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CMB vs LSS tensions
• ΛCDM best-fit to Planck 2015: σ8 given by extrapolation of perturbations 

amplitude to z=0 (for given As, ns, H0, Ωm) 

• several LSS experiments measure directly σ8(z*), i.e. (Ωm)α σ8(z=0)

data σ8 Ωm

TT + lowTEB 0.829 ± 0.014 0.315 ± 0.013

+ BAO 0.829 ± 0.014 0.310 ± 0.008

+ JLA 0.829 ± 0.014 0.312 ± 0.012

+ H0 (conservative) 0.829 ± 0.014 0.312 ± 0.013

TTTEEE + lowTEB 0.831 ± 0.013 0.316 ± 0.009

+ BAO 0.831 ± 0.013 0.312 ± 0.006

+ JLA 0.831 ± 0.013 0.314 ± 0.009

+ H0 (conservative) 0.831 ± 0.013 0.314 ± 0.009
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Weak lensing observations
• From review of Kilbinger 2014 (68% CL) 

• most conservative guess: systematics at highest k (which dominate)
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Figure 7. Mean and 68% error bars for the parameter �8 (⌦m/0.3)
↵, for various cosmic shear

observations, plotted as function of their publication date (first arXiv submission). All parameter
values are given in Table 7.1. Di↵erent surveys are distinguished by colour as indicated in the
figure. Data points are shown for second-order statistics (circles), third-order (diamonds), 3D lensing
(pentagons), galaxy-galaxy lensing (+ galaxy clustering; triangle), and CMB (squares).

et al. 2000, Van Waerbeke et al. 2000, Wittman et al. 2000). The observations were taken with

di↵erent cameras and telescopes — the Prime Focus Imaging Camera (PFIC) on the William-Herschel

Telescope (WHT), UH8K and CFH12K on the Canada-France Hawaii Telscope (CFHT), and the

Big Throughput Camera (BTC) on Blanco — and covered sky areas between 0.5 and 1.5 deg2. These

early analyses measured correlations of galaxy ellipticities that were larger than the expected residual

systematics. Limits on ⌦
m

and �
8

could be obtained.

Those exploratory results were very soon followed by other surveys from a wide range of

telescopes, for example CFH12K/CFHT with the Red-sequence Cluster Survey (RCS) and VIRMOS-

DESCART (Van Waerbeke et al. 2001, Van Waerbeke et al. 2002, Hoekstra et al. 2002b, Hoekstra

et al. 2002c, van Waerbeke et al. 2005), FORS1 (FOcal Reducer and Spectrograph)/VLT (Very Large

Telescope; Maoli et al. 2001), the 75-deg2 survey with BTC/Blanco-CTIO (Jarvis et al. 2003, Jarvis

et al. 2006), PFIC/WHT (Massey et al. 2005), ESI (Echelle Spectrograph and Imager)/Keck II

(Bacon et al. 2003), WFI at MPG/ESO 2.2m with the Garching-Bonn Deep Survey (GaBoDS;

Hetterscheidt et al. 2007), and Suprime-Cam/Subaru (Hamana et al. 2003).

Cosmic shear then was measured using MegaCam/CFHT on the Canada-France Hawaii Legacy

Survey (CFHTLS). During five years this large program observed 170 square degrees in five optical

bands. First results from the first data release were published over 22 deg2 of the wide part (Hoekstra

et al. 2006) and the 3 out of the 4 deg2 of the deep part (Semboloni et al. 2005).

Apart from those ground-based observations, cosmic shear was successfully detected with the
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2σ-3σ tensions 
12% offset in σ8 
24% offset in P(k)
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Planck Collaboration: Cosmology from SZ cluster counts

Fig. 7: Comparison of constraints from the CMB to those from
the cluster counts in the (⌦m,�8)-plane. The green, blue and
violet contours give the cluster constraints (two-dimensional
likelihood) at 1 and 2� for the WtG, CCCP, and CMB lens-
ing mass calibrations, respectively, as listed in Table 2. These
constraints are obtained from the MMF3 catalogue with the
SZ+BAO+BBN data set and ↵ free. Constraints from the Planck
TT, TE, EE+lowP CMB likelihood (hereafter, Planck primary
CMB) are shown as the dashed contours enclosing 1 and 2� con-
fidence regions (Planck Collaboration XIII 2015), while the grey
shaded region also include BAO. The red contours give results
from a joint analysis of the cluster counts, primary CMB and
the Planck lensing power spectrum (Planck Collaboration XV
2015), leaving the mass bias parameter free and ↵ constrained
by the X-ray prior.

6.3. Constraints on ⌦m and �8: comparison to primary CMB

Our 2013 analysis brought to light tension between constraints
on⌦m and�8 from the cluster counts and those from the primary
CMB in the base ⇤CDM model. In that analysis, we adopted a
flat prior on the mass bias over the range 1 � b = [0.7, 1.0], with
a reference model defined by 1 � b = 0.8 (see discussion in the
Appendix of Planck Collaboration XX 2014). Given the good
consistency between the 2013 and 2015 cluster results (Fig. 3),
we expect the tension to remain under the same assumptions con-
cerning the mass bias.

Figure 7 compares our 2015 cluster constraints (MMF3
SZ+BAO+BBN) to those for the base ⇤CDM model from the
Planck CMB anisotropies. The cluster constraints, given the
three di↵erent priors on the mass bias, are shown by the filled
contours at 1 and 2�, while the dashed black contours give the
Planck TT, TE, EE+lowP constraints (hereafter Planck primary
CMB, Planck Collaboration XIII 2015); the grey shaded regions
add BAO to the CMB. The central value of the WtG mass prior
lies at the extreme end of the range used in 2013 (i.e., 1-b=0.7);
with its uncertainty range extending even lower, the tension with
primary CMB is greatly reduced, as pointed out by von der Lin-
den et al. (2014b). With similar uncertainty but a central value
shifted to 1 � b = 0.78, the CCCP mass prior results in greater
tension with the primary CMB. The lensing mass prior, finally,
implies little bias and hence much greater tension.

6.4. Joint Planck 2014 primary CMB and cluster constraints

We now turn to a joint analysis of the cluster counts and primary
CMB. We begin by finding the mass bias required to remove ten-

Fig. 8: Comparison of cluster and primary CMB constraints in
the base ⇤CDM model expressed in terms of the mass bias,
1 � b. The solid black curve shows the distribution of values re-
quired to reconcile the counts and primary CMB in ⇤CDM; it
is found as the posterior on the 1 � b from a joint analysis of
the Planck cluster counts and primary CMB when leaving the
mass bias free. The coloured dashed curves show the three prior
distributions on the mass bias listed in Tab. 2.

sion with the primary CMB, and then consider one-parameter
extensions to the base ⇤CDM model, varying the curvature, the
Thomson optical depth to reionization, the dark energy equation-
of-state, and the neutrino mass scale. Unless otherwise stated,
"CMB" in the following means Planck TT, TE, EE+lowP as de-
fined in Planck Collaboration XIII (2015). All intervals are 68%
confidence and all upper/lower limits are 95%.

6.4.1. Mass bias required by CMB

In Fig. 8 we compare the three prior distributions to the mass
bias required by the primary CMB. The latter is obtained as the
posterior on (1 � b) from a joint analysis of the MMF3 cluster
counts and the CMB with the mass bias as a free parameter. The
best-fit value in this case is (1 � b) = 0.58 ± 0.04, more than 1�
below the central WtG value. Perfect agreement with the primary
CMB would imply that clusters are even more massive than the
WtG calibration. This figure most clearly quantifies the tension
between the Planck cluster counts and primary CMB.

6.4.2. Curvature

By itself the CMB only poorly determines the spatial curvature
(Sect. 6.2.4 of Planck Collaboration XIII 2015), but by including
another astrophysical observation, such as cluster counts, it can
be tightly constrained. Our joint cluster and CMB analysis, with-
out external data, yields ⌦k = �0.012 ± 0.008, consistent with
the constraint from Planck CMB and BAO ⌦k = 0.000 ± 0.002.

6.4.3. Reionization optical depth

Primary CMB temperature anisotropies also provide a precise
measurement of the parameter combination Ase�2⌧, where ⌧ is
the optical depth from Thomson scatter after reionization and As
is the power spectrum normalization on large scales (Planck Col-
laboration XIII 2015). Low-` polarization anisotropies break the
degeneracy by constraining ⌧, but this measurement is delicate

Article number, page 9 of 17

Cluster count observations

Different ways to constrain SZ-
mass bias with lensing 

observations

• From Planck 2015 XXIV (Planck SZ clusters) 

• most conservative guess: systematics in determination of mass bias 

• tensions disappears when looking at recent constraints from X-ray cluster (Mantz et al. 2015), 
due to their new measurement of SZ-mass bias with weak lensing (WtG)  

• without this, all other X-ray, optical or SZ cluster counts return low σ8 (e.g. Böhringer et al. 
2014)

(Conservative marginalisation 
over slope α of SZ-mass 
scaling relation) 

}
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CMB lensing observations
• From Planck 2015: in Clφφ , mild tension near l~200, pushing for smaller σ8 

• on the other hand the lensing effect is strong in ClTT. Suggests that a P(k) suppressed only 
at small scales, not all scales, could be a slightly better fit.

Planck Collaboration: Cosmological parameters
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Fig. 11. Planck measurements of the lensing power spectrum compared to the prediction for the best-fitting base⇤CDM model to the
Planck TT+lowP data. Left: the conservative cut of the Planck lensing data used throughout this paper, covering the multipole range
40  `  400. Right: lensing data over the range 8  `  2048, demonstrating the general consistency with the ⇤CDM prediction
over this extended multipole range. In both cases, green points are the power from lensing reconstructions using only temperature
data, while blue points combine temperature and polarization. They are o↵set in ` for clarity. Error bars are ±1�. In the top panels
the solid lines are the best-fitting base⇤CDM model to the Planck TT+lowP data with no renormalization or �N(1) correction applied
(see text). The bottom panels show the di↵erence between the data and the renormalized and �N(1)-corrected theory bandpowers,
which enter the likelihood. The mild preference of the lensing measurements for lower lensing power around ` = 200 pulls the
theoretical prediction for C��` downwards at the best-fitting parameters of a fit to the combined Planck TT+lowP+lensing data,
shown by the dashed blue lines (always for the conservative cut of the lensing data, including polarization).

• Beam uncertainties are no longer included in the covariance
matrix of the C��` , since, with the improved knowledge of the
beams, the estimated uncertainties are negligible for the lens-
ing analysis. The only inter-bandpower correlations included
in the C��` bandpower covariance matrix are from the uncer-
tainty in the correction applied for the point-source 4-point
function.

As in the 2013 analysis, we approximate the lensing likelihood
as Gaussian in the estimated bandpowers, with a fiducial co-
variance matrix. Following the arguments in Schmittfull et al.
(2013), it is a good approximation to ignore correlations between
the 2- and 4-point functions; so, when combining the Planck
power spectra with Planck lensing, we simply multiply their re-
spective likelihoods.

It is also worth noting that the changes in absolute calibra-
tion of the Planck power spectra (around 2 % between the 2013
and 2015 releases) do not directly a↵ect the lensing results. The
CMB 4-point functions do, of course, respond to any recalibra-
tion of the data, but in estimating C��` this dependence is re-
moved by normalizing with theory spectra fit to the observed
CMB spectra. The measured C��` bandpowers from the 2013 and
current Planck releases can therefore be directly compared, and
are in good agreement (Planck Collaboration XV 2015). Care is
needed, however, in comparing consistency of the lensing mea-
surements across data releases with the best-fitting model pre-
dictions. Changes in calibration translate directly into changes
in Ase�2⌧, which, along with any change in the best-fitting opti-
cal depth, alter As, and hence the predicted lensing power. These
changes from 2013 to the current release go in opposite direc-
tions leading to a net decrease in As of 0.6 %. This, combined
with a small (0.15 %) increase in ✓eq, reduces the expected C��`
by approximately 1.5 % for multipoles ` > 60.

The Planck measurements of C��` , based on the temperature
and polarization 4-point functions, are plotted in Fig. 11 (with
results of a temperature-only reconstruction included for com-
parison). The measured C��` are compared with the predicted
lensing power from the best-fitting base ⇤CDM model to the
Planck TT+lowP data in this figure. The bandpowers that are
used in the conservative lensing likelihood adopted in this pa-
per are shown in the left-hand plot, while bandpowers over the
range 8  `  2048 are shown in the right-hand plot, to demon-
strate the general consistency with the ⇤CDM prediction over
the full multipole range. The di↵erence between the measured
bandpowers and the best-fit prediction are shown in the bottom
panels. Here, the theory predictions are corrected in the same
way as they are in the likelihood15.

Figure 11 suggests that the Planck measurements of C��` are
mildly in tension with the prediction of the best-fitting ⇤CDM
model. In particular, for the conservative multipole range 40 
`  400, the temperature+polarization reconstruction has �2 =
15.4 (for eight degrees of freedom), with a PTE of 5.2 %. For
reference, over the full multipole range �2 = 40.81 for 19 de-
grees of freedom (PTE of 0.3 %); the large �2 is driven by a
single bandpower (638  `  762), and excluding this gives an
acceptable �2 = 26.8 (PTE of 8 %). We caution the reader that
this multipole range is where the lensing reconstruction shows a
mild excess of curl-modes (Planck Collaboration XV 2015), and

15In detail, the theory spectrum is binned in the same way as the
data, renormalized to account for the (very small) di↵erence between
the CMB spectra in the best-fit model and the fiducial spectra used in the
lensing analysis, and corrected for the di↵erence in N(1), calculated for
the best-fit and fiducial models (around a 4 % change in N(1), since the
fiducial-model C��` is higher by this amount than in the best-fit model).
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Fig. 18. Samples in the �8–⌦m plane from the H13 CFHTLenS
data (with angular cuts as discussed in the text), coloured by the
value of the Hubble parameter, compared to the joint constraints
when the lensing data are combined with BAO (blue), and BAO
with the CMB acoustic scale parameter fixed to ✓MC = 1.0408
(green). For comparison the Planck TT+lowP constraint con-
tours are shown in black. The grey band show the constraint from
Planck CMB lensing.

authors argue may be indications of the e↵ects of baryonic feed-
back in suppressing the matter power spectrum at small scales).
The large-scale properties of CFHTLenS therefore seem broadly
consistent with Planck and it is only as CFHTLenS probes
higher wavenumbers, particular in the 2D and tomographic cor-
relation function analyses (Heymans et al. 2013; Kilbinger et al.
2013; Fu et al. 2014; MacCrann et al. 2014), that apparently
strong discrepancies with Planck appear.

The situation is summarized in Fig. 18. The sample points
show parameter values in the �8–⌦m plane for the ⇤CDM base
model, computed from the Heymans et al. (2013, hereafter H13)
tomographic measurements of ⇠±. These data consist of correla-
tion function measurements in six photometric redshift bins ex-
tending over the redshift range 0.2–1.3. We use the blue galaxy
sample, since H13 find that this sample shows no evidence for
intrinsic galaxy alignments (simplifying the comparison with
theory) and we apply the “conservative” cuts of H13, intended
to reduce sensitivity to the nonlinear part of the power spec-
trum; these cuts eliminate measurements with ✓ < 30 for any
redshift combinations involving the lowest two redshift bins.
Here we have used the halofit prescription of Takahashi et al.
(2012) to model the nonlinear power spectrum, but do not in-
clude any model of baryon feedback or intrinsic alignments.
For the lensing-only constraint we also impose additional pri-
ors in a similar way to the CMB lensing analysis described
in Planck Collaboration XV (2015), i.e., Gaussian priors⌦bh2 =
0.0223 ± 0.0009 and ns = 0.96 ± 0.02, where the exact values
(chosen to span reasonable ranges given CMB data) have little
impact on the results. The sample range shown also restricts the
Hubble parameter to 0.2 < h < 1; note that when comparing
with constraint contours, the location of the contours can change
significantly depending on the H0 prior range assumed. Here we
only show lensing contours after the samples have been pro-
jected into the space allowed by the BAO data (blue contours),
or also additionally restricting to the reduced space where ✓MC

is fixed to the Planck value, which is accurately measured. The
black contours show the constraints from Planck TT+lowP.

The lensing samples just overlap with Planck, and super-
ficially one might conclude that the two data sets are con-
sistent. But the weak lensing constraints approximately define
a 1-dimensional degeneracy in the 3-dimensional ⌦m–�8–H0
space, so consistency of the Hubble parameter at each point in
the projected space must also be considered (see appendix E1
of Planck Collaboration XV 2015). Comparing the contours in
Fig. 18 (the regions where the weak lensing constraints are con-
sistent with BAO observations) the CFHTLenS data favour a
lower value of �8 than the Planck data (and much of the area
of the blue contours also has higher ⌦m). However, even with
the conservative angular cuts applied by H13, the weak lens-
ing constraints depend on the nonlinear model of the power
spectrum and on the possible influence of baryonic feedback
in reshaping the matter power spectrum at small spatial scales
(Harnois-Déraps et al. 2014; MacCrann et al. 2014). The impor-
tance of these e↵ects can be reduced by imposing even more
conservative angular cuts on ⇠±, but of course, this weakens the
statistical power of the weak lensing data. The CFHTLenS data
are not used in combination with Planck in this paper (apart
from Sects. 6.3 and 6.4.4) and, in any case, would have little
impact on most of the extended ⇤CDM constraints discussed
in Sect. 6. Weak lensing can, however, provide important con-
straints on dark energy and modified gravity. The CFHTLenS
data are therefore used in combination with Planck in the com-
panion paper (Planck Collaboration XIV 2015) which explores
several halofit prescriptions and the impact of applying more
conservative angular cuts to the H13 measurements.

5.5.3. Planck cluster counts

In 2013 we noted a possible tension between our primary CMB
constraints and those from the Planck SZ cluster counts, with the
clusters preferring lower values of �8 in the base ⇤CDM model
in some analyses (Planck Collaboration XX 2014). The compar-
ison is interesting because the cluster counts directly measure �8
at low redshift; any tension could signal the need for extensions
of the base model, such as non-minimal neutrino mass (though
see Sect. 6.4). However, limited knowledge of the scaling rela-
tion between SZ signal and mass have hampered the interpreta-
tion of this result.

With the full mission data we have created a larger cata-
logue of SZ clusters with a more accurate characterization of
its completeness (Planck Collaboration XXIV 2015). By fitting
the counts in redshift and signal-to-noise, we are able to si-
multaneously constrain the slope of the SZ signal-mass scal-
ing relation and the cosmological parameters. A major uncer-
tainty, however, remains the overall mass calibration, which
in Planck Collaboration XX (2014) we quantified with a bias
parameter, (1 � b), with a fiducial value of 0.8 and a range
0.7 < (1 � b) < 1. In the base ⇤CDM model, the primary
CMB constraints prefer a normalization below the lower end
of this range, (1 � b) ⇡ 0.6. The recent, empirical normaliza-
tion of the relation by the Weighing the Giants lensing program
(WtG; von der Linden et al. 2014) gives 0.69 ± 0.07 for the 22
clusters in common with the Planck cluster sample. This cali-
bration reduces the tension with the primary CMB constraints in
base ⇤CDM. In contrast, correlating the entire Planck 2015 SZ
cosmology sample with Planck CMB lensing gives 1/(1 � b) =
1±0.2 (Planck Collaboration XXIV 2015), toward the upper end
of the range adopted in Planck Collaboration XX (2014) (though
with a large uncertainty). An alternative lensing calibration by
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Redshift space distorsions
• No significant tensions between f σ8 measurements and Planck ΛCDM best-fit 

• still, 2σ tension with a few points from BOSS. Depends on analysis details… 

• in summary, most noteworthy CMB-LSS tensions are with weak lensing data, and 
cluster data with “standard” assumption on mass bias

Planck Collaboration: Cosmological parameters

with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in

27
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• H0 not directly constrained by CMB, but indirectly by comparing Ωmh2 (matter density) 

and ΩΛ (late ISW, scale of the peak, lensing…), and even better with H0 + BAO 

• Situation unclear, conservative analyses (like Efstathiou 2014) get larger errors but 

always higher best-fit value

One non-LSS tension: direct H0 measurements

Planck Collaboration: Cosmological parameters

Table 8. Approximate constraints with 68% errors on ⌦m and
H0 (in units of km s�1 Mpc�1) from BAO, with !m and !b fixed
to the best-fit Planck+WP+highL values for the base ⇤CDM
cosmology.

Sample ⌦m H0

6dF . . . . . . . . . . . . . . . . . . . . . . . . . 0.305+0.032
�0.026 68.3+3.2

�3.2
SDSS . . . . . . . . . . . . . . . . . . . . . . . 0.295+0.019

�0.017 69.5+2.2
�2.1

SDSS(R) . . . . . . . . . . . . . . . . . . . . . 0.293+0.015
�0.013 69.6+1.7

�1.5
WiggleZ . . . . . . . . . . . . . . . . . . . . . 0.309+0.041

�0.035 67.8+4.1
�2.8

BOSS . . . . . . . . . . . . . . . . . . . . . . . 0.315+0.015
�0.015 67.2+1.6

�1.5
6dF+SDSS+BOSS+WiggleZ . . . . . . 0.307+0.010

�0.011 68.1+1.1
�1.1

6dF+SDSS(R)+BOSS . . . . . . . . . . . 0.305+0.009
�0.010 68.4+1.0

�1.0
6dF+SDSS(R)+BOSS+WiggleZ . . . . 0.305+0.009

�0.008 68.4+1.0
�1.0

surements constrain parameters in the base ⇤CDM model, we
form �2,

�2
BAO = (x � x

⇤CDM)T C�1
BAO(x � x

⇤CDM), (50)

where x is the data vector, x

⇤CDM denotes the theoretical pre-
diction for the ⇤CDM model and C�1

BAO is the inverse covari-
ance matrix for the data vector x. The data vector is as fol-
lows: DV(0.106) = (457 ± 27) Mpc (6dF); rs/DV(0.20) =
0.1905 ± 0.0061, rs/DV(0.35) = 0.1097 ± 0.0036 (SDSS);
A(0.44) = 0.474 ± 0.034, A(0.60) = 0.442 ± 0.020, A(0.73) =
0.424±0.021 (WiggleZ); DV(0.35)/rs = 8.88±0.17 (SDSS(R));
and DV(0.57)/rs = 13.67±0.22, (BOSS). The o↵-diagonal com-
ponents of C�1

BAO for the SDSS and WiggleZ results are given
in Percival et al. (2010) and Blake et al. (2011). We ignore any
covariances between surveys. Since the SDSS and SDSS(R) re-
sults are based on the same survey, we include either one set of
results or the other in the analysis described below, but not both
together.

The Eisenstein-Hu values of rs for the Planck and WMAP-9
base ⇤CDM parameters di↵er by only 0.9%, significantly
smaller than the errors in the BAO measurements. We can obtain
an approximate idea of the complementary information provided
by BAO measurements by minimizing Eq. (50) with respect to
either ⌦m or H0, fixing !m and !b to the CMB best-fit parame-
ters. (We use the Planck+WP+highL parameters from Table 5.)
The results are listed in Table 819.

As can be seen, the results are very stable from survey to
survey and are in excellent agreement with the base ⇤CDM
parameters listed in Tables 2 and 5. The values of �2

BAO are
also reasonable. For example, for the six data points of the
6dF+SDSS(R)+BOSS+WiggleZ combination, we find �2

BAO =
4.3, evaluated for the Planck+WP+highL best-fit⇤CDM param-
eters.

The high value of ⌦m is consistent with the parameter anal-
ysis described by Blake et al. (2011) and with the “tension” dis-
cussed by Anderson et al. (2013) between BAO distance mea-
surements and direct determinations of H0 (Riess et al. 2011;
Freedman et al. 2012). Furthermore, if the errors on the BAO
measurements are accurate, the constraints on ⌦m and H0 (for
fixed !m and !b) are of comparable accuracy to those from
Planck.

19As an indication of the accuracy of Table 8, the full likelihood
results for the Planck+WP+6dF+SDSS(R)+BOSS BAO data sets give
⌦m = 0.308 ± 0.010 and H0 = 67.8 ± 0.8 km s�1 Mpc�1, for the base
⇤CDM model.

Fig. 16. Comparison of H0 measurements, with estimates of
±1� errors, from a number of techniques (see text for details).
These are compared with the spatially-flat ⇤CDM model con-
straints from Planck and WMAP-9.

The results of this section show that BAO measurements are
an extremely valuable complementary data set to Planck. The
measurements are basically geometrical and free from complex
systematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to Planck. In addition, BAO
measurements can be used to break parameter degeneracies that
limit analyses based purely on CMB data. For example, from
the excellent agreement with the base ⇤CDM model evident in
Fig. 15, we can infer that the combination of Planck and BAO
measurements will lead to tight constraints favouring ⌦K = 0
(Sect. 6.2) and a dark energy equation-of-state parameter, w =
�1 (Sect. 6.5).

Finally, we note that we choose to use the
6dF+SDSS(R)+BOSS data combination in the likelihood
analysis of Sect. 6. This choice includes the two most accu-
rate BAO measurements and, since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble constant

A striking result from the fits of the base⇤CDM model to Planck
power spectra is the low value of the Hubble constant, which is
tightly constrained by CMB data alone in this model. From the
Planck+WP+highL analysis we find

H0 = (67.3±1.2) km s�1 Mpc�1 (68%; Planck+WP+highL).(51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP-9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012) find

H0 = (70.0 ± 2.2) km s�1 Mpc�1 (68%; WMAP-9), (52)

consistent with Eq. (51) to within 1�. We emphasize here that
the CMB estimates are highly model dependent. It is important

30
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Can we find models reconciling the σ8 tension?

• seems to be a trivial exercises 

• expectations: many models should be able to do that (neutrino 
sector, dark matter sector, modified gravity, dark energy) and it will 
be difficult to discriminate

8



Attempts with neutrinos
• Increasing total neutrino mass cannot work: 

• -12% in σ8 requires Mν ~ 0.5 eV 

• effect on CMB lensing spectrum: OK 

• effect on shape of ClTT (dip at 50 < l < 200 due to eISW and less “lensing smoothing”): 
problematic 

• effect on peak scale compensated by shift of H0 by ~ 5 km/s/Mpc: problematic 

• Decreasing Neff with same zeq cannot work either:  

• requires significantly smaller H0 : problematic 

• Complicated games with both, or with eV-mass sterile neutrinos… (e.g. Wyman et al. 2014; 
Battye & Moss 2014; Hamann & Hasenkamp 2013; Leistedt et al. 2014; Bergstroöm et al. 2014; 
MacCrann et al. 2014)

9



Attempts with neutrinos
• Complicated games with both, or with eV-mass sterile neutrinos… 

• Planck 2015 XIII : Δχ2 ~ 3 at most… 

Planck Collaboration: Cosmological parameters
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Fig. 33. 68 % and 95 % constraints from Planck TT+lowP (green), Planck TT+lowP+lensing (grey), and Planck
TT+lowP+lensing+BAO (red) on the late-Universe parameters H0, �8, and ⌦m in various neutrino extensions of the base ⇤CDM
model. The blue contours show the base ⇤CDM constraints from Planck TT+lowP+lensing+BAO. The dashed cyan contours show
joint constraints from the H13 CFHTLenS galaxy weak lensing likelihood (with angular cuts as in Fig. 18) at fixed CMB acoustic
scale ✓MC (fixed to the Planck TT+lowP ⇤CDM best fit) combined with BAO and the Hubble constant measurement of Eq. 30.
These additional constraints break large parameter degeneracies in the weak lensing likelihood that would otherwise obscure the
comparison with the Planck contours. (Priors on other parameters applied to the CFHTLenS analysis are as described in Sect. 5.5.2.)

astrophysical data described in Sect. 5.5, including the inference
of a low value of �8 from rich cluster counts.

6.4.5. Testing perturbations in the neutrino background

As shown in the previous sections, the Planck data provide ev-
idence for a cosmic neutrino background at a very high signifi-
cance level. Neutrinos a↵ect the CMB anisotropies at the back-
ground level, by changing the expansion rate before recombina-
tion and hence relevant quantities such as the sound horizon and
the damping scales. Neutrinos also a↵ect the CMB anisotropies
via their perturbations. Perturbations in the neutrino background
are coupled through gravity to the perturbations in the pho-
ton background, and can be described (for massless neutrinos)
by the following set of equations (Hu 1998; Hu et al. 1999;
Trotta & Melchiorri 2005; Archidiacono et al. 2011):

�̇⌫ =
ȧ
a

⇣
1 � 3c2

e↵

⌘ ✓
�⌫ + 3

ȧ
a

q⌫
k

◆
� k

 
q⌫ +

2
3k

ḣ
!

; (68a)

q̇⌫ = k c2
e↵

✓
�⌫ + 3

ȧ
a

q⌫
k

◆
� ȧ

a
q⌫ � 2

3
k⇡⌫ ; (68b)

⇡̇⌫ = 3k c2
vis

 
2
5

q⌫ +
4

15k
(ḣ + 6⌘̇)

!
� 3

5
kF⌫,3 ; (68c)

Ḟ⌫,` =
k

2` + 1
�
`F⌫,`�1 � (` + 1) F⌫,`+1

�
, (` � 3) . (68d)

Here dots denote derivatives with respect to conformal time, �⌫
is the neutrino density contrast, q⌫ is the neutrino velocity pertur-
bation, ⇡⌫ the anisotropic stress, F⌫,` are higher order moments
of the neutrino distribution function, and h and ⌘ are the scalar

metric perturbations in the synchronous gauge. In these equa-
tions, c2

e↵ is the neutrino sound speed in its own reference frame
and c2

vis parameterizes the anisotropic stress. For standard non-
interacting massless neutrinos c2

e↵ = c2
vis = 1/3. Any deviation

from the expected values could provide a hint of non-standard
physics in the neutrino sector.

A greater (lower) neutrino sound speed would increase (de-
crease) the neutrino pressure, leading to a lower (higher) per-
turbation amplitude. On the other hand, changing c2

vis alters the
viscosity of the neutrino fluid. For c2

vis = 0, the neutrinos act as
a perfect fluid, supporting undamped acoustic oscillations.

Several previous studies have used this approach to
constrain c2

e↵ and c2
vis using cosmological data (see e.g.,

Trotta & Melchiorri 2005; Smith et al. 2012; Archidiacono et al.
2013b; Gerbino et al. 2013; Audren et al. 2014), with the moti-
vation that deviations from the expected values could be a hint
of non-standard physics in the neutrino sector. Non-standard in-
teractions could involve, for example, neutrino coupling with
light scalar particles (Hannestad 2005; Beacom et al. 2004; Bell
2005; Sawyer 2006). If neutrinos are strongly coupled at recom-
bination, this would result in a lower value for c2

vis than in the
standard model. The presence of early dark energy that mimics
a relativistic component at recombination could possibly lead to
a value for c2

e↵ that di↵ers from 1/3 (see, e.g., Calabrese et al.
2011).

In this analysis, for simplicity, we assume Ne↵ = 3.046 and
massless neutrinos. By using an equivalent parameterization for
massive neutrinos (Audren et al. 2014) we have checked that as-
suming one massive neutrino with ⌃m⌫ ⇡ 0.06 eV, as in the base
model used throughout this paper, has no impact on the con-

45

10



Decaying Dark Matter
• idea that [ρDM a

3
] decreases between z~1000 and z~0 and reduces P(k,z) cannot work: 

• decay into SM particles: very strong cosmic ray bounds 

• decay into DR: allowed by particle physics bounds. P(k,z) changes on all scales due 
to combined background effect + modified perturbation growth rate at late times.  

• strong CMB constraints due to late ISW. No significant effect in P(k) remains. No 
significant improvement when fitting CMB+BAO+LSS 

• true for any model changing linear growth rate on cluster scales.

ii) a late Integrated Sachs-Wolfe (ISW) e↵ect, since a modification of the homogeneous
and perturbed density of DM at late times a↵ects the evolution of metric fluctuations
through the Poisson equation;

iii) a di↵erent amount of CMB lensing, a↵ecting the contrast between maxima and minima
in the lensed CMB spectra.

Figure 1. CMB temperature power spectrum for a variety of models, all with the same parameters
{100 ✓s,!ini

dcdm

,!
b

, ln(1010As), ns, ⌧reio} = {1.04119, 0.12038, 0.022032, 3.0980, 0.9619, 0.0925} taken
from the Planck+WP best fit [27]. For all models except the “Decaying CDM” one, the decay
rate �

dcdm

is set to zero, implying that the “dcdm” species is equivalent to standard cold DM with a
present density !

cdm

= !ini

dcdm

= 0.12038. The “Decaying CDM” model has �
dcdm

= 20 km s�1Mpc�1,
the “Tensors” model has r = 0.2, and the “Open” (“Closed”) models have ⌦k = 0.02 (�0.2). The
main di↵erences occur at low multiples and comes from either di↵erent late ISW contributions or
non-zero tensor fluctuations.

To check (ii), we plot in Figure 1 the unlensed temperature spectrum of models with �
dcdm

set either to 0 or 20 km s�1Mpc�1

4. To keep the early cosmological evolution fixed, we stick
to constant values of the density parameters (!ini

dcdm

, !
b

), of primordial spectrum parameters
(As, ns) and of the reionization optical depth ⌧

reio

. Of course, for �
dcdm

= 0, the dcdm
species is equivalent to standard cold DM with a current density !

cdm

= !ini

dcdm

. We need to
fix one more background parameter in order to fully specify the late cosmological evolution.
Possible choices allowed by class include h, or the angular scale of the sound horizon at
decoupling, ✓s = rs(t

dec

)/ds(t
dec

). We choose to stick to a constant value of ✓s, in order to

4
It is useful to bear in mind the conversion factor 1 km s

�1
Mpc

�1
= 1.02⇥ 10

�3
Gyr

�1
.

– 7 –

Figure 3. Matter power spectrum P (k) (computed in the Newtonian gauge) for the same models
considered in Figure 1. The black curve (Stable CDM) is hidden behind the red one (Tensors).

spectrum;

• the di↵erent values of h needed to get the same ✓s changes the ratio of the Hubble scale
at equality and today, hence shifting the spectrum horizontally;

• on top of these shifting e↵ects, the di↵erent evolution of �
dcdm

is such that dcdm has a
reduced linear growth factor, a↵ecting the actual shape of the matter power spectrum.

When introducing the curvature parameter, one gets a combination of the first two e↵ects
only. Moreover, variations of �

dcdm

and ⌦k leading to an e↵ect in the CMB of the same
amplitude give e↵ects on the P (k) with very di↵erent amplitudes. This comparison shows
that, at least in principle, CMB lensing e↵ects and direct constraints on P (k) may help to
break degeneracies, and to measure �

dcdm

independently of ⌦k and r. This can only be
confirmed by a global fit to current observations.

3.2 The data

The parameter extraction is done using a Metropolis Hastings algorithm, with a Cholesky
decomposition to better handle the large number of nuisance parameters [28]. We investi-
gate two combinations of experiments which we denote by A and B. Both share the Planck
likelihoods, consisting of the low-`, high-`, lensing reconstruction and low-` WMAP polari-
sation, as well as the WiggleZ data [29], and the BOSS measurement of the Baryon Acoustic
Oscillation scale at z = 0.57 [30]. The set B adds the BICEP2 public likelihood code [16],

– 9 –

from Audren et al. 2014;  
see also  

Enqvist et al. 2015
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Modified Gravity

• need to reduce dark matter growth rate on scales contributing to σ8  

• (already challenging? many models tend to increase it, e.g. f(R), Einstein-

aether, khronometric…) 

• photon/baryon dynamics should not be affected till z~1000 (primary CMB) 

• need to avoid significant enhancement of late ISW… 

• similar challenge for dark energy models…
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Interacting Dark Matter
• Dark Matter can have interactions: 

• with baryons and photons (< electromagnetic for CMB, + 
accelerator / direct / indirect detection constraints)  

• possibly larger ones with neutrinos, DR, DE, or with itself 

• rate of momentum transfer ΓDM ~ Tn ; particle physics models 
motivate different values of n ; rich phenomenology : 

• interaction can be important at early / intermediate / late time 

• many effects: (Silk) damping, drag, dark oscillation…
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            DM-γ  (Wilkinson et al.  2013)                                                    DM-ν  (Wilkinson et al.  2014) 

         σ ~ constant (Thomson-like),  ΓDM = 1/tc ~ T
4                                               

σ ~ constant (Thomson-like),  ΓDM ~ T
4                                     

Interacting Dark Matter
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FIG. 3: A comparison between the T T angular power spectra for the maximally allowed (constant) DM–g cross section (u ' 10�4), and the
9-year WMAP [3] and one-year Planck [41] best-fit data. Also plotted are the full 3-year data from the SPT [4] and ACT [5] telescopes. On
the left, we see a suppression of power with respect to WMAP-9 and Planck for ` & 3000 and on the right, we give our prediction for the T T
component of the angular power spectrum at high `.
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FIG. 4: The effect of DM–g interactions on the B-modes of the
angular power spectrum, where the strength of the interaction
is characterised by u ⌘

⇥
sDM�g/sTh

⇤
[mDM/100 GeV]�1 (with a

constant sDM�g) and we use the ‘Planck + WP’ best-fit parameters
from Ref. [41]. The data points are the recent B-mode polarisation
measurements from the SPT experiment, where SPTpol 1, SPTpol
2 and SPTpol 3 refer to (Ê150f̂CIB) ⇥ B̂150, (Ê95f̂CIB) ⇥ B̂150 and
(Ê150f̂CIB) ⇥ B̂150

c respectively in Ref. [54]. For the maximally
allowed (constant) DM–g cross section (u ' 10�4), we see a
deviation from the Planck best-fit LCDM model for ` & 500 and a
significant suppression of power for larger `.

Fig. 1) and the matter power spectrum (see Fig. 5). While the
overall effect is small for u . 10�4, if we consider ` & 500,
one can use the B-modes alone combined with the first-season
SPTpol data [54] to effectively rule out u & 5⇥10�3. In fact,
future polarisation data from e.g. SPT [4], POLARBEAR [55]
and SPIDER [56] could be sensitive enough to distinguish
u ' 10�5 from LCDM.

Finally, the matter power spectrum may provide us with
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FIG. 5: The influence of DM–g interactions on the matter power
spectrum, where the strength of the interaction is characterised by
u ⌘

⇥
sDM�g/sTh

⇤
[mDM/100 GeV]�1 (with a constant sDM�g) and

we use the ‘Planck + WP’ best-fit parameters from Ref. [41]. The
new coupling produces (power-law) damped oscillations at large
scales, reducing the number of small-scale structures, thus allowing
the cross section to be constrained. For allowed (constant) DM–g
cross sections (u . 10�4), significant damping effects are restricted
to the non-linear regime (k & 0.2 h Mpc�1).

an even stronger limit on the DM–g interaction cross section
(see Fig. 5). The pattern of oscillations together with the
suppression of power at small scales, as noticed already in
Ref. [33], could indeed constitute an interesting signature.
The observability of such an effect depends on the non–linear
evolution of the matter power spectrum (for which k &
0.2 h Mpc�1). Typically, one would expect it to be somewhat
intermediate between cold and warm dark matter (WDM)

5

if it is constant and

sDM�n,0 . 10�35 (mDM/GeV) cm2 , (8)

if it is proportional to the temperature squared.
Forthcoming polarisation data from e.g. Planck [4],

ACTpol [48], POLARBEAR [49] and SPIDER [50] will
improve these results and could provide us with a powerful
tool to study DM interactions in the future.

B. Large-Scale Structure

The effects of introducing DM–neutrino interactions on the
matter power spectrum, P(k), are shown in Fig. 2 (where
for simplicity, we assume that the cross section is constant).
We obtain a series of damped oscillations, which suppress
power on small scales (see Ref. [10]). For the cross sections
of interest, significant damping effects are restricted to the
non-linear regime (for which k & 0.2 h Mpc�1).

In general, the reduction of small-scale power for a DM
candidate is described by a transfer function, T (k), defined by

P(k) = T 2(k) PCDM(k) , (9)

where PCDM(k) is the equivalent matter power spectrum for
CDM.

For a non-interacting warm DM (WDM) particle, the
transfer function can be approximated by the fitting
formula [51]:

T (k) = [1+(ak)2n]�5/n , (10)

where

a =
0.049

h Mpc�1

⇣mWDM

keV

⌘�1.11
✓

WDM

0.25

◆0.11✓ h
0.7

◆1.22
, (11)

n ' 1.12 and mWDM is the mass of the warm thermal relic [52].
From Fig. 2, one can see that cosmological models

including DM–neutrino interactions can provide an initial
reduction of small-scale power in a similar manner to the
exponential cut-off of WDM. The presence of damped
oscillations is unimportant for setting limits since we are only
interested in the cut-off of the spectrum and the power is
already significantly reduced by the first oscillation. However,
we note that this difference could allow one to distinguish the
two models in high-resolution N-body simulations [53].

Using an analysis of the Lyman-a flux from the HIRES [54]
and MIKE spectrographs [55], Ref. [33] obtained a bound
on the free-streaming scale of a warm thermal relic,
corresponding to a particle mass of mWDM ' 3.3 keV (or
equivalently, a ' 0.012). This constraint is represented by
the solid grey curve in Fig. 2.

By comparing models of DM–neutrino interactions with
WDM, we can effectively rule out cross sections in
which the collisional damping scale is larger than the
maximally-allowed WDM free-streaming scale. Taking into
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FIG. 2: The impact of DM–neutrino interactions on the matter power
spectrum, where u ⌘ [sDM�n/sTh] [mDM/100 GeV]�1 (such that
u = 0 corresponds to no coupling). We take sDM�n to be constant
and use the ‘Planck + WP’ best-fit parameters from Ref. [32]. The
solid grey curve represents the most recent constraint on warm DM
models from the Lyman-a forest [33]. The new coupling produces
(power-law) damped oscillations, reducing the number of small-scale
structures with respect to vanilla LCDM [10].

account the freedom from the other cosmological parameters,
we obtain the conservative upper bounds:

sDM�n . 10�33 (mDM/GeV) cm2 , (12)

if the cross section is constant and

sDM�n,0 . 10�45 (mDM/GeV) cm2 , (13)

if it scales as the temperature squared.
These limits are significantly stronger than those obtained

from the CMB analysis in Sec. III A and will improve
further with forthcoming data from LSS surveys such as
SDSS-III [56] and Euclid [57]. However, CMB constraints
are important to compare to as they do not depend on the
non-linear evolution of the matter fluctuations.

We can now fix the cross section to be the maximum value
allowed by these constraints and redo our CMB analysis.
Applying Eq. (12) for a constant cross section, we obtain the
bounds on the cosmological parameters shown in Table II and
illustrated in Fig. 5. These results are similar to the case of no
interaction with Neff free to vary, corresponding to the second
line in Table I (especially after correcting the central value
of 100 h by 0.6, as explained in Footnote 6). The reason is
that the cross section imposed by the Lyman-a data is small
enough to not significantly modify the CMB spectrum.

Finally, we note that if more than one species were
responsible for the observed DM relic density (which is
the case that we consider here), larger values of the elastic
scattering cross section would be allowed.

• similar to WDM (exponential cut-off at scale given by k=aH when H~Γ). Models compatible with 
Lyman-α data are identical to ΛCDM on larger scales. 

• constraints also from CMB (effects on recombination time, sound speed, collisional damping of 
photons, photon-neutrino gravitational interactions…) 

• small differences when assuming σ ~ T
2
 - still the story is similar…
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           DM-baryons  (Dvorkin et al. 2013)                                        DM-DR  (Cyr-Racine et al. 2013) 

         σ ~ v
n
 ~ T

n/2
,  ΓDM ~ T

n/2+3                                                                                     
before dark recombination: ΓDM ~ T

4

Interacting Dark Matter

• similar to WDM (exponential cut-off). Models compatible with Lyman-α data are identical to 
ΛCDM on larger scales. 

• DM-baryons: weaker/stronger constraints from CMB, depending on n; DM-DR: dark oscillations 
impact CMB (fast modes in fast/slow decomposition)

9

FIG. 3: Left panel: Relative difference of the CMB power spectra of models with different velocity-dependent cross sections to
the best fit ΛCDM model. The cross sections of the different models correspond to the 95%CL limit from the CMB + Lyman-α
analysis (see Tab. I), while all other cosmological parameters are taken to optimize the likelihood for this given cross section.
Right panel: Matter power spectra at z = 3. The data point corresponds to the linear theory best fit amplitude using Lyman-α
data from [42]. The error bar corresponds to the 95% CL limit on the amplitude. The black band denotes the range of linear
matter power spectra slopes allowed at the 95% CL limit at k = 1.03 h/Mpc.

FIG. 4: Slope d lnP/d ln k for the different models, as a function of wave number. The data point corresponds to the best fit
value of the linear matter power spectrum slope from the Lyman-α measurement in Ref. [42], and the error bar on the point
corresponds to the 95% CL limit.

scattering cross section (for models with n > −4) would cause a cutoff in the matter power spectrum on small scales
(large k). In practice, as evident in Fig. 3, the Lyman-α data is restrictive enough to render the power spectra of our
models, where they are not overwhelmingly excluded, sufficiently close in form to a simple power law in the range
of k = O(1 Mpc−1), where reliable data currently exists. This statement holds true for n that are not too largely
positive, in which case the cutoff develops quickly as a function of k; our model with n = +2 provides a marginal
example for this situation. For such models with large positive velocity dependence, including n ≥ +2, we expect our
analysis to be over-conservative, and it should be possible to derive stronger bounds from a dedicated analysis. This
situation is analogous to that found for warm dark matter (WDM), where a simple likelihood analysis of the type we
used [45] finds significantly weaker constraints than those obtained in dedicated simulations [46].

V. BARYON-DM INTERACTIONS AND SUPPRESSION OF SMALL-SCALE STRUCTURE

Baryon-DM interactions may affect small-scale structure, and galactic substructure, in a number of ways. The most
straightforward effect is to suppress the growth in the early Universe of small-scale power and thus the halo mass
function at the low-mass end. Here we estimate the effect compatible with our constraints. We then, in the Section

7

providing a characteristic signature for these models.
We observe that for the majority of the models shown
(⌃DAO > 10�4), even such a small fraction of interact-
ing DM is in tension with measurements of the galaxy
correlation function from the BOSS survey. In the lower
panel, we fix ⌃DAO = 10�3 and instead vary the fraction
of interacting DM between 2% and 20%. We observe
the scaling of the DAO scale with fint, rDAO / 1/

p
fint,

and also that a ⇠ 2% fraction of strongly interacting DM
seems to be compatible with current data. As we discuss
in section VI, these qualitative observations will turn out
to be supported by quantitative analyses.

For quantitative statistical analyses, it is usually com-
putationally easier to consider the matter power spec-
trum directly. The signatures of interacting DM on the
matter power spectrum has been extensively studied in
Ref. [47] and we only review them briefly here. First, the
presence of the DAO scale in PIDM models generally ap-
pears as extra oscillations in the matter power spectrum
on scales with k > kDAO ⇠ ⇡/rDAO . Second, just as the
correlation function is suppressed on small-scales due to
acoustic damping in the dark plasma, the matter power
spectrum displays less power at large wave numbers as
compared with an equivalent ⇤CDM model.

In Fig. 3, we show the linear galaxy power spectrum for
di↵erent PIDM models, along with the measured power
spectrum from the BOSS-CMASS data [86]. In Sec-
tion VC, we explain how we convert theoretical PIDM
matter power spectra to the shown galaxy power spectra,
and give more details on the measurement of the BOSS-
CMASS power spectrum and the computation of its er-
rors. The upper panel of Fig. 3 displays how the power
spectrum varies as ⌃DAO changes for the case of only 5%
of interacting DM. The lower panel illustrates the varia-
tions in the power spectrum as fint changes from 2% to
20% for a fixed ⌃DAO = 10�3 (these are the same models
as those plotted in the lower panel of Fig. 2). The most
obvious signature of PIDM in these plots is the damping
of small-scale power. The actual acoustic oscillations are
only clearly visible for models with fint & 10%, indicat-
ing that dark oscillations are probably better illustrated
through the DAO scale in the correlation function for
models with small interacting DM fraction (see Fig. 2).

For the purpose of this work we limit our analysis to
linear scales and avoid modeling the small and very large
scales, where the galaxy clustering needs to include cor-
rections due to non-linearities [90–94] and large-scale ef-
fects [95–103], respectively. Our constraints on PIDM
models using measurements of the galaxy power spec-
trum will be presented in section VI.

B. Cosmic Microwave Background

The CMB probes cosmological fluctuations 380,000
years after the big bang. At that epoch, DM accounts for
about 65% of the energy budget of the Universe, hence
making the CMB a particularly good probe of nonstan-
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FIG. 3: Linear galaxy power spectra for di↵erent PIDM mod-
els. In the upper panel, we fix fint = 5%, ⇠ = 0.5 and vary
⌃DAO. The lower panel uses ⌃DAO = 10�3 and ⇠ = 0.5 but let
the fraction of interacting DM vary. To compare with galaxy
power spectrum from the CMASS catalogue, we have con-
volved our linear matter power spectra with the BOSS window
function and multiplied the results by a scale-independent
galaxy bias b = 2.01 (see section VC for more details). For
comparison, we also show a standard ⇤CDM model with an
equivalent number of e↵ective neutrinos. In this work, we
focus uniquely on linear scales, which lie to the left of the
dashed vertical line on the plot.

dard DM physics. The PIDM scenario a↵ects the CMB
in three di↵erent ways. First, the presence of extra DR
mimics the presence of extra neutrino species and a↵ects
the expansion history of the Universe, possibly modify-
ing the epoch of matter-radiation equality, the CMB Silk
damping tail, and the early Integrated Sachs-Wolfe ef-
fect. However, unlike standard free-streaming neutrinos,
the DR forms a tightly-coupled fluid at early times, lead-
ing to distinct signatures on CMB fluctuations (see e.g.
Ref. [104]). Second, the DR pressure prohibits the growth
of interacting DM fluctuations on length scales entering
the causal horizon before the epoch of DM kinematic
decoupling. This weakens the depth of gravitational po-
tential fluctuations on these scales, hence a↵ecting the
source term of CMB temperature fluctuations. Finally,
as discussed in the previous subsection, the modified mat-
ter clustering in the Universe due to nonstandard DM
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Interacting Dark Matter
• H ~ T

2
 during RD, T

3/2
 during MD 

• if ΓDM = 1/tc  ~ T
2
: 

• during RD:  Γ/H small and constant; no dark oscillations, but small DR drag effect on DM; small 
impact on all modes crossing during RD; slow mode: CMB unaffected 

• during MD: Γ/H -> 0, no impact on modes crossing during MD, δDM~a for all scales: no extra late 
ISW 

• such scaling not natural with photons (Compton-like), electrons (Coulomb-like) and neutrinos (Weak-
like) 

• many interesting non-SUSY-based Dark Matter models have dark gauge groups with: 

• dark photons (abelian),  

• dark gluons (non-abelian),  

• new charged fermions  

• may behave as Dark Radiation coupled to Dark Matter with appropriate scaling 

16



Interacting DM-DR with Γ~ T2

• Buen-Abad, Marques-Tamares, Schmaltz 2015: 

• dark gauge groupe SU(N) 

• DM has weak and dark interactions 

• DR = dark gluons, self-interacting, tiny mean free path, no viscosity 

• DM relic density value imposes ΔNeff(N) = 0.21, … 

• JL, Marques-Tamares, Schmaltz 2015: 

• dark gauge group U(1)  

• DM  has weak and dark interactions 

• DR = dark photon + massless fermions with dark charge, also self-interacting 

before matter-radiation equality and therefore have negligible kinetic energy density. We

take the dark matter to have negligible self-interactions and parameterize its contribution

to the energy budget of the universe with !
dm

= ⌦
dm

h2 as usual.

The drag force between the DM and DR can be parametrized by the linear coe�cient �

of friction which a non-relativistic DM particle of velocity v experiences as it propagates

through the thermal bath of radiation

~̇v = �a�~v , (2)

where the dot here and in the following represents a derivative with respect to conformal

time and a is the scale factor. The coe�cient � depends on the temperature of the DR. In

any specific model it can be computed (see Section 3) from the rate of momentum transfer

due to collisions of the DM particle as it travels though the DR. For the case of interest -

CDM - the velocities in Eq. (2) are non-relativistic and satisfy c2 � v2 � T
dr

/M where c is

the speed of light and M is the DM mass.

We use the formalism of Ma and Bertschinger [18] and write the coupled evolution equa-

tions for density and velocity perturbations of the DM, �
dm

and ✓
dm

, and the DR, �
dr

and

✓
dr

. In Conformal Newtonian Gauge, the equations for the DM and DR overdensities in

Fourier space are

�̇
dm

= �✓
dm

+ 3�̇ (3)

✓̇
dm

= � ȧ

a
✓
dm

+ a�(✓
dr

� ✓
dm

) + k2 (4)

�̇
dr

= �4

3
✓
dr

+ 4�̇ (5)

✓̇
dr

= k2

�
dr

4
+ k2 +

3

4

⇢
dm

⇢
dr

a�(✓
dm

� ✓
dr

) . (6)

Here ⇢
dm

and ⇢
dr

are the average energy densities of DM and DR, respectively; and � and

 are the scalar metric perturbations in Conformal Newtonian gauge. Notice the absence

of all higher moments of the DR perturbations, they vanish for perfect fluids.

The purpose of displaying these equations is to draw attention to the drag terms propor-

tional to � which couple the two velocity equations. They represent the drag forces which

result from collisions between the particles in the two fluids. To gain a rough understanding

of what these terms do, note that during radiation domination the coe�cient in the equation

6

for the dark radiation is suppressed by the small ratio ⇢
dm

/⇢
dr

. Therefore the main e↵ect

is the drag due to the DR on the DM. Note that the clock in these equations is set by the

Hubble rate, which scales like T 2 during radiation domination. Therefore, if we require that

the e↵ect of the drag term is small at any instant, but uniform over a long interval of time,

it must also scale as T 2. We will assume that this is the case, and show how to motivate

this behavior with concrete particle physics models in Section III.

After matter-radiation equality, the Hubble rate decreases more slowly, proportional to

T 3/2, whereas the drag continues to be proportional to T 2. Thus the e↵ects of the drag

quickly become negligible after equality. We use �
0

to denote the value of the drag coe�cient

extrapolated to today. The drag coe�cient at any other temperature is then

� = �
0

✓
T

T
0

◆
2

, (7)

where T
0

= 2.7255 K is the current CMB temperature.

B. E↵ects on the CMB and LSS spectrum

We implemented the above model in the Boltzmann code class

1 [19, 20]. Very few

modifications of the public version of the code are required for this model. We implemented

the new equations in both the Newtonian and Synchronous gauge, and checked that we get

exactly the same results in the two gauges. The only di↵erence is that in the Newtonian

gauge, we can run with a density of ordinary non-interacting cold dark matter !
cdm

set to

exactly zero, while in the synchronous gauge we must set it to a negligible but non-zero

value, e.g. !
cdm

= 10�10, since the latter gauge is by definition comoving with the CDM

component. The code assumes natural units (c = 1) and expresses conformal time and

Fourier wavenumbers in Megaparsecs (Mpc). Hence �
0

is naturally expressed in inverse

Mpc.

In Section IV, we will find that models with a rate of the order of �
0

' 2 ⇥ 10�7 Mpc�1

provide the best fits to the data. Figure 1 shows the evolution of �
dm

for such a value of

�
0

, compared to a ⇤CDM model with �
0

= 0. In the figure, �N
e↵

= 0.21, but we will

1

github.com/lesgourg/class public or class-code.net

7
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Interacting DM-DR with Γ~ T
2

• non-trivial effect of extra relativistic 
perfect fluid, mainly on CMB (see 
Audren et al. 2014, Planck 2015 XIII), 
small for P(k,z) 

• extra effect of DM-DR interaction: 

• tiny for CMB (photon-DM forces 
irrelevant, photon-DR forces 
relevant but weakly affected) 

• ~10 to 15 times larger for P(k,z): 
slow-down of DM growth during 
Radiat ion Domination (Dark 
Radiation drag)

FIG. 3: Residual of the matter power spectrum P (k, z = 0) in the same extended models as in the

previous figure, compared to the minimal ⇤CDM model (see the caption of figure 2 for details).

with self-coupled dark radiation and �N
e↵

= 0.21 (green curves). The impact of the DM-

DR interaction is hence given by the comparison of the red and green curves. Overall, this

impact is small, since for the same value of �
0

, the CMB is a↵ected at the level of ⇠ 2%, while

the matter power spectrum is a↵ected by 20 to 30% on the range of scales most relevant for

�
8

. This follows from the fact that in any model in which DM fluctuations evolve on a time

scale set by the Hubble rate (rather than some shorter time scale imposed by microphysics),

there is an e↵ective gravitational decoupling between DM and photon fluctuations [21, 22].

Models with DM-DR interactions can sometimes violate this condition, and generate “dark

oscillations” [7] with a period T ⌧ H�1. However, in our model and for the range of

parameters in which we are interested, dark oscillations remain negligible, as clearly shown

by Figure 1. Hence the e↵ective gravitational decoupling still holds in good approximation,

and primary CMB fluctuations are weakly a↵ected by modifications in the DM growth rate

during radiation domination. A small shift of the scale of acoustic peaks can be observed

in Figure 2, probably caused by the DR drag e↵ect on photons, which depends on the DR

perturbation behavior, and hence on the DR-DM coupling. Also, lensing distorsions of the

CMB spectra depend on �
0

, because of di↵erences in the matter power spectrum at late

10

P(k,z) / P(k,z=0)ΛCDM - 1
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Interacting DM-DR with Γ~ T
2

w.r.t.  ΛCDM :  
model is compatible with significantly smaller σ8, with same Ωm and equal or larger H0

B. Reconciling cosmological data sets

Our results are summarised by Table I. The most striking facts are, first, that our model

can reconcile CMB, BAO and LSS data, and even the H
0

measurement of [16]; and second,

that when at least CMB and LSS data are included in the fit, the minimum e↵ective �2

decreases by a substantial amount when going from the ⇤CDM model to our model: ��2 =

�9.6 for CMB+LSS and ��2 = �10.6 for CMB+BAO+LSS.65.6

69
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H
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0.708 0.75 0.792 0.835 0.877
�8

0.253 0.283 0.314 0.344 0.374
⌦m

0.708
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0.835
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�
8

65.6 69 72.5 75.9 79.3
H0

CMB+BAO
CMB+LSS
CMB+BAO+LSS
CMB+BAO+LSS+H0

FIG. 4: 68% and 95% CL contours for (�
8

, H
0

) and (�
8

, ⌦
m

): first, for the ⇤CDM model and

CMB+BAO data (green); next, for our model and CMB+BAO data (black), CMB+LSS data

(blue), CMB+BAO+LSS data (red). This figure can be compared with Fig. 33 of Planck 2015 [1],

to show a clear di↵erence between our model and all the massive active/sterile neutrino models

used in that figure: our model can explain a lower �
8

without requiring at the same time a lower

H
0

or a higher ⌦
m

(on the contrary, it is compatible with higher H
0

values).

A good way to appreciate these results is to look at the (�
8

, H
0

) and (�
8

, ⌦
m

) contours

shown in Figure 4. The CMB+BAO results for ⇤CDM are shown in green. These results are

notoriously in 3-4� tension with LSS data, which require at the same time a lower �
8

and a

similar ⌦
m

, and in 2-3� tension with the high value of H
0

from [16]. The CMB+BAO results

for our model are shown in black/grey. The comparison of the green and black contours

makes the point. Our model is compatible with much lower values of �
8

for the same range of

⌦
m

values. It is also compatible with much larger H
0

values. It is worth stressing a crucial

di↵erence between our model and more traditional models featuring extra relativistic or

massive relics (like sterile neutrinos), in combination with massive active neutrinos. These

16

ΛCDM, CMB+BAO 

DM-DR, CMB+BAO 

DM-DR, CMB+LSS 

DM-DR, CMB+BAO+LSS

CMB = Planck 2015 TT + lowTEB 

BAO = same as in Planck 2015 

LSS = Planck lensing + Planck SZ + CFHTLens
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Interacting DM-DR with Γ~ T2

w.r.t.  ΛCDM :  
model is compatible with significantly smaller σ8, with same Ωm and equal or larger H0

DM-DR, CMB+BAO 

DM-DR, CMB+LSS 

DM-DR, CMB+BAO+LSS

CMB = Planck 2015 TT + lowTEB 

BAO = same as in Planck 2015 

LSS = Planck lensing + Planck SZ + CFHTLens

FIG. 5: Posterior probabilities for the eight parameters forming the basis of our model and for two

derived parameters (⌦
m

, �
8

), for CMB data combined with BAOs (black), LSS (blue), BAO+LSS

(red), BAO+LSS+H
0

(yellow). See the text for details on parameter definitions and units, and for

the precise content of each dataset.

figure also shows that adding an H
0

prior has very little e↵ect, excepted on H
0

itself, and

on the correlated parameter �N
e↵

(which is compatible with the lower value of the prior

range �N
e↵

= 0.21 in all the cases without an H
0

prior).
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FIG. 6: 68% and 95% CL contours for (�N
e↵

, �
0

), (�N
e↵

, H
0

), (�
0

, �
8

), with CMB+BAO data

(black), CMB+LSS data (blue), CMB+BAO+LSS data (red).

The relation between the observable parameters (�
8

, H
0

) and the fundamental parameters

(�
0

, �N
e↵

) is better illustrated by figure 6. The fact that the dark matter–dark radiation

interaction has the e↵ect of reducing the small-scale matter power spectrum is directly re-

sponsible for the strong correlation between �
8

and �
0

. Concerning the correlation between

H
0

and �N
e↵

, a few comments are in order. At the level of background cosmology, �N
e↵
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Interacting DM-DR with Γ~ T
2

• 3-4σ evidence for DM-DR interaction 

• ΔNeff compatible with minimal value (unless H0 from Riess et al. taken seriously)

More general models (e.g. with entropy production caused by the decay of some other

particles) could lead to arbitrary values, even within the range [0-0.19]. We did a first series

of runs treating �N
e↵

as a continuous parameter with flat prior for �N
e↵

� 0. In that case,

we found that the posterior distribution is bi-modal, with one local maximum for very small

�N
e↵

values (of order 0.1) and very high interaction rates (up to 5 ⇥ 10�7Mpc�1), and a

second one for larger �N
e↵

and smaller interaction rate. Since bi-modal distributions are

di�cult to sample, we decided to define two di↵erent models, one with a prior �N
e↵

� 0.21

motivated by the non-Abelian DM model described in section III, and one with a prior

0  �N
e↵

< 0.21 motivated by other classes of models where the dark gluon density is

suppressed e.g. through entropy production. In this paper, we report results only for the

model with �N
e↵

� 0.21, and leave the latter case for a future publication. With such a

prior, the posterior appears to be unimodal, approximately gaussian-shaped with respect to

all cosmological parameters, and easy to sample with the Metropolis-Hastings algorithm.

Parameter CMB+BAO CMB+LSS CMB+BAO CMB+BAO

+LSS +LSS+H
0

100!
b

2.253+0.025

�0.026

2.229+0.034

�0.043

2.237+0.025

�0.027

2.247+0.025

�0.026

!
dm

0.1256+0.0020

�0.0037

0.1273+0.0035

�0.0044

0.1268+0.0025

�0.0046

0.1280+0.0034

�0.0052

�N
e↵

< 0.68 < 0.78 < 0.79 0.52+0.13

�0.27

107�
0

[Mpc�1] < 1.45 1.70+0.57

�0.58

1.60+0.43

�0.44

1.60+0.44

�0.46

H
0

70.3+0.8

�1.2

70.0+1.6

�2.3

70.4+1.0

�1.4

71.1+1.1

�1.4

109A
s

2.230+0.079

�0.085

2.210+0.064

�0.077

2.218+0.066

�0.069

2.223+0.062

�0.070

n
s

0.9739+0.0049

�0.0052

0.9762+0.0070

�0.0081

0.9776+0.0049

�0.0054

0.9796+0.0049

�0.0053

⌧
reio

0.08766+0.018

�0.019

0.080+0.017

�0.019

0.083+0.016

�0.015

0.085+0.014

�0.015

⌦
m

0.3018+0.0081

�0.0084

0.308+0.020

�0.019

0.3026+0.0085

�0.0087

0.2991+0.0080

�0.0082

�
8

0.8153+0.024

�0.020

0.764+0.017

�0.019

0.768+0.011

�0.011

0.771+0.011

�0.011

��2 / ⇤CDM 0 -9.6 -10.6 -11.8

TABLE I: Mean value and 68%CL confidence interval (or, in a few cases, 95%CL upper limit)

for the eight parameter of our model (being assigned flat priors) and two derived parameters. The

last line shows the minimum �2 value compared to that of ⇤CDM with the same data.
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More general models (e.g. with entropy production caused by the decay of some other

particles) could lead to arbitrary values, even within the range [0-0.19]. We did a first series

of runs treating �N
e↵

as a continuous parameter with flat prior for �N
e↵

� 0. In that case,

we found that the posterior distribution is bi-modal, with one local maximum for very small

�N
e↵

values (of order 0.1) and very high interaction rates (up to 5 ⇥ 10�7Mpc�1), and a

second one for larger �N
e↵

and smaller interaction rate. Since bi-modal distributions are

di�cult to sample, we decided to define two di↵erent models, one with a prior �N
e↵

� 0.21

motivated by the non-Abelian DM model described in section III, and one with a prior

0  �N
e↵

< 0.21 motivated by other classes of models where the dark gluon density is

suppressed e.g. through entropy production. In this paper, we report results only for the

model with �N
e↵

� 0.21, and leave the latter case for a future publication. With such a

prior, the posterior appears to be unimodal, approximately gaussian-shaped with respect to

all cosmological parameters, and easy to sample with the Metropolis-Hastings algorithm.
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TABLE I: Mean value and 68%CL confidence interval (or, in a few cases, 95%CL upper limit)

for the eight parameter of our model (being assigned flat priors) and two derived parameters. The

last line shows the minimum �2 value compared to that of ⇤CDM with the same data.
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More general models (e.g. with entropy production caused by the decay of some other

particles) could lead to arbitrary values, even within the range [0-0.19]. We did a first series

of runs treating �N
e↵

as a continuous parameter with flat prior for �N
e↵

� 0. In that case,

we found that the posterior distribution is bi-modal, with one local maximum for very small

�N
e↵

values (of order 0.1) and very high interaction rates (up to 5 ⇥ 10�7Mpc�1), and a

second one for larger �N
e↵

and smaller interaction rate. Since bi-modal distributions are

di�cult to sample, we decided to define two di↵erent models, one with a prior �N
e↵

� 0.21

motivated by the non-Abelian DM model described in section III, and one with a prior

0  �N
e↵

< 0.21 motivated by other classes of models where the dark gluon density is

suppressed e.g. through entropy production. In this paper, we report results only for the

model with �N
e↵

� 0.21, and leave the latter case for a future publication. With such a

prior, the posterior appears to be unimodal, approximately gaussian-shaped with respect to

all cosmological parameters, and easy to sample with the Metropolis-Hastings algorithm.
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TABLE I: Mean value and 68%CL confidence interval (or, in a few cases, 95%CL upper limit)

for the eight parameter of our model (being assigned flat priors) and two derived parameters. The

last line shows the minimum �2 value compared to that of ⇤CDM with the same data.
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Interacting DM-DR with Γ~ T
2

• ongoing and future:  

• include P(k) from SDSS, full shape of CFHTLens, Lyman-α 

• … but to be fair we should also include the new DLS and WtG … 

• investigate small ΔNeff regime (drag of DM on DR more relevant) 

• investigate case with free-streaming DR
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