ATP and the plateau
at high ATP predicted by the theory. d) Force dependence of kinesin for different ATP
concentrations. All four graphs taken from the book Physical Biology of the Cell, chapter
16 on molecular motors.

Like for the force dependence, we start with a statement how the free energy
landscape is changed by ATP-concentration. We use the well-known formula for
dilute solutions (derivation with chemical potential for ideal gas):

∆Gh = ∆G0 − kBT ln [ATP ]
[ADP ][Pi]

(7.14)

The first term represents the energetic part of breaking the high-energy bond
in ATP and gives a value around −12.5kBT (to avoid entropic effects, here we
consider very high concentrations, namely M). The second term represents the
entropic part and corresponds to the law of mass action. For physiological condi-
tions ([ATP ] = mM , [ADP ] = 10µM , [Pi] = mM) and the reference concentra-
tion of M to make the argument dimensionless, we get −11.5kBT . Thus together
we have ∆Gh = −24kBT . Note that an ATP-molecule is an energy currency
that is valid twice as much inside the cell than with the reference concentrations,
because the cell keeps ATP at a much higher concentration than ADP. In general,
the free energy gain from ATP-hydrolysis depends on environmental conditions
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but usually is between 20kBT and 30kBT . This is usually more than enough for
a molecular motor to perform its powerstroke. With a powerstroke distance of
around 8nm and a stall force of around 5pN (typical values for kinesin), we have
an energy of 40nmpN ≈ 10kBT , which correspond to an efficiency of around 0.5,
if one ATP-molecule gives around 20kBT .
Like for the force dependence, the equilibrium considerations do not completely
determine the ATP-dependence of the jump rates. We again consider the two
extreme cases that the external factor affects only one of the two rates. We first
consider that ATP only affects the forward rate. We now use Kramers reaction
rate theory that states that the transition rate k depends on attempt frequency
Γ and barrier height ∆G as

k = Γe−β∆G (7.15)

The exponential dependence between barrier height and transition rate is also
known as Arrhenius factor in physical chemistry and should not be understood
to be a Boltzmann factor. This law means that the transition rate goes down
dramatically (exponentially) if the barrier height increases.
For our problem we can write

−∆Gh = ∆G− − ∆G+ (7.16)

to relate the two barrier heights to each other (we count the two barrier heights
as positive, while the free energy difference is negative, therefore the minus sign
on the left). If we assume that only the forward rate is changed by ATP, then this
means that only ∆G+ is changed when changing ATP (compare Fig. 7.3(A)).
We now can write the two rates as

k+ = Γ+e
−β∆G+ = Γ+e

−β(∆G−+∆Gh) (7.17)
k− = Γ−e

−β∆G− (7.18)

and therefore the velocity follows as

v = a(k+([ATP ]) − k−) = a(Γ+e
−β(∆G−+∆G0) [ATP ]

[ADP ][Pi]
− Γ−e

−β∆G−) (7.19)

where except for [ATP ], all other quantities are constant. Thus it increases
linearly with ATP-concentration. However, this relation cannot be valid at high
[ATP ], because then the barrier disappears (the left well is pushed up over the
barrier) and Kramers theory is not valid anymore. Thus this must be a result for
low [ATP ].
As the second case, we assume that only the backward rate is ATP-dependent.
Now only the barrier height ∆G− is assumed to be ATP-dependent (compare
Fig. 7.3(B)) and we get

k+ = Γ+e
−β∆G+ (7.20)

k− = Γ−e
−β∆G− = Γ−e

−β(∆G+−∆Gh) (7.21)
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and therefore

v = a(k+ − k−([ATP ])) = a(Γ+e
−β∆G+ − Γ−e

−β(∆G+−∆G0) [ADP ][Pi]
[ATP ] ) (7.22)

Thus now the dependence is inverse in [ATP ]. The divergence at low [ATP ]
cannot be valid because then the barrier vanishes (the right well is pushed up
over the barrier). Thus this result says that the dependence should plateau at
high [ATP ].
Together, we now have found that the velocity should increase linearly at low
[ATP ] and the plateau at a constant value at high [ATP ]. This is exactly the
experimentally measured dependence for all motors. Fig. 7.3(C) shows this for
kinesin. The plateau velocity is typically around µm/s and the crossover concen-
tration at sub-mM . Fig. 7.3(D) shows the force-velocity relation for kinesin for
different ATP concentrations.

7.5 Two-state model

Figure 7.4: In the two-state model, the motor in state 0 has to convert to state 1. During
this process, it can remain stationary or take a step to the left. The motor in state 1 has
to convert to state 0. During this process, it can remain stationary or take a step to the
right.

Molecular motors are often modeled as N -state systems. The different states
of the system are difficult to determine, this requires careful experimentation
or molecular dynamics simulations. As a first step towards the complexity of
molecular motors, we consider N = 2. Thus each motor has two internal states,
0 and 1, with probabilities p0(n, t) and p1(n, t), respectively. The system can
move to the left and right only through the state 0 and 1, respectively, with the
rates given in Fig. 7.4. The corresponding master equations are

dp0(n, t)
dt

= k+
A p1(n− 1, t) + k−

B p1(n, t) − k−
A p0(n, t) − k+

B p0(n, t) ,(7.23)

dp1(n, t)
dt

= k−
A p0(n+ 1, t) + k+

B p0(n, t) − k+
A p1(n, t) − k−

B p1(n, t) .(7.24)

These dynamical equations can be solved by using a continuum limit and a
Fourier ansatz. To obtain the drift velocity, however, it is sufficient to use steady
state arguments. We introduce the total probabilities to be in state 0 or 1:
Pi(t) = ∑

n pi(n, t). The different positions in the master equation now do not
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matter anymore because we sum over them. The dynamic equations for the total
probabilities follow from above as

dP0(t)
dt

= (k+
A + k−

B)P1(t) − (k−
A + k+

B)P0(t) , (7.25)

dP1(t)
dt

= (k−
A + k+

B)P0(t) − (k+
A + k−

B)P1(t) . (7.26)

These linear equations can be solved easily. For the steady state, however, we do
not even have to do this, but we simply set the time derivatives to zero and get

(k+
A + k−

B)P ss1 = (k−
A + k+

B)P ss0 (7.27)

With the normalization P ss0 + P ss1 = 1, we finally get

P ss0 = (k+
A + k−

B)
(k−
A + k−

B + k+
A + k+

B)
, (7.28)

P ss1 = (k−
A + k+

B)
(k−
A + k−

B + k+
A + k+

B)
. (7.29)

We now can calculate the drift velocity:

v = a(k+
AP

ss
1 − k−

AP
ss
0 ) = (k+

Ak
+
B − k−

Ak
−
B)

(k−
A + k−

B + k+
A + k+

B)
(7.30)

from which we can also read of the effective rates defined by v = a(k+ − k−):

k+ = (k+
Ak

+
B)

(k−
A + k−

B + k+
A + k+

B)
, (7.31)

k− = (k−
Ak

−
B)

(k−
A + k−

B + k+
A + k+

B)
. (7.32)

We note that this form of the overall rate is rather generic and also follow e.g.
for the steady state approximation of Michaelis-Menten kinetics for enzymatic
processes. The numerator is a product of rates because it describes a sequence
of steps, and the denominator is a sum of all rates, which is the speed limit for
the process.

7.6 Ratchet model for single motors

In principle, we now could go on with a two-state model and try to solve the
corresponding master equation in time. We also could start to include more rele-
vant states, compare Fig. 7.5 for myosin II, which generates force in our muscles.
As one can see from the scheme, the different states can be grouped into bound
and unbound. Thus we have arrived at the model class of crossbridge models,
where a motor cycles between bound and unbound by forming a crossbridge to
the filament. In a three-state model, we would in addition add the powerstroke
on the filament. We also could add the recovery stroke and distinguish between
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Figure 7.5: Schematics of the myosin II motor cycle with five steps. The two states
above the line are unbound and the three below are bound. Binding and unbinding
corresponds to establishing and removing a crossbridge between motor and actin filament,
respectively. Myosin II makes two powerstrokes with the second one being a catch bond
(slower under force), such that muscle can work also under high load. It also has a safety
exit (the slip path) to unbind if force is too large. It finally unbinds from the rigor state
by binding ATP. If no ATP is present, the system crosslinks and becomes rigid (this
happens in dead bodies).

release of ADP and Pi, arriving at more states. For single motor heads like the
myosin II heads in a minifilament or muscle, one rarely goes beyond five-state
crossbridge-models. However, if one analyses a two-headed motor like kinesin,
one can easily get more states. The same holds of course for assemblies of motor
heads. In general, one ends up with high-dimensional and complex master equa-
tions that have to be treated with computer simulations. Most importantly, in
crossbridge models one does not model the movement of the motor explicity, but
it is associated implicitly with one of the transitions. This agrees with experi-
mental observations and results from molecular dynamics simulations that show
that movement of motor parts is always much faster than the dwelling times in
the different states.
Here we want to follow another route and turn to a two-state model that uses
the concept of continuous diffusion to explain how directed motion can emerge
out of random switching. This class of models is called isothermal ratchet models
and they are more general, but also less specific than crossbridge models. In con-
trast to the Feynman ratchet or a Carnot machine, the system does not operate
at different temperatures, but isothermally. Here we present the mathematical
analysis that identifies the two essential prerequisites to obtain directed motion.
We start with the Fokker-Planck equation from eq. 7.4 and rewrite it as continuity
equation

ṗ(x, t) + J ′(x, t) = 0 (7.33)

with the flux
J = vp−Dp′ (7.34)

We next assume overdamped dynamics (no mass) and write the velocity as

v = µF = µ
[
−W ′ − Fext

]
(7.35)
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where the mobility µ is the inverse of the friction coefficient and the force F is
divided into force from a potential W (x) and an external force Fext (the minus for
Fext means that the force is positive if it acts to the left, against the movement of
the motor, like above for the one-state motor). We also make use of the Stokes-
Einstein relation D = kBTµ, which is an example of the fluctuation-dissipation
theorem (D is fluctuation, µ is dissipation, and the two are not independent of
each other, but related by temperature). Thus we now have for the flux

J = −µ
[
(W ′ + Fext)p+ kBTp

′] (7.36)

Together Eqs. 7.33 and 7.36 define the FPE as we use it here.

Figure 7.6: a) Typical potentials for the two-state isothermal ratchet model. Both the
potentials Wi and the transition rates ωi have to be periodic. Motion ensues if detailed
balance for the rates is broken. c) The simplest example would be the switch between a
flat potential and an asymmetric sawtooth potential.

We now write the Fokker-Planck equations for two states with switching between
them:

ṗ1 + J ′
1 = −ω1(x)p1(x, t) + ω2(x)p2(x, t) (7.37)

ṗ2 + J ′
2 = ω1(x)p1(x, t) − ω2(x)p2(x, t) (7.38)
Ji = −µi

[
(W ′

i + Fext)pi + kBTp
′
i

]
(7.39)

Note that the switching terms with the rates ω1 and ω2 differ only by a minus sign
between the two states. For simplicity, in the following we assume µ1 = µ2 = µ.
The two potentialsWi define the two states. An extreme case would be a sawtooth
potential and a flat potential, for example because one state is charged and the
other is not. At any rates, the potentials Wi(x) and the switching rates ωi(x)
should have the same periodicity with unit cell size l, because this is imposed
by the track with repeat distance l. We also note that the two potentials are of
purely physical (passive) origin and therefore should not be tilted, which means
that

∆Wi = Wi(x+ l) −Wi(x) = 0 (7.40)

Otherwise the motor would exhibit motion to the right simply because it moves
down a gradient. What we want to model here is the opposite, namely the
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fact that molecular motors spontaneous generate motion in a non-tilted energy
landscape by locally burning energy, without a global gradient.
The beauty of this model is that we do not have to specify potentials and rates
to get the general results we are after. We define total probability and total flux
as

P (x, t) =
∑
i

pi(x, t), J(x, t) =
∑
i

Ji(x, t) (7.41)

If we sum up the first two equations from Eq. 7.39, the switching terms drop out
and we get a FPE without source terms:

Ṗ (x, t) + J ′(x, t) = 0 (7.42)

We next define local fractions of occupation

λi(x, t) = pi(x, t)
P (x, t) ⇒

∑
i

λi = 1 (7.43)

We now calculate the total flux. Using pi = λiP and the product rule we get

J = −µ
∑
i

[
λiW

′
i + kBTλ

′
i + λiFext)P + kBTλiP

′] (7.44)

= −µ
[
(
∑
i

λiW
′
i + 0 + Fext)P + kBTP

′
]

(7.45)

Thus we have exactly the general form for the flux, compare eq. 7.36, if we define
an effective potential by

Weff (x, t) =
ˆ x

0
dx′

(∑
i

λi(x′, t)W ′
i (x′)

)
(7.46)

If we further consider the steady state of the system, in which J =constant, the
effective potential becomes only dependent on position

Weff (x) =
ˆ x

0
dx′

(∑
i

λi(x′)W ′
i (x′)

)
(7.47)

Note that the switching rates ωi enter indirectly through the occupancies λi.
We now consider the case without external force Fext and ask under which con-
ditions the system can generate directed motion by itself. Such motion appears
if the effective potential is tilted over one period. We therefore define

∆Weff =
ˆ l

0
dx′

(∑
i

λi(x′)W ′
i (x′)

)
(7.48)

and ask under which conditions this quantity becomes finite. We then immedi-
ately see that two conditions have to be satisfied:
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• The potentials Wi(x) and/or the transition rates ωi(x) have to be asymmet-
ric under x → −x. Otherwise the integrand was symmetric and the integral
vanished. A simple example for this would be an asymmetric sawtooth po-
tential. Then the transition rates in principle could be symmetric, but one
can show that this is not very efficient, so one expects both potentials and
transition rates to be asymmetric.

• The switching rates have to break detailed balance, which means that the
system has to be out of equilibrium. Otherwise the steady state distribution
would be the Boltzmann distribution

λi(x) = e−Wi/kBT∑
i e

−Wi/kBT
(7.49)

We then would have

∑
i

λi(x)W ′
i (x) = ∂x

[
(−kBT ) ln(

∑
i

e−Wi(x)/kBT )
]

(7.50)

Thus the integrand in Eq. 7.48 would be a total derivative and the integral
would vanish.

These two conclusions are non-trivial and must be valid for any specific motor
model. One also can show that they are true for the case µ1 ̸= µ2.
For many purposes, it is useful to define the deviation from equilibrium. This
can be done by writing

ω1 = ω2e
β(W1−W2) + Ω(x) (7.51)

thus detailed balance corresponds to Ω(x) = 0. If one further defines Ω(x) =
Ωθ(x), then the scalar amplitude Ω is a measure for deviation from equilibrium.
The excitation distribution θ(x) usually is localized around the minimum of the
potential W1 (active site). Note that switching from the minimum is exactly the
opposite of what would happen in equilibrium, where switching would occur at
the maximum due to detailed balance.

7.7 Ratchet model for motor ensembles

As we have seen, the isothermal two-state ratchet model is ideal to identify the
conditions for movement of a single motor. We now carry this approach further
to address collective effects in ensembles of molecular motors (alternatively, we
could look at collective effects in master equations for groups of motors). In the
cell, motors rarely work alone, but usually are coupled together in a group, e.g.
when transporting cargo along filaments or generating force in the cytoskeleton,
in flagella and cilia, or in the muscle. We consider the case that the motors are
coupled to a rigid backbone, thus at each time t, they have the same velocity v. As
we will see, this coupling is sufficient to result in collective effects which resemble
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Figure 7.7: (A) We consider an ensemble of motors that is coupled through a rigid back-
bone. Each motor can bind to the filament and slide down the potential corresponding to
the current state. (B) For sufficient deviation Ω > Ωc from equilibrium, the force-velocity
relation becomes negative and spontaneous symmetry breaking with finite velocities v+
and v− occurs at cero forcing. As the external force is varied, a hysteresis loop emerges.
(C) Spontaneous motion occurs because excitation causes a dip in p1(x) that then moves
to the right with velocity v. This effectively increases the numbers of motors pulling
further to the right. Like during a phase transition, this is an instability.

148



phase transitions. Each of the motors can bind to the filament at position x and
then generates a force F = −∂xWi(x), depending on which state i it is in.
We consider a mean field theory, that is many motors that are homogeneously
distributed along the backbone, in a manner that is incommensurable with the
potentials with periodicity l, compare Fig. 7.7(A). We consider the variable x
to be cyclic, thus we only have to deal with a unit cell with 0 ≤ x ≤ l. We
again consider the Fokker-Planck equation for two states, but now for a common
velocity v:

ṗ1 + v∂xp1 = −ω1(x)p1 + ω2(x)p2 (7.52)
ṗ2 + v∂xp2 = ω1(x)p1 − ω2(x)p2 (7.53)

Note that, because we consider a large cargo, we neglect the effect of diffusion.
The force balance reads

v = µ(Fext + Fint) (7.54)
where µ is mobility and Fext is the given external force (provided e.g. by an
optical tweezer). The internal force is

Fint = −
ˆ l

0
dx(p1∂xW1 + p2∂xW2) (7.55)

Normalization reads

p1(x, t) + p2(x, t) = 1
l

⇒ p2 = 1
l

− p1 (7.56)

and
´ l

0 dx(p1 + p2) = 1.
We now consider steady state, ṗi = 0. Together with the normalization, the first
of the two Fokker-Planck equations now gives

v∂xp1 = −(ω1 + ω2)p1 + ω2
l
. (7.57)

The force balance (or momentum conservation) gives

Fext = v

µ
− Fint = v

µ
+
ˆ l

0
dx p1∂x(W1 −W2) (7.58)

where the constant term drops out because we integrate over ∂xW2 and W2 is
periodic.
For specific choices of the potentials Wi and the rates ωi, these equations for
the steady state p1(x) can now be solved. This will then lead to a force-velocity
relation Fext(v). Here we want to proceed with generic properties of this theory
and therefore make a Taylor expansion in small velocity v:

p1(x) =
∞∑
n=0

p
(n)
1 (x)vn . (7.59)

The Fokker-Planck equation leads to a recursion relation for the coefficients:

p
(0)
1 (x) = ω2

(ω1 + ω2)l , p
(n)
1 (x) = −1

(ω1 + ω2)∂xp
(n−1)
1 (x) (7.60)
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For the force-velocity relation we get

Fext = F (0) + ( 1
µ

+ F (1))v +
∞∑
n=2

F (n)vn (7.61)

with
F (n) =

ˆ
dx p

(n)
1 ∂x(W1 −W2) . (7.62)

For simplicity we next specify for symmetric potentials (Wi(x) = Wi(−x)), so all
even coefficients vanish (F (0) = F (2) = · · · = 0) and the force-velocity relation
Fext(v) becomes anti-symmetric:

Fext = ( 1
µ

+ F (1))v + F (3)v3 +O(v5) (7.63)

For detailed balance (Ω = 0 in Eq. 7.51), we can calculate

F (1) =
ˆ
dx
β

l

eβ(W1−W2)

(1 + eβ(W1−W2))2
(∂x(W1 −W2))2

(ω1 + ω2) (7.64)

thus this quantity is positive and the only solution to the force-velocity relation
at zero forcing (Fext = 0) is v = 0. Thus with detailed balance, no spontaneous
motion can occur. However, at Ωc > 0 the coefficient F (1) can be negative with
F (1) = −1/µ. Then finite values for v become possible for Ω > Ωc, compare Fig.
7.7(B), and the velocity rises as ±(Ω − Ωc)1/2. Thus for sufficiently large devi-
ation from equilibrium, the system spontaneously starts to move. The scaling
exponent 1/2 is typical for the mean field theory and the system has to sponta-
neously break symmetry to move either right or left with velocities v+ and v−,
respectively. Note that in contrast to the single motor case, spontaneous motion
ensues even for symmetric potentials; for single motors, the asymmetric potential
is required to give it its direction, but for multiple motors, the system is persistent
and a spontaneous symmetry break occurs. If one now switches on the external
force, one can move the velocity away from its value at the transition point, com-
pare Fig. 7.7(B). For example, if the ensembles moves to the right with velocity
v+, one can pull it to smaller velocities with a negative external force Fext. How-
ever, at a critical value of Fext, this branch loses stability and jumps to a negative
velocity. The same works in the other direction and there is a hysteresis loop. In
general, the mathematical structure of this theory is exactly the same as for the
second order phase transition of the Ising model for ferromagnetism. Velocity v
corresponds to the magnetization M , external force Fext to the magnetic field H,
and the deviation from equilibrium Ω to the inverse temperature β. If the system
works against an external spring, oscillations occur, as observed often in experi-
ments with molecular motors. A famous example are spontaneous oscillations of
hair bundles in the inner ear, which lead to otoacoustic emissions.
Fig. 7.7(C) shows the main mechanism generating the instability leading to
spontaneous motion. As the motors are excited at the minimum of W1(x), one
gets a dip in p1(x). This dip moves to the right, effectively repopulating the
motor population pulling to the right. Thus any fluctuation will be increased
and the system is unstable. The same mechanism is at work in phase transition,
when the system does not counteract a fluctuation.
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7.8 Master equation approach for motor ensembles

The main advantage of the ratchet models is that they allow us to analyze the
fundamental requirements for motion. In order to describe the function of mo-
tor ensembles in close comparision to experiments, however, one usually turns
to master equations. Here we discuss a simple version that describes coopera-
tive cargo transport by an ensemble of motors2. Rather than focusing on the
spatial position of the motor ensemble, we rather will later enforce movement
in one direction, but focus on the physical limits of this movement, that is on
the possibility that the walk stops because the ensemble loses contact with its
track. Therefore we now will consider the relevant internal state of the ensemble,
namely the number of bound motors. Similar approaches have been used before
to describe the internal dynamics of adhesion clusters3.
We consider N motors, of which 0 ≤ n ≤ N are bound at any time t. The
variable n(t) is described by a one-step master equation:

ṗn = ϵn+1pn+1 + πn−1pn−1 − (ϵn + πn)pn (7.65)

where ϵn and πn are dissociation and association rates, respectively. The station-
ary state leads to the detailed balance condition

ϵn+1pn+1 = πnpn (7.66)

and this allows us to calculate the steady state probabilities in a recursive manner:

pn = p0

n−1∏
i=0

πi
ϵi+1

(7.67)

where normalization ∑N
n=0 pn = 1 gives us the starting condition

p0 =
(

1 +
N∑
n=1

n−1∏
i=0

πi
ϵi+1

)−1

=
(

1 +
N−1∑
n=0

n∏
i=0

πi
ϵi+1

)−1

. (7.68)

From here we define a few quantities of interest. The average number of bound
motors is

Nb =
N∑
n=1

n
pn

1 − p0
(7.69)

where we have excluded the state n = 0 from the sum and have normalized in
respect to the bound states only. The average velocity is

veff =
N∑
n=1

vn
pn

1 − p0
(7.70)

2Our treatment is taken from Stefan Klumpp and Reinhard Lipowksy, Coooperative cargo
transport by several molecular motors, PNAS 201: 17284-17289, 2005. Compare also the related
paper by Melanie Müller, Stefan Klumpp and Reinhard Lipowsky, Tug-of-war as a cooperative
mechanism for bidirectional cargo transport by molecular motors, PNAS 105: 4609-4614, 2008,
which generalizes this ansatz to two competing motor ensembles pulling in opposite directions.

3Compare Thorsten Erdmann and Ulrich S. Schwarz, Stability of adhesion clusters under
constant force, Phys. Rev. Lett., 92:108102, 2004.
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Figure 7.8: (A) Definition of the one-step master equation for cooperative transport by
motor ensembles. (B) Distribution of walking distances for group size N = 1, 2, 3, 4, 5
kinesin motors without load. For large N , these distributions become very flat and their
averages grow. (C) Force-velocity relation for N = 1, 2, 3, 5, 10 kinesin motors. The
effective stall force increases and the curve changes from linear to concave-down. From
Klumpp and Lipowsky PNAS 2005.

and the effective unbinding rate ϵeff is defined by

ϵeff (1 − p0) = π0p0 . (7.71)

The inverse of this would be the average time < ∆tb > it takes for the ensemble
to unbind. We can calculate

ϵeff = π0
p0

1 − p0
= π0(∑N−1

n=0
∏n
i=0

πi
ϵi+1

) = ϵ1(
1 +∑N−1

n=1
∏n
i=1

πi
ϵi+1

) (7.72)

Finally we define the average walking distance < ∆xb >. This can be simply
achieved by replacing ϵn by ϵn/vn and πn by πn/vn in the formula for < ∆tb >
(thus replacing inverse time steps by inverse step sizes):

< ∆xb >= v1
ϵ1

(
1 +

N−1∑
n=1

n∏
i=1

πivi+1
ϵi+1vi

)
(7.73)
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7.8.1 Without load

Our model definition is now concluded and to continue, we have to specify rates
and velocity for the different states n. We first consider the case of vanishing
external load. We set

ϵn = nϵ, πn = (N − n)π, vn = v (7.74)

assuming that each bond dissociates and associates with constant rates ϵ and π,
respectively, independent of the others, thus leading to the combinatorial factors,
and that velocity v is independent of state. We define γ = π/ϵ, the dimensionless
(re)binding rate. The probability distribution now is simply a binomial distribu-
tion, because each bond is open and closed with the probabilities 1/(1 + γ) and
γ/(1 + γ), respectively:

pn =
(
N

n

)( 1
1 + γ

)n ( γ

1 + γ

)N−n
=
(
N

n

)
γn

(1 + γ)N (7.75)

With some work, one can check that this agrees with the general formulae given
above. In particular, we have p0 = 1/(1 + γ)N .
The average number of bound motors follows from the average of the binomial
distribution (with the normalization to the bound states):

Nb = 1
1 − p0

< n >= 1
1 − p0

γ

1 + γ
N = γ(1 + γ)N−1

(1 + γ)N − 1N ≈ γ

1 + γ
N (7.76)

with the last expression being valid in the limit of very large N . In the limit of
large γ we get Nb ≈ N . The effective unbinding rate follows as

ϵeff = π0
p0

1 − p0
= Nγϵ

(1 + γ)N − 1 (7.77)

and therefore the average bound time is

< ∆tb >= 1
ϵeff

= (1 + γ)N − 1
Nγϵ

(7.78)

From here we get the average run length

< ∆xb >= v < ∆tb >= v

Nγϵ
[(1 + γ)N − 1] (7.79)

Thus we see that it increases exponentially with N , thus larger clusters can walk
for much longer distances as long as γ > 1. In the limit of very weak binding, we
make a Taylor expansion in γ and find

< ∆xb >≈ v

ϵ
[1 + (N − 1)

2 γ] (7.80)

The first term corresponds to the single motor. In this case, the additional
increase due to cooperativity is only linear in N .
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In the case of kinesin, we have v = 1 µm/s, ϵ = 1 Hz and π = 5 Hz, thus γ = 5
and run length increases exponentially with motor number. For N = 1, we have
< ∆xb >= v/ϵ = 1 µm. For N = 5, we are already up from 1 to 311 µm, and 10
motors give one meter. Note that the longest neural axons can extend up to one
meter, so this cooperative effect is very relevant. However, note also that this is
only a statement on the average. One can also calculate the full distribution and
find that it becomes very broad for large collectives.

7.8.2 With load

In order to deal with the case of mechanical load F , we use the linearized force-
velocity relation:

vn(F ) = v(1 − F

nFs
) (7.81)

Very importantly, here we account for the fact that force F is distributed over the
bound motors (load sharing), thus dissipating its effect over the cluster. While
the association is usually assumed to be force-independent, for the dissociation
we have to take force into account:

πn = (N − n)π, ϵn(F ) = nϵeF/(nFd) (7.82)

The second equation (Bell-relation) takes into account that dissociation is expo-
nentially increased by force, as explained by Kramers theory. Here again we also
take load sharing into account. For kinesin, the stall force Fs and the detachment
force Fd are 6 and 3 pN, respectively. If one now evaluates the formulae given
above for these rates, one finds that increasing N leads to a much slower decay in
the force-velocity relation, and changes its character from linear to concave-down.
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