A brief overview on the cosmology of bigravity

Giulia Cusin

Université de Genève

Gravity at the Largest Scales

27th October 2015

Institut Für Theoretische Physik - Heidelberg

- Why should (can) we modify GR?
- Building a consisted theory of massive gravity: some historical steps
- dRGT massive gravity
- beyond dRGT: bimetric gravity
- cosmology of bigravity

Lovelock theorem (1971)

"The only second order, local, gravitational field equations derivable from an action containing solely the 4D metric tensor (plus related tensors) are the Enstein field equations with a cosmological constant"

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$$

Despite the universal consensus that GR is beautiful and accurate, in recent years, a small industry of physicists has been working to modify it and test these modifications

Lovelock theorem (1971)

"The only second order, local, gravitational field equations derivable from an action containing solely the 4D metric tensor (plus related tensors) are the Enstein field equations with a cosmological constant"

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$$

Despite the universal consensus that GR is beautiful and accurate, in recent years, a small industry of physicists has been working to modify it and test these modifications

Why should we modify GR?

Supernovae data: universe has recently started accelerating in its expansion

Simplest interpretation:

- cosmological constant term in Einstein equation: $\rho_V \sim M_p^2 \Lambda$
- observed value of ρ_V for $\Lambda/M_p^2 \sim 10^{-65}~{\rm vs}~{\rm QFT}$ prediction $\Lambda/M_p^2 \sim 1$

Why this discrepancy?

- \bullet perhaps GR+ $\!\Lambda$ is not the correct answer \ldots
- late acceleration is not given by (some form of) vacuum energy
- IR modification of gravity is responsible for late-time acceleration

One can "cook-up" many IR modifications which reproduce self-acceleration ex. EH \leftrightarrow F(R). . .

In which sense IR modifications of GR can solve the cc problem?

Common critic vs modified gravity:

- small value of \mathcal{H}_0 with respect to M_p has to come from somewhere
- best that one can do is to shift the fine-tuning into other parameters

It is true!

... hope: this small value can be obtained in a "technically natural way"

Why technically naturalness is a good property

- no logical inconsistency in having small parameters (tech. natural or not)
- $\bullet\,$ small & technically natural: hope \exists classical mechanism driving value $\rightarrow\,0$
- small & technically natural: this mechanism is harder to find (quantum?)

One of the best ways to understand about a structure: attempt to modify it

slight modifications of a rigid structure (e.g. a car, a toy, GR)

```
\downarrow things goes badly (?)
```

I understand why the structure has given properties

 \bullet deformations of a known structure \rightarrow new structures

ex. massive gravity: Vainhstein mechanism restores GR at solar system scales \rightsquigarrow largely used by model builders (e.g. to shield moduli from extra dimensions)

Massive gravity: IR mod. of gravity where these points are nicely illustrated

(1) Technically natural acceleration

- force mediated by a massive graviton has Yukawa profile $\sim \frac{1}{r}e^{-mr}$
- choosing $m \simeq \mathcal{H}_0$, late time acceleration can be explained
- at low redshift, cosmological constant contribution $\simeq m/M_p$
- $\bullet\,$ technically natural choice: $m \to 0$ diffeomorphism invariance is recovered

(2) Interesting lessons regarding continuity of physical predictions

- modifying IR often messes up UV
- new mechanisms come into play (e.g. extra dofs must decouple themselves in the limit $m \to 0$)

Building a consistent theory of massive gravity is a non-trivial problem: some historical steps in this process...

Good achievements	Problems
• linear Fierz-Pauli MG (1939)	• vDVZ discontinuity (van Dam et al. 1970)
• Vainshtein screening (1970)	• Boulware-Deser ghost (1972)
• dRGT potential (deRham et al. 2011)	cosmologically viable?

dRGT massive gravity in pills (I)

$$\begin{split} S &= -\frac{M_g^2}{2} \int d^4x \sqrt{-g} \left[R(g) - 2m^2 V(g,f) \right] + \int d^4x \sqrt{-g} \mathcal{L}_m(g,\Phi) \,, \\ V(g,f) &= \sum_{n=0}^4 \beta_n e_n(X) \,, \qquad X = \sqrt{g^{-1}f} \,, \qquad \text{ de Rham et al. [1107.0443]} \end{split}$$

where

$$e_0 = \mathbb{I}, \quad e_1 = [X], \quad e_2 = \frac{1}{2}([X]^2 - [X^2]), \quad e_3 = \frac{1}{6}([X]^3 - 3[X][X^2] + 2[X^3]),$$

 $e_4 = \frac{1}{24}([X]^4 - 6[X]^2[X^2] + 8[X][X^3] + 3[X^2]^2 - 6[X^4]) = \det X.$

- 5 dofs around every backgrounds ~→ good candidate for ghost-free MG!
- Unsatiphactory aspects: f is an external element, cosmology not viable...

 $f_{\mu
u}=\eta_{\mu
u}$ no flat, nor close FRW solutions. Open solutions unstable D'Amico et al. [1108.5231]

 $f_{\mu\nu} = FRW/dS$ ok FRW flat solutions. Instabilities (Higuchi ghosts) De Felice et al. [1206.2080]

How to overcome the problem?

We modify the theory adding additional degrees of freedom:

• scalar dofs (quasi dilation, mass varying ...) D'Amico et al. [1304.0723]

tensor dofs (bigravity)

$$\begin{split} S &= -\int d^4x \sqrt{-g} \left[\frac{M_g^2}{2}(R(g) - 2m^2 V(g,f)) + \mathcal{L}_m(g,\Phi) \right] - \int d^4x \sqrt{-f} \frac{M_f^2}{2} R(f) \,, \\ V(g,f) &= \sum_{n=0}^4 \beta_n e_n(X) \,, \qquad X = \sqrt{g^{-1}f} \,, \qquad \text{dRGT potential} \end{split}$$

The action is invariant under the following rescaling Hassan et al. [1109.3515]

$$f_{\mu\nu} \to \Omega^2 f_{\mu\nu}, \quad \beta_n \to \Omega^{-n} \beta_n, \quad M_f \to \Omega M_f$$

 \rightsquigarrow one parameter is redundant. We can choose $M_* = M_f/M_g = 1$

It overcomes all the unsatisfactory features of massive gravity:

- the metric $f_{\mu\nu}$ is now a dynamical object
- improved cosmology

• Homogeneous and isotropic background solutions Comelli et al. [1111.1983]

$$ds_g^2 = a^2(\tau) \left(-d\tau^2 + dx_i dx^i \right) \,, \quad ds_f^2 = b^2(\tau) \left(-c^2(\tau) d\tau^2 + dx_i dx^i \right) \,,$$

$$H = \frac{\mathcal{H}}{a} = \frac{a'}{a^2}, \qquad H_f = \frac{\mathcal{H}_f}{b} = \frac{b'}{b^2 c}, \qquad r = \frac{b}{a}.$$

- Energy-momentum tensor of a perfect fluid coupled with $g_{\mu\nu}$
- $\bullet\,$ Late-time effective Λ coming from the coupling between g and f

$$H^{2} = \frac{8\pi G}{3} \left(\rho + \rho_{g}\right), \qquad \rho_{g} = \frac{m^{2}}{8\pi G} \left(\beta_{3} r^{3} + 3\beta_{2} r^{2} + 3\beta_{1} r + \beta_{0}\right).$$

• Bianchi constraint can be realized in two ways: two branches

$$m^2 \left(\beta_3 r^2 + 2\beta_2 r + \beta_1\right) \left(\mathcal{H} - \mathcal{H}_f\right) = 0$$

Algebraic branch: Bianchi constraint implemented as

 $\left(\beta_3 r^2 + 2\beta_2 r + \beta_1\right) = 0$

Background cosmology

- $r = \bar{r} = \text{cnst}$
- GR with effective cosmological constant, $\Lambda_{\text{eff}} = m^2 \left(\beta_0 2\beta_3 \bar{r}^3 3\beta_2 \bar{r}^2\right)$

Cosmology of perturbations

- vector and scalar dofs have vanishing kinetic term and non-vanishing mass term
- non-dynamical or strongly coupled? → it depends on the non-linear behavior ... → non perturbative methods needed!

Dynamical branch: Bianchi constraint implemented as

 $(\mathcal{H} - \mathcal{H}_f) = 0$

Background cosmology

$$\begin{aligned} H^2 &= \frac{8\pi G}{3} \left(\rho + \rho_g \right) \,, \qquad \rho_g = \frac{m^2}{8\pi G} \left(\beta_3 \, r^3 + 3\beta_2 \, r^2 + 3\beta_1 \, r + \beta_0 \right) \,. \\ H_f^2 &= \frac{m^2}{3} \left(\frac{\beta_1}{r^3} + \frac{3\beta_2}{r^2} + \frac{3\beta_3}{r} + \beta_4 \right) \,. \end{aligned}$$

Cosmology of perturbations

- are cosmological perturbation stable? for which choice of parameters?
- "natural" choice is to consider $\beta_n \simeq 1$ and $M_* = 1$ (through rescaling)

Dynamical branch: stability analysis

r'

_

r

Following set of independent equations for the background

$$c = \frac{\mathcal{H}r + r'}{\mathcal{H}r} \,,$$

$$\rho_m = M_p^2 m^2 \left(\frac{\beta_1}{r} - 3\beta_1 r + \beta_4 r^2\right) - \rho_r ,$$

$$\Gamma = \frac{-9\beta_1 r^2 + 3\beta_1 + 3\beta_4 r^3 + r M_p^{-2} m^{-2} \rho_r}{3\beta_1 r^2 + \beta_1 - 2\beta_4 r^3} \mathcal{H} ,$$

$$\mathcal{H}^2 = a^2 m^2 rac{eta_1 + eta_4 r^3}{3r} \qquad \rightsquigarrow$$
 we can extract value $r(au_0$

 $M_{*} = 1$

Giulia Cusin

finite branch: gradient exponential instabilities in the scalar sector $\forall \beta_i$

infinite branch: no exponential instabilities in the scalar sector for $\beta_1\beta_4$ model

Koennig et al. [1407.4331]

Infinite branch

- $\beta_1\beta_4$ free of exponential instabilities
- from a first analysis, this model seems promising

Further investigations give G.C. et al. [1412.5979], Lagos et al. [1410.0207], G.C. et al. [1505.0109]

- violation of the Higuchi bound in the tensor sector (but not problematic)
- violation of the Higuchi bound in the scalar sector: big problem!

Primordial scalar ghost!

in the absence of a mechanism to modify the scalar sector in the UV the sub model is ruled out...

In the finite branch:

- Higuchi bound can be satisfied for proper choices of parameters
- gradient exponential instabilies

Is there a way to avoid gradient exponential instabilities?

Ways out	Features
• $m^2 \gg m_{eff}^2 = m^2 \lambda(\beta_n) \simeq \mathcal{H}_0^2$	 fine-tuned (bare) parameters
	 technically natural acceleration
• $M_* = M_f/M_g \to 0$	• Bigravity=GR+ $\mathcal{O}()$

de Felice et al. [1404.0008]

 $m_{eff}^2 = m^2 \lambda(r, eta_n)$ \mathcal{H}_0^2 big fine-tuned

Main features

• m^2 coupling term parametrically large

•
$$m_{eff}^2 = m^2 \lambda(\beta_n, r) \simeq \mathcal{H}_0^2$$

• constrained parameters in order to avoid singularities/Higuchi instabilities

Resulting cosmology

- effective cosmological constant (technically natural)
- in the finite branch, gradient instabilities pushed to unobservable scales
- model indistinguishable from ΛCDM (graviton oscillations?)

Akrami et al. [1503.07521]

$$M_* = M_f / M_g \to 0$$

Main features

- $M_f \ll M_g$
- this condition after the rescaling writes $M_* = 1$, $\beta_n \gg 1$ and $\beta_{n+1} \gg \beta_n$

Resulting cosmology

- effective cosmological constant (technically natural)
- in the finite branch, gradient instabilities pushed to unobservable scales
- a small M_* increases the cut-off $\Lambda_3 \to \left(m^2 M_p M_*^{-1} \mathcal{O}(\beta_n)\right)^{1/3}$
- model indistinguishable from $\Lambda CDM \rightsquigarrow \text{Bigravity}=\text{GR}+\mathcal{O}(M_*^2)$

Dynamical branch $(\mathcal{H}_f - \mathcal{H}) = 0$

Infinite branch

- $\beta_1\beta_4$ free from gradient instabilities
- ... but it is affected by scalar Higuchi ghost (primordial)
- can we modify the scalar sector in the UV to get rid of the ghost?

Finite branch is affected by gradient instabilities

- pushing instabilities at unobservable scales: $m^2 \gg m^2_{eff} \simeq \mathcal{H}^2_0$
- pushing instabilities at unobservable scales: $M_f \ll M_g \ (\beta_n \gg 1, M_* = 1)$
- in both cases : Bigravity=GR+O(...)

Algebraic branch $(\beta_3 r^2 + 2\beta_2 r + \beta_1) = 0$

- background $\Lambda \text{CDM-like}$
- perturbation problematic (strongly coupled dofs? non-dynamical dofs?)

Doubly coupled bigravity Akrami et al. [1306.0004], Gumrukcuoglu et al. [1501.02790]

- dynamical branch: scalar ghost instabilities and vector gradient instabilities
- algebraic branch: no ghost instabilities, gradient instabilities?

Non-FRW background Nersisyan et al. [1502.03988]

Other modifications

- varying mass
- Lorentz violation
- . . .

Sometimes a theory seems complicated only because we do not understand which is the proper way to write it

Classical example: Maxwell equations

$$\partial_{\mu}F^{\mu\nu} = j^{\nu}, \ F_{[\alpha,\beta\gamma]} = 0$$

Modified gravity

 \leftrightarrow

?

Thank you!

Sometimes a theory seems complicated only because we do not understand which is the proper way to write it

Classical example

 $\nabla \cdot E = \frac{\rho}{\epsilon_0}$ $\nabla \cdot B = 0$ $\nabla \times E = -\frac{\partial B}{\partial t}$ $\nabla \times B = \mu_0 \left(j + \epsilon_0 \frac{\partial E}{\partial t} \right)$

$$\partial_{\mu}F^{\mu\nu} = 0, \ F_{[\alpha,\beta\gamma]} = 0$$

Modified gravity

 \leftrightarrow

?

Let us go back to the rescaling

$$f_{\mu\nu} \to \Omega^2 f_{\mu\nu} , \quad \beta_n \to \Omega^{-n} \beta_n , \quad M_f \to \Omega M_f$$

The choice $\Omega=M_f/M_g$ is completely meaningful, but it picks up a particular region of parameter space which may not capture all physically meaningful situations.

In particular $M_f/M_g \rightarrow 0$ will look extremely odd after the rescaling.

the region $M_* \to 1$ was not considered in the first scan of the parameter space. Is this viable cosmologically?