Einstein-Cartan Theory as an Averaged Theory of Gravity

Juliane Behrend

Instituut voor Theoretische Fysica, Universiteit Utrecht, The Netherlands

ITP Heidelberg October 2, 2012 The Averaging Problem

Teleparallel Gravity

Averaging Process

Einstein-Cartan Theory

Gravitation in Macroscopic Media

► Standard Cosmology based on

$$G_{\mu
u}(\langle g_{\mu
u}
angle)=8\pi\,G\,\langle\, T_{\mu
u}
angle+\Lambda\,\langle g_{\mu
u}
angle$$

► Standard Cosmology based on

$$G_{\mu
u}(\langle g_{\mu
u} \rangle) = 8\pi G \langle T_{\mu
u} \rangle + \Lambda \langle g_{\mu
u} \rangle$$

► Einstein equations are nonlinear

$$\langle G_{\mu\nu}(g_{\mu\nu}) \rangle
eq G_{\mu\nu}(\langle g_{\mu\nu} \rangle)$$

► Standard Cosmology based on

$$G_{\mu\nu}(\langle g_{\mu\nu}\rangle) = 8\pi G \langle T_{\mu\nu}\rangle + \Lambda \langle g_{\mu\nu}\rangle$$

► Einstein equations are nonlinear

$$\langle G_{\mu\nu}(g_{\mu\nu})
angle
eq G_{\mu\nu}(\langle g_{\mu\nu}
angle)$$

⇒ We are using the wrong metric to describe the universe!

► Standard Cosmology based on

$$G_{\mu\nu}(\langle g_{\mu\nu}\rangle) = 8\pi G \langle T_{\mu\nu}\rangle + \Lambda \langle g_{\mu\nu}\rangle$$

► Einstein equations are nonlinear

$$\langle \mathit{G}_{\mu
u}(\mathit{g}_{\mu
u})
angle
eq \mathit{G}_{\mu
u}(\langle \mathit{g}_{\mu
u}
angle)$$

⇒ We are using the wrong metric to describe the universe!

► Correct equations

$$\langle G_{\mu\nu}(g_{\mu\nu}) \rangle = 8\pi G \langle T_{\mu\nu} \rangle + \Lambda \langle g_{\mu\nu} \rangle$$
 for some average $\langle A \rangle$ in a domain $\mathcal D$

► Standard Cosmology based on

$$G_{\mu\nu}(\langle g_{\mu\nu}\rangle) = 8\pi G \langle T_{\mu\nu}\rangle + \Lambda \langle g_{\mu\nu}\rangle$$

► Einstein equations are nonlinear

$$\langle \mathit{G}_{\mu
u}(\mathit{g}_{\mu
u})
angle
eq \mathit{G}_{\mu
u}(\langle \mathit{g}_{\mu
u}
angle)$$

- ⇒ We are using the wrong metric to describe the universe!
- ► Correct equations

$$\langle G_{\mu\nu}(g_{\mu\nu}) \rangle = 8\pi G \langle T_{\mu\nu} \rangle + \Lambda \langle g_{\mu\nu} \rangle$$
 for some average $\langle A \rangle$ in a domain $\mathcal D$

 \Rightarrow Modifications can in principle act as a dark energy $G_{\mu\nu}(\langle g_{\mu\nu} \rangle) = 8\pi G \langle T_{\mu\nu} \rangle + 8\pi G T_{\mu\nu}^g + \Lambda \langle g_{\mu\nu} \rangle$

► Let spacetime be a four-dimensional differentiable manifold.

- ► Let spacetime be a four-dimensional differentiable manifold.
- ▶ Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- ► Let spacetime be a four-dimensional differentiable manifold.
- ▶ Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

 \Rightarrow The manifold is a **linearly connected space** L_4 .

- ► Let spacetime be a four-dimensional differentiable manifold.
- ▶ Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- \Rightarrow The manifold is a **linearly connected space** L_4 .
 - ▶ Let there be a metric tensor field $g_{\mu\nu}(x)$ which allows local measurements of distances and angles

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$
.

- ► Let spacetime be a four-dimensional differentiable manifold.
- ▶ Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- \Rightarrow The manifold is a **linearly connected space** L_4 .
 - ▶ Let there be a metric tensor field $g_{\mu\nu}(x)$ which allows local measurements of distances and angles

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$
.

► Let this interval be invariant to ensure local Minkowskian structure.

- ► Let spacetime be a four-dimensional differentiable manifold.
- ▶ Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- \Rightarrow The manifold is a **linearly connected space** L_4 .
 - Let there be a metric tensor field $g_{\mu\nu}(x)$ which allows local measurements of distances and angles

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}.$$

- ► Let this interval be invariant to ensure local Minkowskian structure.
- ⇒ Nonmetricity is zero

$$Q_{\lambda\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\rho}{}_{\mu\lambda}g_{\rho\nu} - \Gamma^{\rho}{}_{\nu\lambda}g_{\mu\rho} = 0.$$

- ► Let spacetime be a four-dimensional differentiable manifold.
- ▶ Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- \Rightarrow The manifold is a **linearly connected space** L_4 .
 - Let there be a metric tensor field $g_{\mu\nu}(x)$ which allows local measurements of distances and angles

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$
.

- ► Let this interval be invariant to ensure local Minkowskian structure.
- ⇒ Nonmetricity is zero

$$Q_{\lambda\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\rho}{}_{\mu\lambda}g_{\rho\nu} - \Gamma^{\rho}{}_{\nu\lambda}g_{\mu\rho} = 0.$$

 \Rightarrow Such a manifold is called a **Riemann-Cartan spacetime** U_4 .

► In a Riemann-Cartan spacetime the difference between the affine connection and the Levi-Civita connection defines the contortion tensor

$${K^{\lambda}}_{\mu\nu} = {\Gamma^{\lambda}}_{\mu\nu} - \mathring{\Gamma}^{\lambda}{}_{\mu\nu}.$$

► In a Riemann-Cartan spacetime the difference between the affine connection and the Levi-Civita connection defines the contortion tensor

$$K^{\lambda}{}_{\mu\nu} = \Gamma^{\lambda}{}_{\mu\nu} - \mathring{\Gamma}^{\lambda}{}_{\mu\nu}.$$

▶ In terms of the torsion tensor $T^{\lambda}{}_{\mu\nu} = \Gamma^{\lambda}{}_{\mu\nu} - \Gamma^{\lambda}{}_{\nu\mu}$ it is $\mathcal{K}^{\lambda}{}_{\mu\nu} = \frac{1}{2} \left(T^{\lambda}{}_{\mu\nu} - T_{\nu}{}^{\lambda}{}_{\mu} - T_{\mu\nu}{}^{\lambda} \right).$

► In a Riemann-Cartan spacetime the difference between the affine connection and the Levi-Civita connection defines the contortion tensor

$$K^{\lambda}{}_{\mu\nu} = \Gamma^{\lambda}{}_{\mu\nu} - \mathring{\Gamma}^{\lambda}{}_{\mu\nu}.$$

► In terms of the torsion tensor $T^{\lambda}{}_{\mu\nu} = \Gamma^{\lambda}{}_{\mu\nu} - \Gamma^{\lambda}{}_{\nu\mu}$ it is $K^{\lambda}{}_{\mu\nu} = \frac{1}{2} \left(T^{\lambda}{}_{\mu\nu} - T_{\nu}{}^{\lambda}{}_{\mu} - T_{\mu\nu}{}^{\lambda} \right).$

▶ If torsion vanishes $(T^{\lambda}_{\mu\nu} = 0)$ we recover the **(pseudo-)Riemannian spacetime** V_4 of General Relativity.

► In a Riemann-Cartan spacetime the difference between the affine connection and the Levi-Civita connection defines the contortion tensor

$$K^{\lambda}{}_{\mu\nu} = \Gamma^{\lambda}{}_{\mu\nu} - \mathring{\Gamma}^{\lambda}{}_{\mu\nu}.$$

- ► In terms of the torsion tensor $T^{\lambda}{}_{\mu\nu} = \Gamma^{\lambda}{}_{\mu\nu} \Gamma^{\lambda}{}_{\nu\mu}$ it is $K^{\lambda}{}_{\mu\nu} = \frac{1}{2} \left(T^{\lambda}{}_{\mu\nu} T_{\nu}{}^{\lambda}{}_{\mu} T_{\mu\nu}{}^{\lambda} \right).$
- ▶ If torsion vanishes $(T^{\lambda}_{\mu\nu} = 0)$ we recover the **(pseudo-)Riemannian spacetime** V_4 of General Relativity.
- ▶ If curvature additionally vanishes ($\mathring{R}^{\lambda}_{\rho\mu\nu}=0$) we find the **Minkowski spacetime** R_4 of Special Relativity.

► In a Riemann-Cartan spacetime the difference between the affine connection and the Levi-Civita connection defines the contortion tensor

$$K^{\lambda}{}_{\mu\nu} = \Gamma^{\lambda}{}_{\mu\nu} - \mathring{\Gamma}^{\lambda}{}_{\mu\nu}.$$

► In terms of the torsion tensor $T^{\lambda}{}_{\mu\nu} = \Gamma^{\lambda}{}_{\mu\nu} - \Gamma^{\lambda}{}_{\nu\mu}$ it is $\mathcal{K}^{\lambda}{}_{\mu\nu} = \frac{1}{2} \left(T^{\lambda}{}_{\mu\nu} - T_{\nu}{}^{\lambda}{}_{\mu} - T_{\mu\nu}{}^{\lambda} \right).$

- ▶ If torsion vanishes $(T^{\lambda}_{\mu\nu} = 0)$ we recover the **(pseudo-)Riemannian spacetime** V_4 of General Relativity.
- ▶ If curvature additionally vanishes $(\mathring{R}^{\lambda}{}_{\rho\mu\nu} = 0)$ we find the **Minkowski spacetime** R_4 of Special Relativity.

$$\Rightarrow$$

$$(L_4,g) \stackrel{Q=0}{\longrightarrow} U_4 \stackrel{T=0}{\longrightarrow} V_4 \stackrel{R=0}{\longrightarrow} R_4$$

GENERAL RELATIVITY

Teleparallel Gravity

► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold

Teleparallel Gravity

- The presence of a nontrivial tetrad e^a_μ(x) on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x)=\eta_{ab}e^a{}_{\mu}(x)e^b{}_{\nu}(x)$

TELEPARALLEL GRAVITY

- ► The presence of a nontrivial tetrad e^a_µ(x) on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ab}e^a{}_{\mu}(x)e^b{}_{\nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} \partial_{\rho} g_{\mu\nu} + \partial_{\mu} g_{\nu\rho})$

Teleparallel Gravity

- ► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ab}e^a{}_{\mu}(x)e^b{}_{\nu}(x)$
- \Rightarrow with the Levi-Civita connection

$$\mathring{\mathsf{\Gamma}}^{\lambda}_{\mu\nu}\!\!=\!\!\tfrac{1}{2}\mathsf{g}^{\lambda\rho}(\partial_{\nu}\mathsf{g}_{\rho\mu}\!\!-\!\!\partial_{\rho}\mathsf{g}_{\mu\nu}\!\!+\!\!\partial_{\mu}\mathsf{g}_{\nu\rho})$$

 \Rightarrow whose torsion is zero $\mathring{\Gamma}^{\lambda}{}_{\mu\nu} - \mathring{\Gamma}^{\lambda}{}_{\nu\mu} = 0$

Teleparallel Gravity

- ► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ab}e^a{}_{\mu}(x)e^b{}_{\nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} \partial_{\rho} g_{\mu\nu} + \partial_{\mu} g_{\nu\rho})$
- \Rightarrow whose torsion is zero $\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu} = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu}\!\!=\!\!\partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu}\!\!-\!\partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu}\!\!+\!\mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu}\!\!-\!\mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

- The presence of a nontrivial tetrad e^a_μ(x) on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ab}e^a{}_{\mu}(x)e^b{}_{\nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} \partial_{\rho} g_{\mu\nu} + \partial_{\mu} g_{\nu\rho})$
- \Rightarrow whose torsion is zero $\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu} = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu}\!\!=\!\!\partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu}\!\!-\!\partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu}\!\!+\!\mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu}\!\!-\!\mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold

- The presence of a nontrivial tetrad e^a_μ(x) on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x)=\eta_{ab}e^a{}_{\mu}(x)e^b{}_{\nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} \partial_{\rho} g_{\mu\nu} + \partial_{\mu} g_{\nu\rho})$
- \Rightarrow whose torsion is zero $\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu} = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu}\!\!=\!\!\partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu}\!\!-\!\partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu}\!\!+\!\mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu}\!\!-\!\mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

- ► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a parallel structure $\partial_{\mu}e_{a}{}^{\nu}(x) + \Gamma^{\nu}{}_{\lambda\mu}(x)e_{a}{}^{\lambda}(x) = 0$

- ► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ab}e^a{}_{\mu}(x)e^b{}_{\nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} \partial_{\rho} g_{\mu\nu} + \partial_{\mu} g_{\nu\rho})$
- \Rightarrow whose torsion is zero $\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu} = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu}\!\!=\!\!\partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu}\!\!-\!\partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu}\!\!+\!\mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu}\!\!-\!\mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

- ► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a parallel structure $\partial_{\mu}e_{a}{}^{\nu}(x) + \Gamma^{\nu}{}_{\lambda\mu}(x)e_{a}{}^{\lambda}(x) = 0$
- ⇒ with the Weitzenböck connection

$$\Gamma^{\nu}{}_{\lambda\mu} = e_{a}{}^{\nu}\partial_{\mu}e^{a}{}_{\lambda}$$

- ► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ab}e^a{}_{\mu}(x)e^b{}_{\nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} \partial_{\rho} g_{\mu\nu} + \partial_{\mu} g_{\nu\rho})$
- \Rightarrow whose torsion is zero $\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu} = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu} = \partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu} - \partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu} + \mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu} - \mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

- ► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a parallel structure $\partial_{\mu}e_{a}{}^{\nu}(x) + \Gamma^{\nu}{}_{\lambda\mu}(x)e_{a}{}^{\lambda}(x) = 0$
- ⇒ with the Weitzenböck connection

$$\Gamma^{\nu}{}_{\lambda\mu} = e_{a}{}^{\nu}\partial_{\mu}e^{a}{}_{\lambda}$$

 $\Rightarrow \text{ whose curvature is zero} \\ \partial_{\mu}\Gamma^{\lambda}_{\rho\nu}\!\!-\!\!\partial_{\nu}\Gamma^{\lambda}_{\rho\mu}\!\!+\!\!\Gamma^{\lambda}_{\sigma\mu}\Gamma^{\sigma}_{\rho\nu}\!\!-\!\!\Gamma^{\lambda}_{\sigma\nu}\Gamma^{\sigma}_{\rho\mu} = 0$

- ► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold
- ⇒ induces a metric structure $g_{\mu\nu}(x) = \eta_{ab}e^{a}_{\mu}(x)e^{b}_{\nu}(x)$
- ⇒ with the Levi-Civita connection $\ddot{\Gamma}_{\mu\nu}^{\lambda} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} - \partial_{\rho} g_{\mu\nu} + \partial_{\mu} g_{\nu\rho})$
- ⇒ whose torsion is zero $\mathring{\Gamma}^{\lambda}_{\mu\nu} - \mathring{\Gamma}^{\lambda}_{\nu\mu} = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu} = \partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu} - \partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu} + \mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu} - \mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

- ► The presence of a nontrivial tetrad $e^a_{\mu}(x)$ on the spacetime manifold
- ⇒ induces a parallel structure $\partial_{\mu}e_{a}^{\nu}(x) + \Gamma^{\nu}{}_{\lambda\mu}(x)e_{a}^{\lambda}(x) = 0$
- ⇒ with the Weitzenböck connection

$$\Gamma^{\nu}{}_{\lambda\mu} = e_{\mathsf{a}}{}^{\nu}\partial_{\mu}e^{\mathsf{a}}{}_{\lambda}$$

- ⇒ whose curvature is zero $\partial_{\mu}\Gamma^{\lambda}_{o\nu} - \partial_{\nu}\Gamma^{\lambda}_{o\mu} + \Gamma^{\lambda}_{\sigma\mu}\Gamma^{\sigma}_{o\nu} - \Gamma^{\lambda}_{\sigma\nu}\Gamma^{\sigma}_{o\mu} = 0$
- ⇒ and whose torsion is (in general) non-zero $T^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\mu\nu} - \Gamma^{\lambda}_{\nu\mu}$

TELEPARALLEL GRAVITY

GENERAL RELATIVITY

► Einstein-Hilbert lagrangian

$$\mathcal{L}=rac{e}{16\pi G}\mathring{R}$$

TELEPARALLEL GRAVITY

GENERAL RELATIVITY

► Einstein-Hilbert lagrangian

$$\mathcal{L} = \frac{e}{16\pi G} \mathring{R}$$

► (Spinless) test particles move along geodesics

$$rac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{
u} = 0$$

► Einstein-Hilbert lagrangian

$$\mathcal{L} = rac{e}{16\pi G} \mathring{R}$$

(Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

TELEPARALLEL GRAVITY

▶ In terms of Weitzenböck connection

$$\mathcal{L} = \frac{e}{16\pi G} T$$

$$T = \frac{1}{4} T^{\lambda \sigma \nu} T_{\lambda \sigma \nu} - T^{\lambda \sigma}{}_{\lambda} T^{\nu}{}_{\sigma \nu} + \frac{1}{2} T^{\lambda \nu \sigma} T_{\sigma \nu \lambda}$$

GENERAL RELATIVITY

► Einstein-Hilbert lagrangian

$$\mathcal{L} = \frac{e}{16\pi G} \mathring{R}$$

 (Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

TELEPARALLEL GRAVITY

▶ In terms of Weitzenböck connection

$$\mathcal{L} = \frac{e}{16\pi G} T$$

$$T = \frac{1}{4} T^{\lambda\sigma\nu} T_{\lambda\sigma\nu} - T^{\lambda\sigma}{}_{\lambda} T^{\nu}{}_{\sigma\nu} + \frac{1}{2} T^{\lambda\nu\sigma} T_{\sigma\nu\lambda}$$

► Autoparallels?

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

► Einstein-Hilbert lagrangian

$$\mathcal{L} = \frac{e}{16\pi G} \mathring{R}$$

 (Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

Teleparallel Gravity

► In terms of Weitzenböck connection

$$\mathcal{L} = \frac{e}{16\pi G} T$$

$$T = \frac{1}{4} T^{\lambda\sigma\nu} T_{\lambda\sigma\nu} - T^{\lambda\sigma}{}_{\lambda} T^{\nu}{}_{\sigma\nu} + \frac{1}{2} T^{\lambda\nu\sigma} T_{\sigma\nu\lambda}$$

► Autoparallels?

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu} u^{\mu} u^{\nu} = 0$$

Extremal curves?

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

► Einstein-Hilbert lagrangian

$$\mathcal{L} = rac{e}{16\pi G} \mathring{R}$$

(Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

TELEPARALLEL GRAVITY

▶ In terms of Weitzenböck connection

$$\mathcal{L} = \frac{e}{16\pi G} T$$

$$T = \frac{1}{4} T^{\lambda\sigma\nu} T_{\lambda\sigma\nu} - T^{\lambda\sigma}{}_{\lambda} T^{\nu}{}_{\sigma\nu} + \frac{1}{2} T^{\lambda\nu\sigma} T_{\sigma\nu\lambda}$$

$$I = \frac{1}{4}I^{NOT}I_{\lambda\sigma\nu} - I^{NOT}I_{\sigma\nu} + \frac{1}{2}I^{NOT}I_{\sigma\nu}$$

Autoparallels?

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu} u^{\mu} u^{\nu} = 0$$

► Extremal curves?

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

 \Rightarrow Force equation:

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu}u^{\mu}u^{\nu} = T_{\mu\lambda\nu}u^{\mu}u^{\nu}$$

GENERAL RELATIVITY

► Einstein-Hilbert lagrangian

$$\mathcal{L} = rac{e}{16\pi G} \mathring{R}$$

(Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

TELEPARALLEL GRAVITY

▶ In terms of Weitzenböck connection

$$\mathcal{L} = \frac{e}{16\pi G} T$$

$$T = \frac{1}{4} T^{\lambda\sigma\nu} T_{\lambda\sigma\nu} - T^{\lambda\sigma}{}_{\lambda} T^{\nu}{}_{\sigma\nu} + \frac{1}{2} T^{\lambda\nu\sigma} T_{\sigma\nu\lambda}$$

▶ Autoparallels?

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

► Extremal curves?

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

 \Rightarrow Force equation:

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu}u^{\mu}u^{\nu} = T_{\mu\lambda\nu}u^{\mu}u^{\nu}$$

$$\Rightarrow \frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu} u^{\mu} u^{\nu} = K_{\lambda\mu\nu} u^{\mu} u^{\nu}$$

Averaging Process in General Relativity

Parallel transport along geodesics $C_{xx'}$ realized by Wegner-Wilson line operator

$$V(x',x;\mathcal{C}_{\mathsf{x}\mathsf{x}'}) = \mathcal{P} \exp \left[- \int_{\mathcal{C}_{\mathsf{x}\mathsf{x}'}} dz^{\mu} \; \Gamma_{\mu}(z)
ight]$$

where $\Gamma_{\mu}(x)$ are four matrices with components $(\Gamma_{\mu}(x))^{\lambda}_{\nu} = \Gamma^{\lambda}_{\mu\nu}(x)$

Averaging Process in General Relativity

Parallel transport along geodesics $C_{xx'}$ realized by Wegner-Wilson line operator

$$V(x',x;\mathcal{C}_{\mathsf{x}\mathsf{x}'}) = \mathcal{P} \exp \left[- \int_{\mathcal{C}_{\mathsf{x}\mathsf{x}'}} dz^{\mu} \; \Gamma_{\mu}(z)
ight]$$

where $\Gamma_{\mu}(x)$ are four matrices with components $(\Gamma_{\mu}(x))^{\lambda}_{\nu} = \Gamma^{\lambda}_{\mu\nu}(x)$

$$\begin{split} \langle T^{\mu}{}_{\nu}\rangle(x) = \\ \frac{1}{V_{\Sigma}} \int_{\Sigma} V^{\mu}{}_{\mu'}(x,x';\mathcal{C}_{xx'}) \widehat{V}_{\nu}{}^{\nu'}(x,x';\mathcal{C}_{xx'}) T^{\mu'}{}_{\nu'}(x') \sqrt{-g(x')} d^4x' \end{split}$$

$$\langle T^{\mu}{}_{\nu} \rangle(x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^{4}x'$$

• where $e(x') = \det(e^a_{\mu}(x'))$

$$\langle T^{\mu}{}_{\nu} \rangle (x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^{4}x'$$

- where $e(x') = \det (e^a_{\mu}(x'))$
- ► Path independent parallel transporters $P^{\mu}_{\mu'}(x,x') = e_a^{\mu}(x)e^a_{\mu'}(x')$ and $P_{\nu}^{\nu'}(x,x') = e^a_{\nu}(x)e_a^{\nu'}(x')$

$$\langle T^{\mu}{}_{\nu} \rangle (x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^{4}x'$$

- where $e(x') = \det (e^a_{\mu}(x'))$
- ► Path independent parallel transporters $P^{\mu}_{\nu\nu'}(x,x') = e_a{}^{\mu}(x)e^a{}_{\nu\nu'}(x')$ and $P_{\nu}{}^{\nu'}(x,x') = e^a{}_{\nu}(x)e_a{}^{\nu'}(x')$
- ▶ Domain of averaging $V_{\Sigma} = \int_{\Sigma} e(x')d^4x'$

$$\langle T^{\mu}{}_{\nu} \rangle (x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^{4}x'$$

- where $e(x') = \det (e^a_{\mu}(x'))$
- ► Path independent parallel transporters $P^{\mu}_{\mu'}(x,x') = e_a^{\mu}(x)e^a_{\mu'}(x')$ and $P_{\nu}^{\nu'}(x,x') = e^a_{\nu}(x)e_a^{\nu'}(x')$
- ▶ Domain of averaging $V_{\Sigma} = \int_{\Sigma} e(x')d^4x'$
- ▶ Problem: The average depends on the chosen tetrad field and is not invariant under local Lorentz transformations!

$$\langle T^{\mu}{}_{\nu} \rangle(x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^{4}x'$$

- where $e(x') = \det (e^a_{\mu}(x'))$
- ► Path independent parallel transporters $P^{\mu}_{\mu'}(x,x') = e_a^{\mu}(x)e^a_{\mu'}(x')$ and $P_{\nu}^{\nu'}(x,x') = e^a_{\nu}(x)e_a^{\nu'}(x')$
- ▶ Domain of averaging $V_{\Sigma} = \int_{\Sigma} e(x')d^4x'$
- ▶ Problem: The average depends on the chosen tetrad field and is not invariant under local Lorentz transformations!
- ▶ Problem: The metric is invariant under both averaging processes!

Hehl, von der Heyde, Kerlick, and Nester:

► Lagrangian invariant under Poincaré gauge transformations

$$\mathcal{L} = \frac{\sqrt{-g}}{16\pi G}R + \mathcal{L}_m(\Psi, \partial \Psi, g, \partial g, T)$$

Hehl, von der Heyde, Kerlick, and Nester:

► Lagrangian invariant under Poincaré gauge transformations

$$\mathcal{L} = \frac{\sqrt{-g}}{16\pi G}R + \mathcal{L}_m(\Psi, \partial \Psi, g, \partial g, T)$$

► Metric energy-momentum tensor $\sigma^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta \mathcal{L}_m}{\delta g_{\mu\nu}}$ and spin energy potential $\mu^{\nu}{}_{\lambda}{}^{\mu} = \frac{2}{\sqrt{-g}} \frac{\delta \mathcal{L}_m}{\delta T^{\lambda}{}_{\mu\nu}}$

Hehl, von der Heyde, Kerlick, and Nester:

► Lagrangian invariant under Poincaré gauge transformations

$$\mathcal{L} = \frac{\sqrt{-g}}{16\pi G}R + \mathcal{L}_m(\Psi, \partial \Psi, g, \partial g, T)$$

- Metric energy-momentum tensor $\sigma^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta \mathcal{L}_m}{\delta g_{\mu\nu}}$ and spin energy potential $\mu^{\nu}{}_{\lambda}{}^{\mu} = \frac{2}{\sqrt{-g}} \frac{\delta \mathcal{L}_m}{\delta T^{\lambda}{}_{\mu\nu}}$
- ► Spin angular momentum tensor $\tau^{\nu}_{\ \lambda}{}^{\mu} = \frac{2}{\sqrt{-g}} \frac{\delta \mathcal{L}_m}{\delta K^{\lambda}_{\mu\nu}}$ and total energy-momentum tensor $\Sigma_{a}{}^{\mu} = \frac{\delta \mathcal{L}_m}{\delta e^a_{\ \mu}}$

Hehl, von der Heyde, Kerlick, and Nester:

► Lagrangian invariant under Poincaré gauge transformations

$$\mathcal{L} = \frac{\sqrt{-g}}{16\pi G}R + \mathcal{L}_m(\Psi, \partial \Psi, g, \partial g, T)$$

- Metric energy-momentum tensor $\sigma^{\mu\nu} = \frac{2}{\sqrt{-\sigma}} \frac{\delta \mathcal{L}_m}{\delta \sigma_{\mu\nu}}$ and spin energy potential $\mu^{\nu}_{\lambda}{}^{\mu} = \frac{2}{\sqrt{-g}} \frac{\delta \mathcal{L}_m}{\delta T^{\lambda}_{\mu\nu}}$
- ► Spin angular momentum tensor $\tau^{\nu}_{\ \lambda}{}^{\mu} = \frac{2}{\sqrt{-g}} \frac{\delta \mathcal{L}_m}{\delta K^{\lambda} ...}$ and total energy-momentum tensor $\sum_{a}^{\mu} = \frac{\delta \mathcal{L}_{m}}{\delta e^{a}}$
- ► They are related according to

$$\mu^{\nu\lambda\mu}=\frac{1}{2}\left(\tau^{\nu\lambda\mu}-\tau^{\lambda\mu\nu}+\tau^{\mu\nu\lambda}\right)$$

and

$$\Sigma^{\mu\nu} = \sigma^{\mu\nu} + (\nabla_{\lambda} - T^{\rho}{}_{\lambda\rho})\mu^{\mu\nu\lambda}$$

► Matter equation

$$\frac{\delta \mathcal{L}_m}{\delta \Psi} = 0$$

► Matter equation

$$\frac{\delta \mathcal{L}_m}{\delta \Psi} = 0$$

▶ 1st field equation

$$G^{\mu\nu} = R^{\mu\nu} - \frac{1}{2}Rg^{\mu\nu} = 8\pi G\Sigma^{\mu\nu}$$

► Matter equation

$$\frac{\delta \mathcal{L}_m}{\delta \Psi} = 0$$

▶ 1st field equation

$$G^{\mu
u}=R^{\mu
u}-rac{1}{2}Rg^{\mu
u}=8\pi G\Sigma^{\mu
u}$$

▶ 2nd field equation

$$T^{\lambda}{}_{\mu\nu} - \delta^{\lambda}_{\nu} T^{\rho}{}_{\mu\rho} + \delta^{\lambda}_{\mu} T^{\rho}{}_{\nu\rho} = 8\pi G \tau^{\lambda}{}_{\mu\nu}$$

► Matter equation

$$\frac{\delta \mathcal{L}_m}{\delta \Psi} = 0$$

▶ 1st field equation

$$G^{\mu
u} = R^{\mu
u} - rac{1}{2} R g^{\mu
u} = 8 \pi G \Sigma^{\mu
u}$$

▶ 2nd field equation

$$T^{\lambda}{}_{\mu\nu} - \delta^{\lambda}_{\nu} T^{\rho}{}_{\mu\rho} + \delta^{\lambda}_{\mu} T^{\rho}{}_{\nu\rho} = 8\pi G \tau^{\lambda}{}_{\mu\nu}$$

⇒ Combined field equation

$$\mathring{R}^{\mu\nu} - \frac{1}{2}\mathring{R}g^{\mu\nu}
= 8\pi G \sigma^{\mu\nu} + \frac{(8\pi G)^2}{4} \left(-2\tau_{\lambda}{}^{\mu\rho}\tau_{\rho}{}^{\nu\lambda} + 2\tau^{\lambda\mu}{}_{\lambda}\tau^{\rho\nu}{}_{\rho} - 2\tau^{\lambda\mu\rho}\tau_{\lambda}{}^{\nu}{}_{\rho} \right)
+ \tau^{\mu\rho\lambda}\tau^{\nu}{}_{\rho\lambda} + \frac{1}{2}g^{\mu\nu} \left(2\tau_{\lambda\rho}{}^{\sigma}\tau_{\sigma}{}^{\rho\lambda} - 2\tau^{\lambda}{}_{\rho\lambda}\tau^{\sigma\rho}{}_{\sigma} + \tau^{\lambda\sigma\rho}\tau_{\lambda\sigma\rho} \right) \right)$$

Szekeres:

► Maxwell equations

$$F_{\mu\nu}^{,\nu} = \frac{4\pi}{c} j_{\mu}$$

Szekeres:

► Maxwell equations

$$F_{\mu
u}^{,
u} = rac{4\pi}{c}j_{\mu}$$

▶ In macroscopic media the average current has the structure

$$\langle j^{\mu}
angle = J^{\mu} - c P^{\mu
u}_{,
u}$$

Szekeres:

► Maxwell equations

$$F_{\mu
u}^{,
u} = rac{4\pi}{c} j_{\mu}$$

▶ In macroscopic media the average current has the structure

$$\langle j^{\mu} \rangle = J^{\mu} - cP^{\mu\nu}_{,\nu}$$

 J_{μ} : average "free" current and $P^{\mu\nu}$: polarization tensor

Szekeres:

► Maxwell equations

$$F_{\mu\nu}^{,\nu}=\frac{4\pi}{c}j_{\mu}$$

► In macroscopic media the average current has the structure

$$\langle j^{\mu} \rangle = J^{\mu} - cP^{\mu\nu}_{,\nu}$$

 J_{μ} : average "free" current and $P^{\mu\nu}$: polarization tensor In a Lorentz frame it has the components

$$P_{ii} = -\epsilon_{iik}M_k$$
 $P_{i0} = -P_{0i} = P_i$

with the magnetization M and polarization or average dipole moment P of the molecules

Szekeres:

► Maxwell equations

$$F_{\mu\nu}^{,\nu} = \frac{4\pi}{c} j_{\mu}$$

► In macroscopic media the average current has the structure

$$\langle j^{\mu} \rangle = J^{\mu} - cP^{\mu\nu}_{,\nu}$$

 J_{μ} : average "free" current and $P^{\mu\nu}$: polarization tensor In a Lorentz frame it has the components

$$P_{ii} = -\epsilon_{iik}M_k$$
 $P_{i0} = -P_{0i} = P_i$

with the magnetization M and polarization or average dipole moment P of the molecules

► Average of Maxwell equations

$$\langle F^{\mu\nu}\rangle_{,\nu}=\frac{4\pi}{c}\left(J^{\mu}-cP^{\mu\nu}_{,\nu}\right)$$

Szekeres:

► Maxwell equations

$$F_{\mu\nu}^{,\nu} = \frac{4\pi}{c} j_{\mu}$$

► In macroscopic media the average current has the structure

$$\langle j^{\mu} \rangle = J^{\mu} - cP^{\mu\nu}_{,\nu}$$

 J_{μ} : average "free" current and $P^{\mu\nu}$: polarization tensor In a Lorentz frame it has the components

$$P_{ii} = -\epsilon_{iik}M_k$$
 $P_{i0} = -P_{0i} = P_i$

with the magnetization M and polarization or average dipole moment P of the molecules

► Average of Maxwell equations

$$\langle F^{\mu\nu} \rangle_{,\nu} = \frac{4\pi}{c} \left(J^{\mu} - c P^{\mu\nu}_{,\nu} \right)$$

⇒ Macroscopic equations

$$H^{\mu\nu}_{,\nu}=rac{4\pi}{c}J^{\mu}$$
 with $H^{\mu\nu}=\langle F^{\mu\nu}
angle +4\pi P^{\mu
u}$

$$C_{\mu\nu\rho\sigma}{}^{;\sigma}=\kappa J_{\mu\nu\rho}$$
 with $C_{\mu\nu\rho\sigma}$: Weyl tensor and $J_{\mu\nu\rho}=-\left(T_{\rho[\mu;\nu]}-\frac{1}{3}g_{\rho[\mu}T_{,\nu]}\right)$

$$C_{\mu\nu\rho\sigma}{}^{;\sigma}=\kappa J_{\mu\nu\rho}$$
 with $C_{\mu\nu\rho\sigma}$: Weyl tensor and $J_{\mu\nu\rho}=-\left(T_{\rho[\mu;\nu]}-\frac{1}{3}g_{\rho[\mu}T_{,\nu]}\right)$

Multipole expansion of the source

$$\langle T_{\mu\nu} \rangle = T_{\mu\nu} - D_{\mu\nu\rho}^{,\rho} + \frac{1}{2} Q_{\mu\rho\nu\sigma}^{,\rho\sigma} = T_{\mu\nu} + \frac{1}{2} Q'_{\mu\rho\nu\sigma}^{,\rho\sigma}$$

$$C_{\mu\nu\rho\sigma}{}^{;\sigma}=\kappa J_{\mu\nu\rho}$$
 with $C_{\mu\nu\rho\sigma}$: Weyl tensor and $J_{\mu\nu\rho}=-\left(T_{\rho[\mu;\nu]}-\frac{1}{3}g_{\rho[\mu}T_{,\nu]}\right)$

Multipole expansion of the source

$$\langle T_{\mu\nu}\rangle = T_{\mu\nu} - D_{\mu\nu\rho}^{,\rho} + \frac{1}{2}Q_{\mu\rho\nu\sigma}^{,\rho\sigma} = T_{\mu\nu} + \frac{1}{2}Q'_{\mu\rho\nu\sigma}^{,\rho\sigma}$$

Average matter current

$$\langle J_{\mu\nu\rho}\rangle = -\left\langle T_{\rho[\mu}\right\rangle_{,\nu]} + \frac{1}{3}\left\langle T\right\rangle_{,[\nu}\eta_{\mu]\rho}$$

Einstein equations in Jordan's form

$$C_{\mu\nu\rho\sigma}{}^{;\sigma}=\kappa J_{\mu\nu\rho}$$
 with $C_{\mu\nu\rho\sigma}$: Weyl tensor and $J_{\mu\nu\rho}=-\left(T_{\rho[\mu;\nu]}-\frac{1}{3}g_{\rho[\mu}T_{,\nu]}\right)$

Multipole expansion of the source

$$\langle T_{\mu\nu} \rangle = T_{\mu\nu} - D_{\mu\nu\rho}^{,\rho} + \frac{1}{2} Q_{\mu\rho\nu\sigma}^{,\rho\sigma} = T_{\mu\nu} + \frac{1}{2} Q'_{\mu\rho\nu\sigma}^{,\rho\sigma}$$

Average matter current

$$\langle J_{\mu\nu\rho}\rangle = -\left\langle T_{\rho[\mu}\right\rangle_{,\nu]} + \frac{1}{3}\left\langle T\right\rangle_{,[\nu}\eta_{\mu]\rho}$$

Average Einstein equations

$$\langle C_{\mu\nu\rho\sigma} \rangle^{,\sigma} = \kappa \langle J_{\mu\nu\rho} \rangle$$

► Einstein equations in Jordan's form

$$C_{\mu\nu\rho\sigma}{}^{;\sigma}=\kappa J_{\mu\nu\rho}$$
 with $C_{\mu\nu\rho\sigma}$: Weyl tensor and $J_{\mu\nu\rho}=-\left(T_{\rho[\mu;\nu]}-\frac{1}{3}g_{\rho[\mu}T_{,\nu]}\right)$

► Multipole expansion of the source

$$\langle T_{\mu\nu} \rangle = T_{\mu\nu} - D_{\mu\nu\rho}^{,\rho} + \frac{1}{2} Q_{\mu\rho\nu\sigma}^{,\rho\sigma} = T_{\mu\nu} + \frac{1}{2} Q'_{\mu\rho\nu\sigma}^{,\rho\sigma}$$

Average matter current

$$\langle J_{\mu\nu\rho}\rangle = -\left\langle T_{\rho[\mu}\right\rangle_{,\nu]} + \frac{1}{3}\left\langle T\right\rangle_{,[\nu}\eta_{\mu]\rho}$$

► Average Einstein equations

$$\langle C_{\mu\nu\rho\sigma} \rangle^{,\sigma} = \kappa \langle J_{\mu\nu\rho} \rangle$$

⇒ Macroscopic equations

$$E_{\mu\nu\rho\sigma}^{,\sigma} = \kappa J_{\mu\nu\rho}$$
 with $E_{\mu\nu\rho\sigma} = \langle C_{\mu\nu\rho\sigma} \rangle - \kappa P_{\mu\nu\rho\sigma}$ with the polarization tensor

$$P_{\mu\nu\rho\sigma} = \frac{1}{2} \left(-Q'_{\rho\sigma\epsilon[\mu}{}^{,\epsilon} - \frac{1}{3} \eta_{\rho[\mu} Q'^{\gamma}{}_{\sigma\gamma\epsilon}{}^{,\epsilon} \right)_{,\nu]}$$

Constructing a macroscopic theory of gravity for a corpuscular medium along the lines of classical electromagnetism leads naturally to an Einstein-Cartan theory!

Constructing a macroscopic theory of gravity for a corpuscular medium along the lines of classical electromagnetism leads naturally to an Einstein-Cartan theory!

► Determine the torsion tensor from the averaged quadrupole moment density

Constructing a macroscopic theory of gravity for a corpuscular medium along the lines of classical electromagnetism leads naturally to an Einstein-Cartan theory!

- ► Determine the torsion tensor from the averaged quadrupole moment density
- ► Find constitutive equations comparable with the electromagnetic ones

Constructing a macroscopic theory of gravity for a corpuscular medium along the lines of classical electromagnetism leads naturally to an Einstein-Cartan theory!

- ► Determine the torsion tensor from the averaged quadrupole moment density
- Find constitutive equations comparable with the electromagnetic ones
- ► Determine cosmological implications of the formalism

Constructing a macroscopic theory of gravity for a corpuscular medium along the lines of classical electromagnetism leads naturally to an Einstein-Cartan theory!

- ► Determine the torsion tensor from the averaged quadrupole moment density
- ► Find constitutive equations comparable with the electromagnetic ones
- ► Determine cosmological implications of the formalism
- ► Generalize formalism to more general metrics