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Outline

Why should (can) we modify GR?

Building a consisted theory of massive gravity: some historical steps

dRGT massive gravity

beyond dRGT: bimetric gravity

cosmology of bigravity
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GR with Λ

Lovelock theorem (1971)

”The only second order, local, gravitational field equations derivable from an
action containing solely the 4D metric tensor (plus related tensors) are the
Enstein field equations with a cosmological constant”

Rµν −
1

2
gµν R+ Λgµν = 0

Despite the universal consensus that GR is beautiful and accurate, in recent

years, a small industry of physicists has been working to modify it and test

these modifications

Why should we modify GR?
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Modify GR: why? (1) ”Solving” the cosmological constant problem

Supernovae data: universe has recently started accelerating in its expansion

Simplest interpretation:

cosmological constant term in Einstein equation: ρV ∼M2
pΛ

observed value of ρV for Λ/M2
p ∼ 10−65 vs QFT prediction Λ/M2

p ∼ 1

Why this discrepancy?

perhaps GR+Λ is not the correct answer . . .

late acceleration is not given by (some form of) vacuum energy

IR modification of gravity is responsible for late-time acceleration

One can ”cook-up” many IR modifications which reproduce self-acceleration
ex. EH ↔ F(R). . .
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Technically natural IR modifications

In which sense IR modifications of GR can solve the cc problem?

Common critic vs modified gravity:

small value of H0 with respect to Mp has to come from somewhere

best that one can do is to shift the fine-tuning into other parameters

It is true!

. . . hope: this small value can be obtained in a ”technically natural way”

Why technically naturalness is a good property

no logical inconsistency in having small parameters (tech. natural or not)

small & technically natural: hope ∃ classical mechanism driving value → 0

small & ((((((((
technically natural: this mechanism is harder to find (quantum?)
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Modify GR: why? (2) Understanding better GR

One of the best ways to understand about a structure: attempt to modify it

slight modifications of a rigid structure (e.g. a car, a toy, GR)

↓

things goes badly (?)

↓

I understand why the structure has given properties

deformations of a known structure → new structures

ex. massive gravity: Vainhstein mechanism restores GR at solar system scales
 largely used by model builders (e.g. to shield moduli from extra dimensions)
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Massive gravity: beyond GR, testing GR

Massive gravity: IR mod. of gravity where these points are nicely illustrated

(1) Technically natural acceleration

force mediated by a massive graviton has Yukawa profile ∼ 1
r
e−mr

choosing m ' H0, late time acceleration can be explained

at low redshift, cosmological constant contribution ' m/Mp

technically natural choice: m→ 0 diffeomorphism invariance is recovered

(2) Interesting lessons regarding continuity of physical predictions

modifying IR often messes up UV

new mechanisms come into play
(e.g. extra dofs must decouple themselves in the limit m→ 0)

Giulia Cusin A brief overview on the cosmology of bigravity 7 / 25



Struggling to give the graviton a mass

Building a consistent theory of massive gravity is a non-trivial problem: some
historical steps in this process. . .

Good achievements

linear Fierz-Pauli MG (1939)

Vainshtein screening (1970)

dRGT potential (deRham et al. 2011)

Problems

vDVZ discontinuity (van Dam et al. 1970)

Boulware-Deser ghost (1972)

cosmologically viable?
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dRGT massive gravity in pills (I)

S = −
M2
g

2

ˆ
d4x
√
−g
[
R(g)− 2m2V (g, f)

]
+

ˆ
d4x
√
−gLm(g,Φ) ,

V (g, f) =

4∑
n=0

βnen(X) , X =
√
g−1f , de Rham et al. [1107.0443]

where

e0 = I, e1 = [X], e2 =
1

2
([X]2 − [X2]) , e3 =

1

6
([X]3 − 3[X][X2] + 2[X3] ,

e4 =
1

24
([X]4 − 6[X]2[X2] + 8[X][X3] + 3[X2]2 − 6[X4]) = detX .

5 dofs around every backgrounds  good candidate for ghost-free MG!

Unsatiphactory aspects: f is an external element, cosmology not viable. . .
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dRGT massive gravity in pills (II)

fµν = ηµν no flat, nor close FRW solutions. Open solutions unstable
D’Amico et al. [1108.5231]

fµν =FRW/d S ok FRW flat solutions. Instabilities (Higuchi ghosts)
De Felice et al. [1206.2080]

How to overcome the problem?

We modify the theory adding additional degrees of freedom:

scalar dofs (quasi dilation, mass varying . . . ) D’Amico et al. [1304.0723]

tensor dofs (bigravity)
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Hassan-Rosen bigravity

S = −
ˆ
d4x
√
−g
[
M2
g

2
(R(g)− 2m2V (g, f)) + Lm(g,Φ)

]
−
ˆ
d4x
√
−f

M2
f

2
R(f) ,

V (g, f) =

4∑
n=0

βnen(X) , X =
√
g−1f , dRGT potential

The action is invariant under the following rescaling Hassan et al. [1109.3515]

fµν → Ω2fµν , βn → Ω−nβn , Mf → ΩMf

 one parameter is redundant. We can choose M∗ = Mf/Mg = 1

It overcomes all the unsatisfactory features of massive gravity:

the metric fµν is now a dynamical object

improved cosmology
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Background solutions

Homogeneous and isotropic background solutions Comelli et al. [1111.1983]

ds2
g = a2(τ)

(
−dτ2 + dxidx

i
)
, ds2

f = b2(τ)
(
−c2(τ)dτ2 + dxidx

i
)
,

H =
H
a

=
a′

a2
, Hf =

Hf
b

=
b′

b2 c
, r =

b

a
.

Energy-momentum tensor of a perfect fluid coupled with gµν

Late-time effective Λ coming from the coupling between g and f

H2 =
8πG

3
(ρ+ ρg) , ρg =

m2

8πG

(
β3 r

3 + 3β2 r
2 + 3β1 r + β0

)
.

Bianchi constraint can be realized in two ways: two branches

m2(β3r
2 + 2β2r + β1

)
(H−Hf ) = 0
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Algebraic branch

Algebraic branch: Bianchi constraint implemented as(
β3r

2 + 2β2r + β1

)
= 0

Background cosmology

r = r̄ =cnst

GR with effective cosmological constant, Λeff = m2
(
β0 − 2β3r̄

3 − 3β2r̄
2
)

Cosmology of perturbations

vector and scalar dofs have vanishing kinetic term and non-vanishing mass
term

non-dynamical or strongly coupled?  it depends on the non-linear
behavior . . . non perturbative methods needed!

Giulia Cusin A brief overview on the cosmology of bigravity 13 / 25



Dynamical branch

Dynamical branch: Bianchi constraint implemented as

(H−Hf ) = 0

Background cosmology

H2 =
8πG

3
(ρ+ ρg) , ρg =

m2

8πG

(
β3 r

3 + 3β2 r
2 + 3β1 r + β0

)
.

H2
f =

m2

3

(
β1

r3
+

3β2

r2
+

3β3

r
+ β4

)
.

Cosmology of perturbations

are cosmological perturbation stable? for which choice of parameters?

”natural” choice is to consider βn ' 1 and M∗ = 1 (through rescaling)
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Dynamical branch: stability analysis

Following set of independent equations for the background

c =
Hr + r′

Hr ,

ρm = M2
pm

2

(
β1

r
− 3β1r + β4r

2

)
− ρr ,

r′

r
=
−9β1r

2 + 3β1 + 3β4r
3 + rM−2

p m−2ρr

3β1r2 + β1 − 2β4r3
H ,

H2 = a2m2 β1 + β4r
3

3r
 we can extract value r(τ0)

M∗ = 1

finite branch: gradient exponential
instabilities in the scalar sector ∀βi

infinite branch: no exponential instabili-
ties in the scalar sector for β1β4 model

Koennig et al. [1407.4331]
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The most promising model: β1β4 model

Infinite branch

β1β4 free of exponential instabilities

from a first analysis, this model seems promising

Further investigations give G.C. et al. [1412.5979], Lagos et al. [1410.0207], G.C. et al. [1505.0109]

violation of the Higuchi bound in the tensor sector (but not problematic)

violation of the Higuchi bound in the scalar sector: big problem!

Primordial scalar ghost!

in the absence of a mechanism to modify the scalar sector in the UV the sub
model is ruled out...
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How to avoid gradient instabilities in the finite branch?

In the finite branch:

Higuchi bound can be satisfied for proper choices of parameters

gradient exponential instabilies

Is there a way to avoid gradient exponential instabilities?

Ways out

m2 � m2
eff = m2 λ(βn) ' H2

0

M∗ = Mf/Mg → 0

Features

fine-tuned (bare) parameters

technically natural acceleration

Bigravity=GR+ O(...)
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m2 � 1 with βn tuned

de Felice et al. [1404.0008]

m2
eff = m2λ(r, βn)

H2
0 big fine-tuned

Main features

m2 coupling term parametrically large

m2
eff = m2 λ(βn, r) ' H2

0

constrained parameters in order to avoid singularities/Higuchi instabilities

Resulting cosmology

effective cosmological constant (technically natural)

in the finite branch, gradient instabilities pushed to unobservable scales

model indistinguishable from ΛCDM (graviton oscillations?)
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M∗ = Mf/Mg → 0

Akrami et al. [1503.07521]

M∗ = Mf/Mg → 0

Main features

Mf �Mg

this condition after the rescaling writes M∗ = 1, βn � 1 and βn+1 � βn

Resulting cosmology

effective cosmological constant (technically natural)

in the finite branch, gradient instabilities pushed to unobservable scales

a small M∗ increases the cut-off Λ3 →
(
m2MpM

−1
∗ O(βn)

)1/3
model indistinguishable from ΛCDM  Bigravity=GR+O(M2

∗ )
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Summary ...

Dynamical branch (Hf −H) = 0

Infinite branch

β1β4 free from gradient instabilities

. . . but it is affected by scalar Higuchi ghost (primordial)

can we modify the scalar sector in the UV to get rid of the ghost?

Finite branch is affected by gradient instabilities

pushing instabilities at unobservable scales: m2 � m2
eff ' H2

0

pushing instabilities at unobservable scales: Mf �Mg (βn � 1, M∗ = 1)

in both cases : Bigravity=GR+O(...)

Algebraic branch
(
β3r

2 + 2β2r + β1

)
= 0

background ΛCDM-like

perturbation problematic (strongly coupled dofs? non-dynamical dofs?)
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Alternative approaches

Doubly coupled bigravity Akrami et al. [1306.0004] , Gumrukcuoglu et al. [1501.02790]

dynamical branch: scalar ghost instabilities and vector gradient instabilities

algebraic branch: no ghost instabilities, gradient instabilities?

Non-FRW background Nersisyan et al. [1502.03988]

Other modifications

varying mass

Lorentz violation

. . .
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Elegance is a matter of writing things properly (sometimes)

Sometimes a theory seems complicated only because we do not understand
which is the proper way to write it

Classical example: Maxwell equations

‹
∂Ω

E · dS =
1

ε0

˚
ρ dV

‹
∂Ω

B · dS = 0

˛
∂Σ

E · dl = − d

dt

¨
B · dS

ˆ
∂Σ

B · dl = µ0

¨
Σ

j · dS + µ0ε0
d

dt

¨
Σ

E · dS

∂µF
µν = jν , F[α,βγ] = 0

Modified gravity ↔ ?
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Thank you!
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Elegance is a matter of writing things properly (sometimes)

Sometimes a theory seems complicated only because we do not understand
which is the proper way to write it

Classical example

∇ · E =
ρ

ε0

∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0

(
j + ε0

∂E

∂t

) ∂µF
µν = 0 , F[α,βγ] = 0

Modified gravity ↔ ?
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M∗ = Mf/Mg → 0

Let us go back to the rescaling

fµν → Ω2fµν , βn → Ω−nβn , Mf → ΩMf

The choice Ω = Mf/Mg is completely meaningful, but it picks up a particular
region of parameter space which may not capture all physically meaningful
situations.

In particular Mf/Mg → 0 will look extremely odd after the rescaling.

the region M∗ → 1 was not considered in the first scan of the parameter space.
Is this viable cosmologically?
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