Gravity or Dark Matter models as solutions to CMB-LSS tensions

Julien Lesgourgues (TTK, RWTH Aachen University)

Gravity at the Largest scales, Heidelberg, 27.10.2015

CMB vs LSS tensions

 ΛCDM best-fit to Planck 2015: σ₈ given by extrapolation of perturbations amplitude to z=0 (for given A_s, n_s, H₀, Ω_m)

data	σ ₈ Ω _m		
TT + IowTEB	0.829 ± 0.014 0.315 ± 0.013		
+ BAO	0.829 ± 0.014 0.310 ± 0.008		
+ JLA	0.829 ± 0.014 0.312 ± 0.012		
+ H ₀ (conservative)	0.829 ± 0.014	0.312 ± 0.013	
TTTEEE + IowTEB	0.831 ± 0.013 0.316 ± 0.009		
+ BAO	0.831 ± 0.013 0.312 ± 0.006		
+ JLA	0.831 ± 0.013 0.314 ± 0.009		
+ H ₀ (conservative)	0.831 ± 0.013	0.314 ± 0.009	

• several LSS experiments measure directly $\sigma_8(z^*)$, i.e. $(\Omega_m)^{\alpha} \sigma_8(z=0)$

Weak lensing observations

• From review of Kilbinger 2014 (68% CL)

most conservative guess: systematics at highest k (which dominate)

Cluster count observations

• From Planck 2015 XXIV (Planck SZ clusters)

- most conservative guess: systematics in determination of mass bias
- tensions disappears when looking at recent constraints from X-ray cluster (Mantz et al. 2015), due to their new measurement of SZ-mass bias with weak lensing (WtG)
- without this, all other X-ray, optical or SZ cluster counts return low σ₈ (e.g. Böhringer et al. 2014)

CMB lensing observations

• From Planck 2015: in $C_{I}^{\varphi\varphi}$, mild tension near I~200, pushing for smaller σ_8

 on the other hand the lensing effect is strong in C_I^{TT}. Suggests that a P(k) suppressed only at small scales, not all scales, could be a slightly better fit.

Redshift space distorsions

• No significant tensions between f σ_8 measurements and Planck ACDM best-fit

- still, 2σ tension with a few points from BOSS. Depends on analysis details...
- in summary, most noteworthy CMB-LSS tensions are with weak lensing data, and cluster data with "standard" assumption on mass bias

One non-LSS tension: direct H0 measurements

• H₀ not directly constrained by CMB, but indirectly by comparing $\Omega_m h^2$ (matter density) and Ω_Λ (late ISW, scale of the peak, lensing...), and even better with H₀ + BAO

• Situation unclear, conservative analyses (like Efstathiou 2014) get larger errors but always higher best-fit value

Can we find models reconciling the σ_8 tension?

- seems to be a trivial exercises
- expectations: many models should be able to do that (neutrino sector, dark matter sector, modified gravity, dark energy) and it will be difficult to discriminate

Attempts with neutrinos

- Increasing total neutrino mass cannot work:
 - -12% in σ_8 requires $M_v \sim 0.5 \text{ eV}$
 - effect on CMB lensing spectrum: OK
 - effect on shape of C_I^{TT} (dip at 50 < I < 200 due to eISW and less "lensing smoothing"):
 problematic
 - effect on peak scale compensated by shift of H_0 by ~ 5 km/s/Mpc: problematic
- Decreasing N_{eff} with same z_{eq} cannot work either:
 - requires significantly smaller H₀ : problematic
- Complicated games with both, or with eV-mass sterile neutrinos... (e.g. Wyman et al. 2014; Battye & Moss 2014; Hamann & Hasenkamp 2013; Leistedt et al. 2014; Bergstroöm et al. 2014; MacCrann et al. 2014)

Attempts with neutrinos

• Complicated games with both, or with eV-mass sterile neutrinos...

• Planck 2015 XIII : $\Delta \chi^2 \sim 3$ at most...

Decaying Dark Matter

- idea that $[p_{DM} a^3]$ decreases between z~1000 and z~0 and reduces P(k,z) cannot work:
 - decay into SM particles: very strong cosmic ray bounds
 - decay into DR: allowed by particle physics bounds. P(k,z) changes on all scales due to combined background effect + modified perturbation growth rate at late times.
 - strong CMB constraints due to late ISW. No significant effect in P(k) remains. No significant improvement when fitting CMB+BAO+LSS

• true for any model changing linear growth rate on cluster scales.

Modified Gravity

- need to reduce dark matter growth rate on scales contributing to $\sigma 8$
- (already challenging? many models tend to increase it, e.g. f(R), Einsteinaether, khronometric...)
- photon/baryon dynamics should not be affected till z~1000 (primary CMB)
- need to avoid significant enhancement of late ISW...
- similar challenge for dark energy models...

Interacting Dark Matter

- Dark Matter can have interactions:
 - with baryons and photons (< electromagnetic for CMB, + accelerator / direct / indirect detection constraints)
 - possibly larger ones with neutrinos, DR, DE, or with itself
- rate of momentum transfer $\Gamma_{DM} \sim T^n$; particle physics models motivate different values of n; rich phenomenology :
 - interaction can be important at early / intermediate / late time
 - many effects: (Silk) damping, drag, dark oscillation...

- similar to WDM (exponential cut-off at scale given by k=aH when $H\sim\Gamma$). Models compatible with Lyman- α data are identical to Λ CDM on larger scales.
- constraints also from CMB (effects on recombination time, sound speed, collisional damping of photons, photon-neutrino gravitational interactions...)
- small differences when assuming $\sigma \sim T$ still the story is similar... 14

Interacting Dark Matter

 $\sigma \sim v^n \sim T^{n/2}$, $\Gamma_{DM} \sim T^{n/2+3}$

DM-DR (Cyr-Racine et al. 2013)

before *dark recombination*: $\Gamma_{DM} \sim T^{2}$

- similar to WDM (exponential cut-off). Models compatible with Lyman-α data are identical to ΛCDM on larger scales.
- DM-baryons: weaker/stronger constraints from CMB, depending on n; DM-DR: dark oscillations impact CMB (*fast modes* in fast/slow decomposition)

Interacting Dark Matter

- $H \sim T^2$ during RD, $T^{3/2}$ during MD
- if $\Gamma_{DM} = 1/t_c \sim T^2$:
 - during RD: Г/H small and constant; no dark oscillations, but small DR drag effect on DM; small impact on all modes crossing during RD; slow mode: CMB unaffected
 - during MD: $\Gamma/H \rightarrow 0$, no impact on modes crossing during MD, $\delta_{DM} \sim a$ for all scales: no extra late ISW
- such scaling not natural with photons (Compton-like), electrons (Coulomb-like) and neutrinos (Weaklike)
- many interesting non-SUSY-based Dark Matter models have dark gauge groups with:
 - dark photons (abelian),
 - dark gluons (non-abelian),
 - new charged fermions
- may behave as Dark Radiation coupled to Dark Matter with appropriate scaling

Interacting DM-DR with $\Gamma \sim T^2$

$$\dot{\delta}_{\rm dm} = -\theta_{\rm dm} + 3\dot{\phi}$$

$$\dot{\theta}_{\rm dm} = -\frac{\dot{a}}{a}\theta_{\rm dm} + a\Gamma(\theta_{\rm dr} - \theta_{\rm dm}) + k^2\psi$$

$$\Gamma = \Gamma_0 \left(\frac{T}{T_0}\right)^2$$

- Buen-Abad, Marques-Tamares, Schmaltz 2015:
 - dark gauge groupe SU(N)
 - DM has weak and dark interactions
 - DR = dark gluons, self-interacting, tiny mean free path, no viscosity
 - DM relic density value imposes $\Delta N_{eff}(N) = 0.21, ...$
- JL, Marques-Tamares, Schmaltz 2015:
 - dark gauge group U(1)
 - DM has weak and dark interactions
 - DR = dark photon + massless fermions with dark charge, also self-interacting

Interacting DM-DR with $\Gamma \sim T^2$

- non-trivial effect of extra relativistic perfect fluid, mainly on CMB (see Audren et al. 2014, Planck 2015 XIII), small for P(k,z)
- extra effect of DM-DR interaction:
 - tiny for CMB (photon-DM forces irrelevant, photon-DR forces relevant but weakly affected)
 - ~10 to 15 times larger for P(k,z): slow-down of DM growth during Radiation Domination (Dark Radiation drag)

P(k,z) / P(k,z=0)_CDM - 1

Interacting DM-DR with T

w.r.t. ACDM : model is compatible with significant σ_8 , with sam Ω_1 and equal or larger H_0 0.877 ACDM, CMB+BAO 0.835 DM-DR, CMB+BAO $\stackrel{\infty}{b}$ 0.792 DM-DR, CMB+LSS DM-DR, CMB+BAO+LSS 0.75 0.708 72.5 79.3 0.314 0.374 65.6 75.9 0.283 0.344 69 0.253 Ω_m H_0

CMB = Planck 2015 TT + lowTEB

BAO = same as in Planck 2015

LSS = Planck lensing + Planck SZ + CFHTLens

CMB = Planck 2015 TT + lowTEB

BAO = same as in Planck 2015

LSS = Planck lensing + Planck SZ + CFHTLens

Interacting DM-DR with $\Gamma \sim T^2$

- 3-4 σ evidence for DM-DR interaction
- ΔN_{eff} compatible with minimal value (unless H₀ from Riess et al. taken seriously)

Parameter	CMB+BAO	CMB+LSS	CMB+BAO
			+LSS
ΔN_{eff}	< 0.68	< 0.78	< 0.79
$10^{7}\Gamma_{0} \; [\mathrm{Mpc}^{-1}]$	< 1.45	$1.70\substack{+0.57\\-0.58}$	$1.60^{+0.43}_{-0.44}$
$\Omega_{\rm m}$	$0.3018\substack{+0.0081\\-0.0084}$	$0.308\substack{+0.020\\-0.019}$	$0.3026^{+0.0085}_{-0.0087}$
σ_8	$0.8153\substack{+0.024\\-0.020}$	$0.764_{-0.019}^{+0.017}$	$0.768^{+0.011}_{-0.011}$
$\Delta\chi^2$ / $\Lambda { m CDM}$	0	-9.6	-12.6

Interacting DM-DR with $\Gamma \sim T^2$

- ongoing and future:
 - include P(k) from SDSS, full shape of CFHTLens, Lyman-α
 - ... but to be fair we should also include the new DLS and WtG ...
 - investigate small ΔN_{eff} regime (drag of DM on DR more relevant)

• investigate case with free-streaming DR