Evolution of linear perturbations in (Λ) LTB models

Sven Meyer in collaboration with: Matthias Redlich, Simon Hirscher & Matthias Bartelmann

ITA/ZAH University of Heidelberg

Heidelberg, October 26, 2015

Evolution equations and features

Outline

Sevention equations and features

Results

Simplest inhomogeneous generalisation of the standard FLRW metric based on an exact solution of Einstein's field equations

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \frac{a_{\parallel}^2(t,r)}{1-\kappa(r)r^2}\mathrm{d}r^2 + r^2a_{\perp}^2(t,r)\mathrm{d}\Omega^2$$

Linear perturbations

Evolution equations and features

Results

Motivation

Original idea:

- large Gpc scale spherical void (embedded into FLRW)
- accounts for DE effects on backward lightcone

http://www.thphys.uni-heidelberg.de /~cosmo/dokuwiki/doku.php/altmodels

Problems:

- global $h_{\rm CMB} < 0.4 \leftrightarrow$ local $h_{\rm SNe} = 0.738$ (Riess et al. (2011))
- no evidence for strong anisotropy away from our position (kSZ effect)

- cosmological constant Λ
- Λ + radial inhom. $\rightarrow \Lambda LTB$
- constrain deviations from homogeneity \Rightarrow test the **Copernican** Principle

Provide more observables to

- **1** definitely distinguish and ΛLTB model from ΛCDM
- 2 confirm and strengthen findings on spherical voids on a broad scientific basis

investigate linear structure growth in (Λ) LTB models

from Redlich et al. (2014)

Linear structure growth in $\Lambda LTB:$ structures evolve position-dependent and anisotropic

spherically symmetry at background level:

expansion into **spherical harmonics** $Y^{(\ell m)}(\theta, \phi)$ and cov. derivatives (Clarkson et al. (2010), Gundlach & Martín-García (2000), Gerlach & Sengupta (1978))

$$\begin{split} \phi &= \sum_{(\ell m)} \phi^{(\ell m)} Y^{(\ell m)} \\ \phi_a &= \sum_{(\ell m)} \phi^{(\ell m)} Y^{(\ell m)}_a + \bar{\phi}^{(\ell m)} \bar{Y}^{(\ell m)}_a \\ \phi_{ab} &= \sum_{(\ell m)} \phi^{(\ell m)} Y^{(\ell m)}_{ab} + \bar{\phi}^{(\ell m)} \bar{Y}^{(\ell m)}_{ab} \end{split}$$

 \Rightarrow Scalar-Vector-Tensor expressions on \mathcal{S}^2

Sets of gauge invariant quantities can be found

different from FLRW gauge invariant quantities $\{\Psi, \Phi, V_i, h_{ij}\}!$

metric perturbations - Clarkson et al. (2010)

Abstract set of gauge invariant metric perturbations: $\{\chi^{(\ell m)}, \varphi^{(\ell m)}, \varsigma^{(\ell m)}, \eta^{(\ell m)}\}$

$$\begin{split} \ddot{\chi} - \frac{\chi'' + C\chi'}{Z^2} + 3H_{\parallel}\dot{\chi} - \left[A - \frac{(\ell - 1)(\ell + 2)}{r^2 a_{\perp}^2}\right]\chi &= \mathcal{S}_{\chi}(\varsigma, \varsigma', \varphi, \dot{\varphi})\\ \ddot{\varphi} + 4H_{\perp}\dot{\varphi} - \left(\frac{2\kappa}{a_{\perp}^2} - \Lambda\right)\varphi &= \mathcal{S}_{\varphi}(\varsigma, \chi, \dot{\chi}, \chi', \ell)\\ \dot{\varsigma} + 2H_{\parallel}\varsigma &= \mathcal{S}_{\varsigma}(\chi')\\ \eta &= 0 \end{split}$$

Similar for matter perturbations $\left\{\Delta^{(\ell m)}, w^{(\ell m)}, v^{(\ell m)}\right\}$

Dynamical coupling of gauge invariants !

main differences compared to FLRW:

- dynamical coupling during spacetime evolution
- physical interpretation: LTB gauge invariants ≠ FLRW gauge invariants

Numerical solution

- initial conditions
- boundary conditions
- discretization (Finite Elements)

extract observables

- light propagation:
- sensitive to combination of gauge-invariants ← Ricciand Weyl focussing terms
- consequences: κ , γ

- initial universe at large redshift sufficiently homogeneous and isotropic
- start from initial scalar perturbations in spatially flat FLRW limit (Ψ)
- sample spherical harmonic coefficients from multivariate Gaussian distribution

covariance matrices:

$$C_{\Psi}^{\ell}(r_i, r_j) = \frac{2}{\pi} \int_0^\infty \mathrm{d}k \ k^2 P_{\Psi}(k) j_{\ell}(kr_i) j_{\ell}(kr_j)$$

obtain initial profiles

$$\varphi^{(\ell m)}(t_{\rm ini}, r) = -2\Psi^{(\ell m)}(t_{\rm ini}, r)$$

evolve each spherical harmonic coefficients $(\ell, m) \leftarrow$ parallelised

Overview on algorithm & angular Powerspectra

background model

- void density profile
- asymptotically embedded into FLRW model

evolve backwards to initial time/redshift ($z_{\rm ini} \sim 100$)

• Evolve linear PDEs for each (ℓ,m) -mode forward in time

$$C^{\ell}(z) = \sum_{m=-\ell}^{\ell} \frac{\left|a^{(\ell m)}(t(z), r(z))\right|^2}{2\ell + 1}$$

• initial perturbations (FLRW limit)

•
$$\varphi^{(\ell m)} = -2\Psi^{(\ell m)}$$

•
$$\chi^{(\ell m)} = \varsigma^{(\ell m)} = 0$$

LTB model embedded into EdS

$$\epsilon(t,r) = rac{H_\parallel - H_\perp}{H_\parallel + 2H_\perp}$$

15 / 18

average coupling strength

$$\epsilon_{\varphi}^{\ell}(z) = \left| \frac{\sqrt{C_{\varphi}^{\ell}\left(t(z), r(z)\right)} - \sqrt{C_{\varphi, \mathrm{uc}}^{\ell}(t(z), r(z))}}{\sqrt{C_{\varphi, \mathrm{uc}}^{\ell}(t(z), r(z))}} \right|$$

Application to best fit Λ LTB nearly done !

Geodesic deviation:

$$\nabla_k^2 \eta^\mu = R^\mu_{\ \nu\alpha\beta} k^\alpha k^\beta \eta^\nu$$

decomposition into Sachs basis, affine parameter :

$$\eta^{\mu} = \eta_1 n_1^{\mu} + \eta_2 n_2^{\mu}$$
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} (\ldots) = k^{\mu} \nabla_{\mu} (\ldots)$$
$$\eta_a(\lambda) = D_{ab}(\lambda) \left. \frac{\mathrm{d}\eta_b}{\mathrm{d}\lambda} \right|_{\lambda=0}$$

Express Ricci and Weyl focussing in terms of LTB gauge invariants

Jacobi equation: $D_{ab} = D_A^{(\text{LTB})} \delta_{ab} + D_{ab}^{(1)}$ (central observer)

$$\frac{\mathrm{d}^{2}D_{ab}^{(1)}}{\mathrm{d}\lambda^{2}} = -4\pi G\rho\left(t,r\right)\left(1+z\right)^{2}D_{ab}^{(1)} + ra_{\perp}\left(t,r\right)\mathcal{T}_{ab}^{(1)}\left[\left\{\eta^{(\ell m)},\chi^{(\ell m)},\varsigma^{(\ell m)},\varphi^{(\ell m)}\right\}\right]$$

Lensing amplification:

$$(A_{ab}) = \frac{(D_{ab})}{D_A^{(\text{LTB})}} = \frac{(D_{ab})}{ra_\perp} = \begin{pmatrix} 1-\kappa & 0\\ 0 & 1-\kappa \end{pmatrix} - \begin{pmatrix} \gamma_1 & \gamma_2\\ \gamma_2 & -\gamma_1 \end{pmatrix}$$

Lensing quantities

$$\begin{split} \kappa &= -\frac{1}{2} \frac{D_{11}^{(1)} + D_{22}^{(1)}}{r a_{\perp}} \\ \gamma_1 &= -\frac{1}{2} \frac{D_{11}^{(1)} - D_{22}^{(1)}}{r a_{\perp}} \\ \gamma_2 &= -\frac{1}{2} \frac{D_{12}^{(1)} + D_{21}^{(1)}}{r a_{\perp}} \end{split}$$

- determine angular power spectra $C^\ell_{\kappa\kappa}$ and $C^\ell_{\gamma\gamma}$
- compare to observationally determined spectra

Conclusion

- numerical solution of evolution equations of gauge invariant perturbations in Λ LTB spacetimes (proof of concept)
- coupling strength significant in sufficiently deep and large voids (without Λ)
- \bullet application to best fit $\Lambda {\rm LTB}$ models nearly done
- observable predictions from light propagation (work in progress)