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The Averaging Problem of General Relativity

» Standard Cosmology based on

Gul/(<gul/>) =8rG <T/W> +A <g;w>
» Einstein equations are nonlinear

<Guu(gw)> # GW((@’W))

= We are using the wrong metric to describe the universe!

» Correct equations

<G;w(g;u/)> =8rG <T;W> +A <g;w>
for some average (A) in a domain D

= Modifications can in principle act as a dark energy
Guv((gu)) = 8mG (Tpuw) + 8rGTE, + A (guv)
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» Let spacetime be a four-dimensional differentiable manifold.

» Parallely displaced from x* to x* + dx* a vector V* changes
according to
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= The manifold is a linearly connected space L,.

» Let there be a metric tensor field g, (x) which allows local
measurements of distances and angles

ds? = g, (x)dxHdx”.
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» Let this interval be invariant to ensure local Minkowskian
structure.
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Riemann-Cartan Spacetime

» Let spacetime be a four-dimensional differentiable manifold.
» Parallely displaced from x* to x* + dx* a vector V* changes
according to
dv> = —F>‘W VHdx".

= The manifold is a linearly connected space L,.

» Let there be a metric tensor field g, (x) which allows local
measurements of distances and angles
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» Let this interval be invariant to ensure local Minkowskian
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Riemann-Cartan Spacetime

» Let spacetime be a four-dimensional differentiable manifold.

» Parallely displaced from x* to x* + dx* a vector V* changes
according to

dvA = —FAW VHEdxY.
= The manifold is a linearly connected space L,.

» Let there be a metric tensor field g, (x) which allows local
measurements of distances and angles

ds? = g, (x)dxHdx”.

» Let this interval be invariant to ensure local Minkowskian
structure.
= Nonmetricity is zero
Q)\plz = 8)\guu - rp,u)\gpl/ - rpu)\gup =0.

= Such a manifold is called a Riemann-Cartan spacetime Us,.
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» In a Riemann-Cartan spacetime the difference between the
affine connection and the Levi-Civita connection defines the
contortion tensor

KA =T — T



The Averaging Problem  Teleparallel Gravity ~Averaging Process  Einstein-Cartan Theory  Gravitation in Macroscopic Media

» In a Riemann-Cartan spacetime the difference between the
affine connection and the Levi-Civita connection defines the
contortion tensor

KA =T — T
» In terms of the torsion tensor T*,, =T*,, — T, itis
A _1(TA A A
K /w—i(T W_TV M_Tl“’ )



The Averaging Problem  Teleparallel Gravity ~Averaging Process  Einstein-Cartan Theory  Gravitation in Macroscopic Media

» In a Riemann-Cartan spacetime the difference between the
affine connection and the Levi-Civita connection defines the
contortion tensor

KA =T — T
» In terms of the torsion tensor T*,, =T*,, — T, itis
A _1(TA A A
K /w—i(T W_TV u_TW )

» If torsion vanishes (T’\W = 0) we recover the
(pseudo-)Riemannian spacetime V; of General Relativity.



In a Riemann-Cartan spacetime the difference between the
affine connection and the Levi-Civita connection defines the
contortion tensor

KA =T — T
In terms of the torsion tensor T, =T, — T, itis
A _1(TA A A
K /w—i(T W_TV u_TW )

If torsion vanishes (T’\W = 0) we recover the

(pseudo-)Riemannian spacetime V; of General Relativity.

°

If curvature additionally vanishes (R*,,, = 0) we find the
Minkowski spacetime R, of Special Relativity.
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In a Riemann-Cartan spacetime the difference between the
affine connection and the Levi-Civita connection defines the
contortion tensor

KA =T — T
In terms of the torsion tensor T, =T, — T, itis
A _1(TA A A
K /w—i(T W_TV u_TW )

If torsion vanishes (T*,, = 0) we recover the
(pseudo-)Riemannian spacetime V; of General Relativity.

°

If curvature additionally vanishes (R*,,, = 0) we find the
Minkowski spacetime R, of Special Relativity.
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tetrad e?,(x) on the spacetime
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induces a metric structure
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The presence of a nontrivial
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manifold
induces a metric structure
v (x) = Nabe®u(x)eb, (x)
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TELEPARALLEL GRAVITY

» The presence of a nontrivial
tetrad e?,(x) on the spacetime
manifold

= induces a parallel structure

oues” (x) + F”,\M(x)eaA(x) =0

= with the Weitzenbock

connection
F”Au = ea”auea,\

= whose curvature is zero

A A A A —
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= and whose torsion is

(in general) non-zero
A A A
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> (Spinless) test particles

move along geodesics

du =
&~ Twwuhu” =0
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» In terms of Weitzenbock connection
L=1—0cT
T=1T2VT,  TA7 T A 3TN0, )
» Autoparallels?
% —lpwutu” =0
» Extremal curves?

du i
o Fute =0
= Force equation:
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= % — Cwutu” = Kyutu”
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Averaging Process in General Relativity

Parallel transport along geodesics C,
realized by Wegner-Wilson line operator

V(X' x;Coo) =Pexp [ — [ dz' T,(2)]

where I',(x) are four matrices with
components (I',(x))) = 7, (x)
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Averaging Process in General Relativity

Parallel transport along geodesics C,
realized by Wegner-Wilson line operator

V(X' x;Coo) =Pexp [ — [ dz' T,(2)]

where I',(x) are four matrices with
components (I',(x))) = 7, (x)

(TH)(x) =
L [ VA (X3 Coa) V¥ (%, X5 Coo) TH 1 (x)/— 8 (X)X
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Averaging Process in Teleparallel Gravity
e

(Tr)(x) = v Jg PPu(X)PY (6, X ) TH (X )e(x) d*X

» where e(x’) = det (e?,(x"))
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Averaging Process in Teleparallel Gravity

(TR (x) = g2 J5 P (6 X)PY (6, X ) TH i (X )e(x ) d* X

» where e(x’) = det (e?,(x"))
» Path independent parallel transporters

PH,(x,x") = es#(x)e? v (x") and P Y (x, X)) = €?,(x)e)” (x)
» Domain of averaging Vs = [ e(x)d*x’/

» Problem: The average depends on the chosen tetrad field and
is not invariant under local Lorentz transformations!
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Averaging Process in Teleparallel Gravity

(TR (x) = g2 J5 P (6 X)PY (6, X ) TH i (X )e(x ) d* X

» where e(x’) = det (e?,(x"))
» Path independent parallel transporters

PH,(x,x") = es#(x)e? v (x") and P Y (x, X)) = €?,(x)e)” (x)
» Domain of averaging Vs = [ e(x)d*x’/

» Problem: The average depends on the chosen tetrad field and
is not invariant under local Lorentz transformations!

» Problem: The metric is invariant under both averaging
processes!
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L=156R+Lm(V,0V,8.08,T)

10/14



The Averaging Problem  Teleparallel Gravity ~Averaging Process Einstein-Cartan Theory  Gravitation in Macroscopic Media

Einstein-Cartan Theory

Hehl, von der Heyde, Kerlick, and Nester:

» Lagrangian invariant under Poincaré gauge transformations
L=ER+Ln(V,0V,g,08,T)
» Metric energy-momentum tensor o*” = F?ZZ
and spin energy potential " \* = \/276T)‘
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Einstein-Cartan Theory

Hehl, von der Heyde, Kerlick, and Nester:

» Lagrangian invariant under Poincaré gauge transformations
L= 3R+ Ln(V,0V.8.08, T)

> . _ py _— 2 OLm
Metric energy-momentum tensor o F(Sgw
B
and spin energy potential p" r(?T*
» Spin angular momentum tensor 77 \# = —2— Skm_
P g A /762;;(/\#”

and total energy-momentum tensor > ,* = senn
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Einstein-Cartan Theory

Hehl, von der Heyde, Kerlick, and Nester:

>

Lagrangian invariant under Poincaré gauge transformations

L=LER+L,(V,0V, g 0g T)

167G
Metri nr—mmnmnr‘“’—z‘m’"
etric energy-momentum tensor o F(Sgw

and spin energy potential " \* = \ﬁ&T*W

H vop o _2 0Lm
Spin angular momentum tensor 7% = iR

and total energy-momentum tensor > ,* = geﬁam

They are related according to
My)\u — % (TV)\M _ T)\uu + Tul/)\)

and
S = g (V) — Ty )
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Field Equations

» Matter equation
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Field Equations

» Matter equation

SLm _
5o =0

» 1st field equation
G" = RM — %Rg’“’ =8rGLM
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» 1st field equation
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» 2nd field equation
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Field Equations

» Matter equation

Lm _
s =0

» 1st field equation
GH = RW — %Rg/“’ =8rGLM
» 2nd field equation
T =00 TPy + 03 TP, =81GT Y,

= Combined field equation
R — Lign

81 G)?
=81 Got + %(—QTXU‘PTPVA + 2T>\M>\7.pl/p _ 27_>\,u,p7_)\1/p

A 1 A A A
T o i Ey T = 2 T e A T )
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Gravitation in Macroscopic Media

Szekeres:
» Maxwell equations

7”—4_‘".
Fr” = “Fiu
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Gravitation in Macroscopic Media

Szekeres:

» Maxwell equations
14

W = 4i [
Fl“’ = cJu
» In macroscopic media the average current has the structure

(i) = J# — cPm ,
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» In macroscopic media the average current has the structure
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In a Lorentz frame it has the components
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with the magnetization M and polarization or average dipole
moment P of the molecules
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Gravitation in Macroscopic Media

Szekeres:

» Maxwell equations
K f— 4i /
Fl“’ Y= cJu
» In macroscopic media the average current has the structure
gty = It —cPH ,
J,: average "free” current and P#V: polarization tensor
In a Lorentz frame it has the components
Pij = —€jje My Pio = —Poi = P;
with the magnetization M and polarization or average dipole
moment P of the molecules

» Average of Maxwell equations
(Fv), = %2 (= P

12 /14



The Averaging Problem  Teleparallel Gravity ~ Averaging Process Einstein-Cartan Theory  Gravitation in Macroscopic Media

Gravitation in Macroscopic Media

Szekeres:

» Maxwell equations

v

Fu” = 4%1-#
» In macroscopic media the average current has the structure
gty = It —cPH ,
J,: average "free” current and P#V: polarization tensor
In a Lorentz frame it has the components
Pij = —€jje My Pio = —Poi = P;
with the magnetization M and polarization or average dipole
moment P of the molecules
» Average of Maxwell equations
(Fr), =42 (1" = P,
= Macroscopic equations
HH = %J“ with HH* = (FH) + 4r PHY

)

12 /14



» Einstein equations in Jordan’s form
Cuvpe” = Kdup
with Cyppo: Weyl tensor and J,,, = — (Tp[m,,] — %gp[ﬂ 7'7,,])
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» Einstein equations in Jordan’s form
Cuvpe” = Kdup
with Cyppo: Weyl tensor and J,,, = — (TP[W,] — %gp[u fy])
» Multipole expansion of the source

1 1
(Tuv) = Tuw = Duwp” + 3 Qupve ™ = Ty + 5 Qupwo™
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Einstein equations in Jordan's form
Cuvpe” = Kdup
with Cyppo: Weyl tensor and J,,, = — (Tp[u;y] - %gp[u fy])
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Multipole expansion of the source
(Tww) = Ty — Duwp” + %Qupvo’pa =Tw+ %Q,Mwa’pa
» Average matter current
_ 1
(Juvp) = — <Tp[u>,y] +3 <T>,[u Mulp
Average Einstein equations
(Cuvpo)” = K (Juvp)
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Einstein equations in Jordan's form
Cuvpe” = Kdup
with Cyppo: Weyl tensor and J,,, = — (Tp[u;y] — %gp[u fy])
Multipole expansion of the source
(Tww) = Ty — Duwp” + %Qupvo’pa =Tw+ %Qlupva’pa

Average matter current

_ 1

(Juwp) = — <Tp[u>,y] +3 <T>,[u P

Average Einstein equations

(Cuvpo)” = K (Juvp)
Macroscopic equations

Epvpo® = Kdpvp With Epwpe = (Cuupo) — £Puupo

with the polarization tensor

1 1
Puvpe = 3 (_Q/me[u’E - 577/)[#0/7”5’6),1/]
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Conclusions and Outlook

Constructing a macroscopic theory of gravity for a corpuscular
medium along the lines of classical electromagnetism leads
naturally to an Einstein-Cartan theory!
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Conclusions and Outlook

Constructing a macroscopic theory of gravity for a corpuscular
medium along the lines of classical electromagnetism leads
naturally to an Einstein-Cartan theory!

» Determine the torsion tensor from the averaged quadrupole
moment density

» Find constitutive equations comparable with the
electromagnetic ones

» Determine cosmological implications of the formalism

» Generalize formalism to more general metrics
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