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• Surveys	such	as	Euclid	and	LSST	will	test	
the	gravity	law	with	exquisite	
precision	(small	error	bars)	

• Why	should	we	be	careful?	
• Inaccurate	results	may	be	interpreted	as	

new	physics,	when	they	should	not	be	
• Incorrect	analysis	may	lead	to	

inaccuracies

The	opportuniCes	and	risks	of	surveys	
to	test	gravity

B.Hargreaves



• Bayesian	inference:	given	some	new	data,	the	
posterior	probability	(of	model	parameters)	
encompasses	all	we	know	

• P(Parameters	|	Data,	Model,	Prior	InformaCon)*	
• Complicated	funcCon	-	not	analyCc	
• AlternaCve:	sample	from	the	posterior	(cf	MCMC)	
• If	we	can	do	it,	there	is	no	reason	not	to	do	it	this	

way	
• *	Also	P(Model	|	Data)

The	goal	of	scienCfic	inference



• Break	the	problem	into	steps:	
• Parameters:	Let	C	=	(various)				

power	spectra	
• s	=	true	shear	map	(many	more	

parameters)	
• Data:	pixelised	shear	values	d	=	s	+	n	

(noise)	
• We	typically	want		p(C|d)	
• CondiConal	distribuCons,	e.g.	p(s|C),	

are	oSen	known

Bayesian	Hierarchical	Models



Credit: J. Alsing



• Link	between	d	and	C	is	the	true	map	s	
• Natural	to	sample	from	C	and	s	jointly,	

condiConed	on	the	data	d:	p(C,	s	|	d)	
• Marginalise	over	the	map(s)	s	to	get	p(C	|	d)	
• Assume	gaussian	fields	for	large	scales	

• How	to	do	this	inverse	problem?		
• Consider	the	forward	model:

Joint	map-power	spectrum	inference
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Gibbs	Sampling

W-1 = Inverse Wishart distribution

WF = Wiener Filter:
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Messenger	fields



SUNGLASS simulations (Kiessling et al 2011)





E-modes are recovered, 
well below the shot noise 
at high-l



EB cross-power 
consistent with zero (as 
expected from parity)
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Cosmology
• Sampling	the	power	spectrum	first	has	

advantages:	
• Gibbs	sampling	is	efficient	(gaussian	fields)	
• Further	cosmological	parameter	inference	is	

straigh[orward:	

• Different	theoreCcal	models	can	be	
invesCgated	(notably	intrinsic	alignment	
contribuCon)
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Feasibility

• 2	bin	(1282	pixels)	tomography	runs	on	quad-
core	desktop,	generaCng	~4	million	samples	
in	a	few	days	

• 10-bin	tomography	(Euclid-like	survey)	is	
probably	feasible	now	with	supercomputers
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Alsing, J., AFH, et al., 2015
Schneider M., et al., 2014



Conclusions
• Bayesian	hierarchical	models	are	the	natural	way	

to	do	principled	Bayesian	staCsCcal	inference	
from	weak	lensing	

• Messenger	fields	now	make	it	possible	
• Joint	map	and	power	spectrum	inference	with	

~105	parameters	(or	more)	is	feasible	
• Masks	and	intrinsic	alignments	are	easily	included	
• In	progress:	CFHTLenS	analysis;	non-gaussian	

likelihoods;	possible	Euclid	pipeline	
• Alsing	et	al.	arXiv:1505.07840


