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The Problem
Cosmology has entered a precision era.

The present and future main sources of data are:

CMB anisotropies
(2 dimensional dataset).

CMB sky as seen by Planck

Link between data and models made mostly using linear perturbation theory.

Dl = l(l + 1)Cl/(2π)
Planck Collaboration: Planck 2013 results XV
CMB power spectra and likelihood



The Problem

Large scale structure observations (3 dimensional dataset).

Sloan Digital Sky Team

For LSS, on intermediate to small scales, non-linearities become important.
⇓

Much more information, but analysis more complicated.

We need not only accurate observations, but also an accurate model!



Observing the large scale structure of the Universe

All observations are made over the past light-cone with redshift and
incoming photons direction as observable coordinates.

Both our observable coordinates and the observed volume are distorted
by the presence of inhomogeneities.

Standard Newtonian effects are usually described in k-space, where the
result depends not only on the observations but also on the
cosmological model assumed which relates redshifts and angles to
distances.

Relativistic lensing effects involve integral over the backward light-cone
and their translation in k-space is not straightforward.

We will report results from perturbation theory in `-space and redshift
space so that they can be directly compared with observations without
any assumptions on the cosmology.

For 2-point correlation functions⇒We have to go beyond Newtonian gravity!

For 3-point correlation functions⇒We have to go beyond Newtonian gravity
and beyond linear theory!
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Geodesic light-cone coordinates
An adapted light-cone coordinate system xµ = (w , τ, θ̃a), a = 1, 2 can be
defined by the following metric (Gasperini, GM, Nugier, Veneziano (2011)):

ds2 = Υ2dw2 − 2Υdwdτ + γab(d θ̃a −Uadw)(d θ̃b −Ubdw) ; a, b = 1, 2 .

This metric depends on six arbitrary functions (Υ, the two-dimensional vector
Ua and the symmetric tensor γab) and is completely gauge fixed.

w is a null coordinate , ∂µτ defines a geodesic flow

kµ = gµν∂νw = gµw = −δµτ Υ−1 null geodesics connecting sources and
observer ⇓

Photons travel at constant w and θ̃a

The exact non-perturbative redshift is given by

1 + zs =
(kµuµ)s

(kµuµ)o
=

(∂µw∂µτ)s

(∂µw∂µτ)o
=

Υ(wo, τo, θ̃
a)

Υ(wo, τs, θ̃a)

where the subscripts “o” and “s” denote, respectively, a quantity evaluated at
the observer and source space-time position.



Galaxy Number Counts
Galaxy Number Counts= number N of sources (galaxies) per solid angle and
redshift.
The fluctuation of the galaxy number counts in function of observed redshift
and direction is given by

∆ (n, z) ≡ N (n, z)− 〈N〉 (z)

〈N〉 (z)
,

where
N (n, z) = ρ (n, z) V (n, z) .

Considering the density and volume fluctuations per redshift bin dz and per
solid angle dΩ

V (n, z) = V̄ (z)

(
1 +

δV (1)

V̄
+
δV (2)

V̄

)
ρ (n, z) = ρ̄ (z)

(
1 + δ(1) + δ(2)

)
,

we can give the directly observed number fluctuations

∆ (n, z) =

[
δ(1) +

δV (1)

V̄
+ δ(1) δV (1)

V̄
+ δ(2) +

δV (2)

V̄
− 〈δ(1) δV (1)

V̄
〉 − 〈δ(2)〉 − 〈δV

(2)

V̄
〉
]



Volume Perturbation
The 3-dimensional volume element dV seen by a source with 4-velocity uµ is

dV =
√
−gεµναβuµdxνdxαdxβ .

In terms of the observed quantities (z, θo, φo)

dV =
√
−gεµναβuµ

∂xν

∂z
∂xα

∂θs

∂xβ

∂φs

∣∣∣∣∂ (θs, φs)

∂ (θoφo)

∣∣∣∣ dzdθodφo ≡ v (z, θo, φo) dzdθodφo .

Going to GLC we then have

dV = −
√
−guw ∂τ

∂z
dzdθodφo .

and

dV =
√
|γ|
(
−dτ

dz

)
dzdθodφo , or v =

√
|γ|
(
−dτ

dz

)
This is a non-perturbative expression for the volume element at the source in
terms of the observed redshift and the observation angles in GLC gauge.

If we would know ρ(n, z) non-perturbatively we could write the number
counts in an exact way in GLC.



Coordinates Trasformation
Let us consider a stochastic background of scalar perturbations on a
conformally flat FLRW space-time to describe the inhomogeneities of our
Universe at large scale.

Using spherical coordinates (yµ = (η, r , θ, φ)) in the Poisson gauge (PG) we
have

gµνNG = a−2(η) diag
(
−1 + 2Φ, 1 + 2Ψ, (1 + 2Ψ)γab

0

)
where γab

0 = diag
(

r−2, r−2 sin−2 θ
)

, Φ = Ψ(1) + Φ(2) − 2(Ψ(1))2 and

Ψ = Ψ(1) + Ψ(2) + 2(Ψ(1))2.

To use the previous results we have to re-express this metric in GLC form.
We define the coordinates transformation using

gρσGLC(x) =
∂xρ

∂yµ
∂xσ

∂yν
gµνNG(y)

and imposing the following boundary conditions

Non-singular transformation around the observer position at r = 0.
The two-dimensional spatial section r = const is locally parametrized at
the observer position by standard spherical coordinates.



Cosmological Observables: redshift
The redshift up to second order in perturbation theory is

1 + z =
a(ηo)

a(ηs)

[
1 + δ(1)z + δ(2)z

]
with

δz(1) = −∂r v(1)
s − Ψ

(1)
s − 2

∫ ηo

ηs
dη′∂η′Ψ(1)

(
η
′
)

δz(2) = −∂r v(2)
s − Φ

(2)
s −

∫ η0

ηs
dη′∂η′

[
Φ(2) + Ψ(2)

](
η
′
)

+
1

2
(∂r vs)2 +

1

2
(Ψs)2

+
(
−v||s − Ψs

)(
−Ψs − 2

∫ ηo

ηs
dη′∂η′Ψ

(
η
′
))

+
1

2
∂

avs∂avs + 2a ∂avs∂a

∫ ηo

ηs
dη′Ψ

(
η
′
)

+4
∫ η0

ηs
dη′

[
Ψ
(
η
′
)
∂η′Ψ

(
η
′
)

+ ∂η′Ψ
(
η
′
) ∫ ηo

η′
dη′′∂η′′Ψ

(
η
′′
)

+Ψ
(
η
′
) ∫ ηo

η′
dη′′∂2

η′′Ψ
(
η
′′
)
− γab

0 ∂a

(∫ ηo

η′
dη′′Ψ

(
η
′′
))

∂b

(∫ ηo

η′
dη′′∂η′′Ψ

(
η
′′
))]

+2∂a (∂r vs + Ψs)

∫ ηo

ηs
dη′γab

0 ∂b

∫ ηo

η′
dη′′Ψ

(
η
′′
)

+4
∫ ηo

ηs
dη′∂a

(
∂η′Ψ

(
η
′
))∫ ηo

η′
dη′′γab

0 ∂b

∫ ηo

η′′
dη′′′Ψ

(
η
′′′
)

Ben-Dayan, GM, Nugier, Veneziano (2012), Fanizza, Gasperini, GM, Veneziano (2013) and GM (2015)
(see also Umeh, Clarkson, Maartens (2014))



Cosmological Observables

To obtain ∆ in the PG, in function of the observed redshift and of the direction
of observation (θo, ϕo), we have:

Step 1→ Expand the exact expression of ∆ in function of the PG coordinate
using the coordinate transformation.

Step 2→ Expand conformal time and radial PG coordinates around a fiducial
model as ηs = η

(0)
s + η

(1)
s + η

(2)
s and rs = r (0)

s + r (1)
s + r (2)

s perturbatively solving

1+zs =
a(ηo)

a(η
(0)
s )

=
a(ηo)

a(ηs)

[
1 + δ(1)z + δ(2)z

]
, wo = η

(0)
s +r (0)

s = w (0)+w (1)+w (2)

Step 3→ Taylor expand the solution of Step 1 around the fiducial model
using Step 2, and around the direction of observation using the fact that
θ̃a = θa

o are constant along the line-of-sight and therefore

θa = θa(0) + θa(1) = θa
o − 2

∫ ηo

η
(0)
s

dη′ γab
0 ∂b

∫ ηo

η′
dη′′ Ψ(1)(η′′, ηo − η′′, θa

o) .
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Galaxy Number Counts

The (second-order, non-homogeneous, non-averaged) expression of ∆ in our
perturbed background is so given (in a concise form) by

∆ = ∆(1)(n, zs) + ∆(2)(n, zs)

To first order we have (Yoo, Fitzpatrick, Zaldarriaga (2009), Yoo (2010),
Bonvin, Durrer (2011), Challinor, Lewis (2011))

∆(1) (n, z) =

(
2

Hr(z)
+
H′

H2

)(
∂r v (1) + Ψ(1) + 2

∫ r(z)

0
dr∂ηΨ(1)

)
−Ψ(1)

+4Ψ1 − 2κ+
1
H

(
∂ηΨ(1) + ∂2

r v (1)
)

+ δ(1)

with

Ψ1(n, z) =
2

r(z)

∫ r(z)

0
drΨ(1)(r) , 2κ = −∆2ψ = 2

∫ r(z)

0
dr

r(z)− r
r(z)r

∆2Ψ(1)(r)



Galaxy Number Counts

Keeping only the leading (potentially observables) terms the number counts
to second order turns to be

∆(2) = Σ(2) − 〈Σ(2)〉

where

Σ(2)(n, z) = δ(2) +H−1∂2
r v (2) − 2κ(2) +H−2

(
∂2

r v
)2

+H−2∂r v∂3
r v

+H−1
(
∂r v∂rδ + ∂2

r v δ
)
− 2δκ+∇aδ∇aψ

+H−1
[
−2(∂2

r v)κ+∇a(∂2
r v)∇aψ

]
+ 2κ2 − 2∇bκ∇bψ

− 1
2r(z)

∫ r(z)

0
dr

r(z)− r
r

∆2

(
∇bΨ1∇bΨ1

)
− 2

∫ r(z)

0

dr
r
∇aΨ1∇aκ .

with

κ(2) =
1
2

∫ r(z)

0
dr

r(z)− r
r(z)r

∆2(Ψ + Φ)(2)(−rn, η0 − r) .



Magnification Bias

In practice, we cannot observe all galaxies, but only those with a flux which is
larger than a certain limit F̄ .

If the fluctuation of the source number density N depends on luminosity we
have to further Taylor expand to obtain ∆(n, z,L).

This physical threshold impact only the part of the number counts that comes
from the galaxy density ρ.

We then obtain (see also Bertacca (2014))

N
(
n, z, F̄

)
= N (n, z) +

∂

∂L
N
(
n, z, L̄

)
(δL(1) + δL(2)) +

1
2
∂2

∂L2 N
(
n, z, L̄

)
(δL(1))2

= N(z̄, L̄)

[
1 + ∆(1) + ∆(2) +

∂Lρ̄

ρ̄

(
δL(1) + δL(2)

)
+

1
2
∂2

L ρ̄

ρ̄

(
δL(1)

)2

+
(∂Lρ− ∂Lρ̄)(1)

ρ̄
δL(1) +

∂η (∂Lρ̄)

ρ̄
δL(1) δz(1)

H

]
,

On the other hand, F = L/(2πd2
L ) and at fixed flux δL = δ

(
d2

L

)
.



Magnification Bias

Defining(
∂ ln ρ̄
∂ ln L

)
(z, L̄) = −5

2
s
(
z, L̄
)

,
∂2

∂(ln L)2 (ln ρ̄) (z, L̄) = −5
2

t
(
z, L̄
)

(1 + δ(1))
∂ ln ρ
∂ ln L

− ∂ ln ρ̄
∂ ln L

= −5
2

(δs)(1)(z, L̄)

We have, to first order (Challinor, Lewis (2011))

∆(1)(n, z) =

(
2− 5s
Hr(z)

+ 5s +
H′

H2

)(
∂r v (1) + Ψ(1) + 2

∫ r(z)

0
dr∂ηΨ(1)

)
+(5s − 1)Ψ(1) + (2− 5s)

(
2Ψ1 − κ(1)

)
+

1
H

(
∂ηΨ(1) + ∂2

r v (1)
)

+ δ(1)



Magnification Bias
While, the leading second order contribution becomes:

Σ(2)(n, z) = δ(2) +H−1∂2
r v (2) − 2

(
1− 5

2
s
)
κ(2) +H−2

[(
∂2

r v
)2

+ ∂r v∂3
r v
]

+H−1
(
∂r v∂rδ + ∂2

r v δ
)
− 2δκ+∇aδ∇aψ

+H−1
[
−2
(

1− 5
2

s
)
∂2

r v κ+∇a∂
2
r v∇aψ

]
+ 2

(
1− 5s +

25
4

s2 − 5
2

t
)
κ2

−2
(

1− 5
2

s
)
∇bκ∇bψ −

(
1− 5

2
s
)

1
2r(z)

∫ r(z)

0
dr

r(z)− r
r

∆2

(
∇bΨ1∇bΨ1

)
−2
(

1− 5
2

s
)∫ r(z)

0

dr
r 2∇

aΨ1∇aκ+ 5 (δs)(1)κ

If the number of galaxies depend on luminosity like a simple power law,
ρ ∝ Lp, we have s = −2p/5, t = 0 and (δs)(1) = sδ(1) = −2pδ(1)/5.

For p = −1 we have s = 2/5, t = 0 and (δs)(1) = 2δ(1)/5
⇓

The pure lensing disappear at first and second order, while the terms
∇aδ∇aψ +H−1∇a∂

2
r v∇aψ are not affected by magnification bias.
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2

s
)
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4
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2

t
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Reduced bispectrum number counts

We define the bispectrum in real space as

B (n1,n2,n3, z1, z2, z3) = 〈∆ (n1, z1) ∆ (n2, z2) ∆ (n3, z3)〉c

Expanding the direction dependence of ∆ in spherical harmonics

B (n1,n2,n3, z1, z2, z3) =
∑
`i ,mi

Bm1m2m3
`1`2`3

(z1, z2, z3)Y`1m1 (n1)Y`2m2 (n2)Y`3m3 (n3)

and
Bm1m2m3
`1`2`3

(z1, z2, z3) = Gm1,m2,m3
`1,`2,`3

b`1,`2,`3 (z1, z2, z3)

with
Gm1,m2,m3
`1,`2,`3

Gaunt integral

b`1,`2,`3 (z1, z2, z3) Reduced bispectrum



Reduced bispectrum number counts

Assuming Gaussian initial condition

〈∆(1)(n1, z1)∆(1)(n2, z2)∆(1)(n3, z3)〉c = 0

we compute the contribution coming from

〈∆(2) (n1, z1) ∆(1) (n2, z2) ∆(1) (n3, z3)〉c + permutations

taking only the second order leading terms and ∆(1) = δ(1).
We then divide our leading reduced bispectrum as follow

b`1`2`3 = bδ
(2)

`1`2`3 + bv(2)′

`1`2`3 + bv′2

`1`2`3 + bvv′′
`1`2`3 + bvδ′

`1`2`3 + bv′δ
`1`2`3

+bκ
(2)

`1`2`3 + bκδ`1`2`3 + b∇δ∇ψ`1`2`3
+ bv′κ

`1`2`3 + b∇v′∇ψ
`1`2`3

+bκ
2

`1`2`3 + b∇κ∇ψ`1`2`3
+ b

∫
∇κ∇Ψ1

`1`2`3
+ b

∫
∆2(∇Ψ1∇Ψ1)

`1`2`3

where the color coding indicates

Newtonian terms Newtonian x lensing terms Lensing terms



Newtonian terms
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We plot the contributions from the Newtonian terms to the bispectrum for
different values of ` = `1 = `2 = `3, from ` = 4 (red) to ` = 400 (purple), as a
function of the third redshift z3 = z for z1 = z2 = 1.



Newtonian x lensing terms
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We plot the contributions from the Newtonian × lensing terms to the
bispectrum for different values of ` = `1 = `2 = `3, from ` = 4 (red) to ` = 400
(purple), as a function of the third redshift z3 = z for z1 = z2 = 1.



Lensing terms
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We plot the contributions from the pure lensing terms to the bispectrum for
different values of ` = `1 = `2 = `3, from ` = 4 (red) to ` = 400 (purple), as a
function of the third redshift z3 = z for z1 = z2 = 1.



Reduced bispectrum number counts: redshift
separation
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We plot the contributions from the Newtonian terms (blue), the
Newtonian × lensing terms (yellow) and the pure lensing terms (green) for
z1 = 0.95, z2 = 1 and z3 = 1.05 (top left), for z1 = 0.9, z2 = 1 and z3 = 1.1
(top right) and for z1 = 0.5, z2 = 1 and z3 = 1.5 (bottom) as function of
` = `1 = `2 = `3/2. Dashed lines correspond to negative values.



Reduced bispectrum number counts: redshift bin
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We plot the contributions to the bispectrum with window function of width
∆z = 1 and mean redshift z = 1, for Newtonian (blue), Lensing × Newtonian
(yellow) and Lensing (green). Dashed lines correspond to negative values.



Conclusions

We have presented the geodesic light-cone coordinates, a coordinate
system adapted to an observer and his past light-cone.

In the framework of the GLC we can write LSS observables in an exact,
non-perturbative way.

We have show the leading perturbative expressions for the number
counts at second order as a function of the observed redshift and the
direction of the observation.

We have defined the number counts reduced bispectrum in the directly
observable spherical-harmonics-redshift space.

In particular configurations the integrated relativistic terms can
dominate the signal/be not negligible

Well separated redshifts.
Broad window functions.

Outlook: Evaluation of the signal-to-noise to investigate whether planed
surveys can detect the lensing signal when it dominates.
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