The Apparent Universe

Alexis HELOU

APC - AstroParticule et Cosmologie, Paris, France

alexis.helou@apc.univ-paris7.fr

11th June 2014
This presentation is based on a work by P. Binétruy & A. Helou:
The Apparent Universe,
arXiv:1406.1658 [gr-qc].
Usual depiction of Black Hole is the Schwarzschild one: static.
Resemblance with static de Sitter Universe: a mere analogy.
But: black holes accrete matter, and evaporate by Hawking Radiation → highly dynamical objects!
We present a formalism for dynamical black holes, and show it applies perfectly to our cosmological horizon.
Overview

1. Apparent Horizon versus Event Horizon
2. Dynamical Black Holes & Friedmann Cosmology
3. Dynamics at the horizon
4. Hawking Radiation at the horizon
5. Conclusions
Overview

1. Apparent Horizon versus Event Horizon
2. Dynamical Black Holes & Friedmann Cosmology
3. Dynamics at the horizon
4. Hawking Radiation at the horizon
5. Conclusions
Apparent Horizon versus Event Horizon

- Analogy between de Sitter Universe and Schwarzschild black hole noticed in the literature:
- → Schwarzschild metric:

\[ds^2 = \left(1 - \frac{R_S}{r}\right) dt^2 - \left(1 - \frac{R_S}{r}\right)^{-1} dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

- → de Sitter static metric:

\[ds^2 = \left(1 - \frac{r^2}{R_H^2}\right) dt^2 - \left(1 - \frac{r^2}{R_H^2}\right)^{-1} dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

- Traditional definition of a black hole:

\[\mathcal{B} = \mathcal{M} - l^- (\mathcal{I}^+) \] \hspace{1cm} (1)

- Traditional definition of an event horizon:

\[\mathcal{H} = \partial \mathcal{B} \] \hspace{1cm} (2)

Alexis HELOU
ITP Heidelberg, 11th June 2014
Apparent Horizon versus Event Horizon

Static Black Hole

Event Horizon

Singularity

\mathcal{I}^+

\mathcal{I}^-

$r=0$
Apparent Horizon versus Event Horizon

Safe photon trajectory

Safe matter trajectory

singularity

\mathcal{I}^-

\mathcal{I}^+

$r=0$
Apparent Horizon versus Event Horizon

Deadly photon trajectory

Deadly matter trajectory

Singularity
At each point of a Penrose diagram, there are 4 null directions: future/past, outer/inner.

The 4 null directions

- Expansion of bundle of light rays, \(\theta \) (enters Raychaudhuri equation).
Apparent Horizon versus Event Horizon

Normal Surface

(Hayward, 2005)

Ingoing light-rays converge

\[\theta_{\text{in}} \leq 0 \, . \]

Outgoing light-rays diverge

\[\theta_{\text{out}} \geq 0 \, . \]

Trapped Surface

(Hayward, 2005)

Ingoing light-rays converge

\[\theta_{\text{in}} \leq 0 \, . \]

Outgoing light-rays converge

\[\theta_{\text{out}} \leq 0 \, . \]
Ingoing light-rays converge
\(\theta_{in} \leq 0 \).
Outgoing light-rays diverge
\(\theta_{out} \geq 0 \).

The Apparent Horizon
is the boundary between the two regions \((\theta = 0) \).
Apparent Horizon versus Event Horizon

Static Black Hole

Event Horizon

(Apparent Horizon (Hayward, 2005)

Dynamical Black Hole

Singularity

(http://backreaction.blogspot.fr)
Apparent Horizon versus Event Horizon

Static de Sitter

Event Horizon

(Davis, Lineweaver, 2003)

(Davis, Lineweaver, 2003)

Apparent Horizon

(Anous, Freedman, Maloney, 2014)

Dynamical FLRW
Example in the flat case (k=0): the apparent horizon is just the Hubble Sphere ($R_A = H^{-1}$).

Inside: $v_{\text{rec}} \leq c$.

Outside: $v_{\text{rec}} \geq c$.

(Davis, Lineweaver, 2003)
Overview

1. Apparent Horizon versus Event Horizon

2. Dynamical Black Holes & Friedmann Cosmology

3. Dynamics at the horizon

4. Hawking Radiation at the horizon

5. Conclusions
How to describe a dynamical black hole?

Hayward’s Machinery

- Spherical Symmetry: $ds^2 = \gamma_{ij}(x)dx^i dx^j + R^2(x)d\Omega^2$.
- Misner-Sharp energy:

$$E(R) \equiv \frac{R}{2G} (1 - \nabla^a R \nabla_a R) .$$ \hspace{1cm} (3)

Why Misner-Sharp energy?

\rightarrow A sphere is trapped/marginal/normal

 if $\nabla^a R$ is timelike/null/spacelike.

\rightarrow Thus on the Apparent Horizon: $E(R_A) = \frac{R_A}{2G}$.

This is reminiscent of the Schwarzschild Radius!

\rightarrow Gravitational energy
Dynamical Black Holes

Static spacetimes: Killing field

- Symmetries are encoded in the Killing vector fields ξ^a:

 \[\nabla_a \xi_b + \nabla_b \xi_a = 0 \ . \quad (4) \]

 In particular, time-translational symmetry (for static spacetimes).

- From that we define the quantity κ, the surface gravity:

 \[\xi^a (\nabla_a \xi_b - \nabla_b \xi_a) = 2\kappa \xi_b \ , \quad (5) \]

 It is this quantity that enters into the exponential and gives a thermal form to the probability distribution.

\rightarrow Hawking Radiation & Temperature: $T = \frac{\kappa}{2\pi}$.
Dynamical spacetimes: Kodama field

- If no time-translational Killing field, we can still define a Kodama field K^a:
 \[K^a \equiv \epsilon^{ab}_{\perp} \nabla_b R , \]
 which gives a preferred time direction.

- Killing’s Equation is no more satisfied:
 \[K^a (\nabla_a K_b + \nabla_b K_a) = 8\pi GR \psi_b \neq 0 . \]
 \rightarrow energy-supply vector ψ_b characterizes the departure of the Kodama from being a Killing.
 \rightarrow ψ_b is built on the energy-momentum tensor.

- Surface gravity (to compute the Hawking Temperature):
 \[K^a (\nabla_a K_b - \nabla_b K_a) = 2\kappa \nabla_b R \]
 \[\neq 2\kappa K_b . \]
Dynamical Black Holes

Unified First Law

- Hayward’s Unified First Law:

\[\nabla_a E = A \psi_a + \omega \nabla_a V. \tag{10} \]

\((A = 4\pi R^2, V = \frac{4}{3} \pi R^3, \omega \equiv -\frac{1}{2} T^{ij} \gamma_{ij})\)

- Introduce a vector \(t^a \) tangent to the apparent horizon:

\[t^a.\nabla_a \left[\nabla_b R \nabla_b R \right] = 0. \]

- Projecting the Unified First Law tangentially to the horizon:

\[dE = \frac{\kappa}{2\pi} dS + \omega dV. \tag{11} \]

- We identify the Clausius Relation:

\[\delta Q = T dS, \]

with temperature \(T = \frac{\kappa}{2\pi} \).
Hayward developed this formalism to describe dynamical black holes. Dynamical black holes are defined as the trapped regions of spacetime, bounded by the apparent horizon.

From the Unified First Law projected tangentially to the apparent horizon, he recovers the first law of black hole thermodynamics.

Since we also have an apparent horizon in cosmology, we can try to project the Unified First Law onto it: we expect to recover laws for the dynamics of our Universe, i.e. the Friedmann Equations.

Let us therefore apply the previous formalism to our FLRW Universe.
Friedmann Cosmology

FLRW metric:

\[ds^2 = -dt^2 + a^2(t) \frac{dr^2}{1 - kr^2} + R^2 d\Omega^2 . \] \hspace{1cm} (12)

Expression for the apparent horizon radius:

\[R_A^2 = \frac{1}{H^2 + k/a^2} . \] \hspace{1cm} (13)

→ reduces to the Hubble radius in the flat case (k=0).
→ reduces to the event horizon radius in the de Sitter limit (k=0, H=cst).
Friedmann Cosmology

- Misner-Sharp energy:

\[E = \frac{R^3}{2G} \left[H^2 + \frac{k}{a^2} \right] . \tag{14} \]

- If one assumes space is flat (as seems common when using M-S energy), the expression of the energy density \(\rho = E/V \) yields the First Friedmann Equation:

\[H^2 + \frac{k}{a^2} = \frac{8\pi G}{3} \rho . \tag{15} \]

- Or the other way around, using Friedman Equation we get a flat spatial volume \(V = \frac{4}{3} \pi R^3 . \)

→ curvature information encoded in the full gravitational energy.
Kodama vector:

\[K^a = \sqrt{1 - kr^2}(1; -Hr; 0; 0) . \] (16)

→ reduces to the dilatational Killing vector in the de Sitter limit (k=0, H=cst).

Surface gravity:

\[\kappa = \left. -\frac{R}{2} \right[2H^2 + \dot{H} + \frac{k}{a^2} \right] . \] (17)

This is valid for all R, but the physical meaning is clear only for \(R = R_A \).

→ we expect \(\kappa \big|_{\mathcal{H}} \) to give the Hawking Temperature of our apparent horizon (and we will prove it).

→ reduces to the inflationary temperature in the de Sitter limit: \(T = \frac{|\kappa|}{2\pi} = \frac{H}{2\pi} . \)
Overview

1. Apparent Horizon versus Event Horizon
2. Dynamical Black Holes & Friedmann Cosmology
3. Dynamics at the horizon
4. Hawking Radiation at the horizon
5. Conclusions
Now that we have computed the relevant quantities, we can try to project the Unified First Law onto the horizon: we will obtain the Clausius Relation, and from there we expect to get the Friedmann Equations.

Gravity from Thermodynamics?...

...this is very reminiscent of a famous work by Jacobson:

Thermodynamics of Spacetime: The Einstein Equation of State,

Dynamics at the horizon

Jacobson’s idea

- Idea: Einstein Equations obtained from Clausius Relation
 \[\delta Q = TdS \]
 applied on a local Rindler horizon.

Left-hand side

- Link between \(\delta Q \) and energy-momentum tensor:
 \[
 \delta Q = \int_{\mathcal{H}} T_{ab} \xi^a d\Sigma^b .
 \]
 (18)

We need to equate this LHS expressed in terms of energy to a RHS expressed in terms of geometry (Ricci tensor).
Dynamics at the horizon
Jacobson’s idea

Right-hand side

- Link between entropy S and area A, as is usual for horizons.
- Link between area A and expansion θ of the null congruence of horizon generators: $\delta A = \int \theta d\lambda dA$.
- Link between expansion θ and geometry R_{ab} using Raychaudhuri equation:

$$\frac{d\theta}{d\lambda} = -\frac{1}{2} \theta^2 - \sigma^2 - R_{ab} k^a k^b. \quad (19)$$

- Key point: working on a "local Rindler horizon", where the expansion is zero. This is just the local version of our global apparent horizon!
Let us use the same concepts as Jacobson, but in our global cosmological setting.
The expansion is defined by:
\[\theta = h^{cd} \nabla_c k_d, \]
with \(h_{cd} \) the induced metric on the 2-spheres.

In FLRW metric it yields:
\[\theta_{in} = H - \frac{1}{R} \sqrt{1 - kr^2} . \tag{20} \]

for the future-directed ingoing light-rays. As expected by definition, the apparent radius \(R_A \) cancels this expansion.

And for the future-directed outgoing light-rays:
\[\theta_{out} = H + \frac{1}{R} \sqrt{1 - kr^2} . \tag{21} \]

which is non-zero on the horizon.
On the apparent horizon $\theta_{in} = 0$ and $\theta_{out} \geq 0$. Thus the apparent horizon of a FLRW Universe is of the past-inner type.
On the apparent horizon $\theta_{in} = 0$ and $\theta_{out} \geq 0$. Thus the apparent horizon of a FLRW Universe is of the past-inner type.

(Shaghoulian, 2014)
Variation of the apparent radius:

\[\dot{R}_A = -HR_A^3 \left(\dot{H} - \frac{k}{a^2} \right) . \] \hspace{1cm} (22)

We will be interested in the quantity:

\[\frac{2\dot{R}_A}{HR_A} = -2R_A^2 \left(\dot{H} - \frac{k}{a^2} \right) = -2 \frac{\dot{H} - \frac{k}{a^2}}{H^2 + k/a^2} \equiv \beta^2 . \] \hspace{1cm} (23)

→ beta-function of the renormalisation group flow in the AdS/CFT correspondence. We notice that de Sitter is a zero of the \(\beta \) function.
As seen above, we need to project the Unified First Law tangentially to the horizon to get Clausius Relation:

\[t^a (A \psi_a) \ \overset{\mathcal{H}}{=} \ t^a \left(\frac{\kappa}{8\pi G} \nabla_a A \right) . \quad (24) \]

We get for the left-hand side:

\[A t^a \psi_a \big|_{\mathcal{H}} = 2\pi \kappa HR_A^4 (p + \rho) . \]

Now for the right-hand side:

\[\frac{\kappa}{8\pi G} t^a \nabla_a A \big|_{\mathcal{H}} = -\frac{1}{2G} \kappa HR_A^4 \left(\dot{H} - \frac{k}{a^2} \right) . \quad (25) \]
Equating RHS and LHS:

$$2\pi \kappa H R_A^4 (p + \rho) = -\frac{1}{2G} \kappa H R_A^4 \left(\dot{H} - \frac{k}{a^2} \right), \quad (26)$$

we get the 2^{nd} Friedmann Equation:

$$\dot{H} - \frac{k}{a^2} = -4\pi G (p + \rho). \quad (27)$$
Overview

1. Apparent Horizon versus Event Horizon
2. Dynamical Black Holes & Friedmann Cosmology
3. Dynamics at the horizon
4. Hawking Radiation at the horizon
5. Conclusions
Hawking Radiation at the horizon
First method: Hamilton-Jacobi

- Ingoing Eddington-Finkelstein coordinates:

\[ds^2 = -e^{2\psi} C dV^2 + 2e^{\psi} dV dR + R^2 d\Omega^2 . \]

(flat case: \(V = t + r \))

- Outgoing Eddington-Finkelstein coordinates:

\[ds^2 = -e^{2\psi} C dU^2 - 2e^{\psi} dU dR + R^2 d\Omega^2 . \]

(flat case: \(U = t - r \))

- Kodama vector: \(K^a = (e^{-\psi} ; 0; 0; 0) . \)

- Surface gravity: \(\kappa_{\mathcal{H}} = \frac{1}{2} \partial_R C|_{\mathcal{H}} . \)

- BKW approximation of tunneling probability:

\[\Gamma \propto \exp \left(-2 \frac{\text{Im} I}{\hbar} \right) . \quad (28) \]
Hawking Radiation at the horizon
First method: Hamilton-Jacobi

- EoM: \(k(Ck - 2\omega) = 0. \)
 \[\rightarrow k = +2\omega/C \text{ (outgoing sol).} \]
 \[\rightarrow k = 0 \text{ (ingoing solution).} \]
- Outgoing solution contributes:
 \[\text{Im}\, I = +\frac{\pi\omega}{\kappa_H} . \]
- EoM: \(k(Ck + 2\omega) = 0. \)
 \[\rightarrow k = 0 \text{ (outgoing solution).} \]
 \[\rightarrow k = -2\omega/C \text{ (ingoing sol).} \]
- Ingoing solution contributes:
 \[\text{Im}\, I = -\frac{\pi\omega}{\kappa_H} . \]

The tunneling probability takes a thermal form:

\[\Gamma \propto \exp\left(-2\text{Im}\, I\right) \propto \exp\left(-\frac{\omega}{T}\right) , \]

with temperature:

\[T = +\frac{\kappa_H}{2\pi} \geq 0 . \]

with temperature:

\[T = -\frac{\kappa_H}{2\pi} \geq 0 . \]
Differences with black holes: κ_H negative & Hawking radiation aimed at the central observer, to the inside. → difference between future-outer and past-inner trapped!
Hawking Radiation at the horizon

- Differences with black holes: $\kappa_\mathcal{H}$ negative & Hawking radiation aimed at the central observer, to the inside. → difference between future-outer and past-inner trapped!

Future-outer trapped
\[\theta_{out} = 0 \]

(Hayward, 2005)

Past-inner trapped
\[\theta_{in} = 0 \]

(Shaghoulian, 2014)
Hawking Radiation at the horizon
Second method: acceleration of a Kodama observer

Acceleration and the Unruh effect

- Unruh effect: accelerated observer in Minkowski spacetime feels a thermal bath.
 \rightarrow Unruh Temperature T_U.
- Detector hovering above the black hole sees radiation.
- To recover the Hawking temperature, lower the detector to the horizon, and redshift the measured temperature to an observer at infinity.
Hawking Radiation at the horizon
Second method: acceleration of a Kodama observer
Hawking Radiation at the horizon
Second method: acceleration of a Kodama observer

- The 4-acceleration:

\[A^a = U^b \nabla_b U^a = U^b (\partial_b U^a + \Gamma^a_{bc} U^c) \] \hspace{1cm} (29)

- For a Kodama observer: \(U^a \propto K^a \). Thus \(A^a \) is most easily computed in a coordinate system where \(K^a \) has only one component, and \(\Gamma \) are the simplest (diagonal metric). Such a frame is provided by the Kodama time \(\tau \):

\[d\tau = dU + \frac{e^{-\psi}}{C} dR \] \hspace{1cm} (30)

yielding the metric:

\[ds^2 = -e^{2\psi} C d\tau^2 + \frac{1}{C} dR^2 + R^2 d\Omega^2 \] \hspace{1cm} (31)
In this frame, a fiducial observer has $U^a = (e^{-\Psi}/\sqrt{C}; 0; 0; 0)$.

The acceleration is:

$$A = \frac{1}{\sqrt{C}} \left(C \partial_R \Psi + \frac{1}{2} \partial_R C \right). \quad (32)$$

This is a diverging quantity at the horizon: $C|_H = 0$. In order to obtain the Hawking temperature, we need to redshift the acceleration of a detector at the horizon ($R = R_A$), as seen by an observer on Earth ($R' = 0$). We get:

$$T = T_{U,0}(R = R_A) = \frac{1}{2\pi} \left| \frac{1}{2} \partial_R C \right|_H = \frac{|\kappa|}{2\pi}. \quad (33)$$
Hawking Radiation at the horizon
Second method: acceleration of a Kodama observer
1. Apparent Horizon versus Event Horizon

2. Dynamical Black Holes & Friedmann Cosmology

3. Dynamics at the horizon

4. Hawking Radiation at the horizon

5. Conclusions
Conclusions

- Why Apparent Horizon?
 → chosen by Hayward as relevant boundary for dynamical black hole,
 → same formalism applies perfectly to our cosmological horizon: yields Friedmann Equations,
 → global version of Jacobson’s local horizon,
 → chosen by R. Bousso to enforce his Covariant Entropy Bound,

- We used our formalism for black holes on our cosmological patch. Now that we have shown the strong parallel, we may use our knowledge of our visible Universe to better understand black holes!
Thank you!
Renormalization group-flow in AdS-CFT

Variation of the apparent radius:

\[\dot{R}_A = -H R_A^3 \left(\dot{H} - \frac{k}{a^2} \right). \] \hspace{1cm} (34)

We will be interested in the quantity:

\[\beta^2 \equiv \frac{2 \dot{R}_A}{H R_A} = -2 \frac{\dot{H} - \frac{k}{a^2}}{H^2 + k/a^2} = 3 \frac{\rho + P}{\rho}. \] \hspace{1cm} (35)

→ beta-function of the renormalisation group flow in the AdS/CFT correspondence. We notice that de Sitter is a zero of the \(\beta \) function.

→ beta characterizes the departure from conformal symmetry, the departure from de Sitter.

→ de Sitter is a fixed point. Fluctuations will take the Universe away from dS, but the flow will eventually bring it back to \(\beta = 0 \).