Seeking the Epoch of Maximum Luminosity for Dusty Quasars

Valeri V. Vardanyan

Universität Heidelberg
23.04.2014

In collaboration with D. Weedman and L. Sargsyan
Under review at ApJ
Reminder: what is quasar?

- Quasi Stellar Radio Source, discovered in 1950s
- Maarten Schmidt explained the spectrum in 1963
 =>\Rightarrow very distant objects
- From the high variability
 =>\Rightarrow very compact objects
- Supermassive black hole with accretion disc around.
 Yakov Zeldovich, Igor Novikov and Edwin Salpeter
Accepted Model of the Quasar
Our Fundamental Questions

- When and How did the First SMBHs of 10^9 Solar Masses Form?
- When and How did the Dust Form in the Universe?
Currently Accepted Evolutionary Scenario

- Galaxies form
- Gather mass
- Merge (starburst triggering, bigger BH)
- Reach the activity peak at z of $\sim 2-3$ (based on UV luminosity)

- Will There be Such a Peak When Looking in IR?
Galaxy Merging and Dust
Dust in Quasar

Hot Dust Visible

Silicate Emission

No Hot Dust Visible

Silicate Absorption
Dust Luminosities of Quasars and Ultraluminous Infrared AGN determined from Spitzer spectroscopy and SDSS/WISE
Data Sources

SDSS
Telescope in New Mexico
SDSS compilation from - Shen et. al., 2011, ApJS 194, 45

WISE – launched in 2009 captures the sky in IR
IR Template (Spitzer Spectra of optically discovered SDSS quasars).

IR Distribution

![Graph showing the distribution of some parameter over a range of values on the x-axis and log νLν on the y-axis.]
Luminosity Functions
IR Luminosity Evolution
The difference between $z = 2$ and $z = 4$ halves the time available for massive galaxy and black hole formation (down to 1.5 Gyr from the beginning of the Universe at $z = 4$ from 3.2 Gyr at $z = 2$).
Comparisons With UV

\[\log \nu L_\nu(0.25\,\mu m)/\nu L_\nu(7.8\,\mu m) \]

vs

\[z \]

1.5 - 4.0

-0.5 - 1.5
Comparisons With UV

Narayanan et. al., 2010, MNRAS 407, 1701
Dust in Quasar

Hot Dust Visible
Silicate Emission

No Hot Dust Visible
Silicate Absorption
Average BOOTES Spectrum

![Graph showing normalized f_ν against rest wavelength (\mu m)]
Lfs of Obscured and Unobscured Quasars

\[\log \rho(\nu L^\nu) \]

\[\log \nu L^\nu \]

\[z = 2.1 \]
Summary

- No Luminosity Peak in IR up to at least $z \sim 5$.
 - Comparisons with UV do not show any significant trend with redshift in dust content.
- There are as many obscured quasars out there as the unobscured ones.