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Simplest inhomogeneous generalisation of the standard FLRW
metric based on an exact solution of Einstein’s field equations

1 radially inhomogeneous

2 spherically symmetric about
single ”central” worldline

3 dust solution
Tµν = ρ(t, r)uµuν

r1 r2

a||(t, r2)

a⊥(t, r2)

a||(t, r1)

a⊥(t, r1)

r = 0

ds2 = −dt2 +
a2‖(t, r)

1− κ(r)r2
dr2 + r2a2⊥(t, r)dΩ2
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Motivation

Original idea:

large Gpc scale spherical
void
(embedded into FLRW)

accounts for DE effects on
backward lightcone

http://www.thphys.uni-heidelberg.de
/∼cosmo/dokuwiki/doku.php/altmodels

Problems:

global hCMB < 0.4 ←→ local hSNe = 0.738 (Riess et al. (2011))

no evidence for strong anisotropy away from our position (kSZ
effect)
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cosmological constant Λ

Λ + radial inhom. → ΛLTB

constrain deviations from
homogeneity ⇒ test the
Copernican Principle 0 1 2 3

Radial coordinate r [Gpc]
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Confidence interval (68%)
Mean density (68%)

from Redlich et al. (2014)

Provide more observables to

1 definitely distinguish and ΛLTB model from ΛCDM

2 confirm and strengthen findings on spherical voids on a broad
scientific basis

investigate linear structure growth in (Λ)LTB models
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Linear structure growth in ΛLTB: structures evolve position-dependent
and anisotropic

spherically symmetry at background level:

expansion into spherical harmonics Y (`m)(θ, φ) and cov. derivatives
(Clarkson et al. (2010), Gundlach & Mart́ın-Garćıa (2000), Gerlach &

Sengupta (1978))

φ =
∑
(`m)

φ(`m)Y (`m)

φa =
∑
(`m)

φ(`m)Y (`m)
a + φ̄(`m)Ȳ (`m)

a

φab =
∑
(`m)

φ(`m)Y
(`m)
ab + φ̄(`m)Ȳ

(`m)
ab

⇒ Scalar-Vector-Tensor
expressions on S2

Sets of gauge invariant
quantities can be found

different from FLRW gauge invariant quantities {Ψ,Φ, Vi, hij}!
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metric perturbations - Clarkson et al. (2010)

Abstract set of gauge invariant metric perturbations:{
χ(`m), ϕ(`m), ς(`m), η(`m)

}

χ̈− χ′′ + Cχ′

Z2
+ 3H‖χ̇−

[
A− (`− 1)(`+ 2)

r2a2
⊥

]
χ = Sχ(ς, ς ′, ϕ, ϕ̇)

ϕ̈+ 4H⊥ϕ̇−
(

2κ

a2
⊥
− Λ

)
ϕ = Sϕ(ς, χ, χ̇, χ′, `)

ς̇ + 2H‖ς = Sς(χ′)
η = 0

Similar for matter perturbations
{

∆(`m), w(`m), v(`m)
}

Dynamical coupling of gauge invariants !
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main differences compared to FLRW:

dynamical coupling during spacetime evolution

physical interpretation: LTB gauge invariants 6= FLRW
gauge invariants

Numerical solution

initial conditions

boundary conditions

discretization (Finite
Elements)

extract observables

light propagation:

sensitive to combination of
gauge-invariants ← Ricci-
and Weyl focussing terms

consequences: κ, γ
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domain of interest

r

t

rmax r∗

extension

tini

t0
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ary

void profile ρ(t, r)

initial conditions in FLRW limit

Dirichlet B.C.s

regularity at r = 0:

a(`m)(t, 0) = 0

Gundlach et al. (2000)

artificial boundary
at r = r∗:

a(`m)(t, r∗) = 0

(adapted from

February et al. (2014))
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initial universe at large redshift sufficiently
homogeneous and isotropic

start from initial scalar perturbations in
spatially flat FLRW limit (Ψ)

sample spherical harmonic coefficients
from multivariate Gaussian distribution

covariance matrices:

C`Ψ(ri, rj) =
2

π

∫ ∞
0

dk k2PΨ(k)j`(kri)j`(krj)

obtain initial profiles

ϕ(`m)(tini, r) = −2Ψ(`m)(tini, r)
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discretize domain of
interest in radius (Finite
Elements)

expand variables in basis
polynomials

time evolution of
coefficients
(method of lines)

Distributed and Unified Numerics Environment

Dune

f (x) ≈
5
∑

i=1
ci · φi(x)

φi(x) = (x− xi)/(xi+1− xi)

x1 x2 x3 x4 x5 x

y

a b

t

r

t = tini

t = t1

t = tn−1

t = tfinal

spatial discretization with finite elements

time propagation with ODE solvers

evolve each spherical harmonic coefficients (`,m) ← parallelised

11 / 18



(Λ)LTB models in general Linear perturbations Evolution equations and features Results

Overview on algorithm & angular Powerspectra

background model

void density profile

asymptotically embedded
into FLRW model

evolve backwards to initial
time/redshift (zini ∼ 100)

Evolve linear PDEs for
each (`,m)-mode forward
in time

C`(z) =
∑̀
m=−`

∣∣a(`m)(t(z), r(z))
∣∣2

2`+ 1

initial perturbations
(FLRW limit)

ϕ(`m) = −2Ψ(`m)

χ(`m) = ς(`m) = 0

12 / 18



(Λ)LTB models in general Linear perturbations Evolution equations and features Results

LTB model embedded into EdS

Gaussian void profile: ρ(t0, r) = ρbg · f(r,Ωin, L)

f(r,Ωin, L) = 1 + (Ωin − 1) exp

(
− r2

2L2

)
ρ(t0, r)

r

FLRW limitρFLRW

L

Ωin · ρFLRW
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average coupling strength

ε`ϕ(z) =

∣∣∣∣∣
√
C`ϕ,(t(z), r(z))−

√
C`ϕ,uc(t(z), r(z))√

C`ϕ,uc(t(z), r(z))

∣∣∣∣∣
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angular powerspectra at
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coupling strength

Application to best fit ΛLTB nearly done !
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screen

ηµ = dγµ

dσ

deformed screen

fiducial ray kµ = dxµ

dλ

γµ(σ)

Geodesic deviation:

∇2
kη
µ = Rµναβk

αkβην

decomposition into Sachs basis, affine
parameter :

ηµ = η1n
µ
1 + η2n

µ
2

d

dλ
(. . .) = kµ∇µ (. . .)

ηa(λ) = Dab(λ)
dηb
dλ

∣∣∣∣
λ=0

d2Dab
dλ2

= TacDcb

with Tab = −1

2
Rαβk

αkβδab︸ ︷︷ ︸
Ricci focussing

+Cαβγδn
α
ak

βkγnδb︸ ︷︷ ︸
Weyl focussing

Express Ricci and Weyl focussing in terms of LTB gauge invariants
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Jacobi equation: Dab = D
(LTB)
A δab +D

(1)
ab (central observer)

d2D
(1)
ab

dλ2
= −4πGρ (t, r) (1 + z)2 D

(1)
ab +ra⊥ (t, r) T (1)

ab

[
{η(`m), χ(`m), ς(`m), ϕ(`m)}

]
Lensing amplification:

(Aab) =
(Dab)

D
(LTB)
A

=
(Dab)

ra⊥
=

(
1− κ 0

0 1− κ

)
−
(
γ1 γ2

γ2 −γ1

)
.

Lensing quantities

κ = −1

2

D
(1)
11 +D

(1)
22

ra⊥

γ1 = −1

2

D
(1)
11 −D

(1)
22

ra⊥

γ2 = −1

2

D
(1)
12 +D

(1)
21

ra⊥

determine angular power spectra C`κκ
and C`γγ

compare to observationally determined
spectra
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Conclusion

numerical solution of evolution equations of gauge invariant

perturbations in ΛLTB spacetimes (proof of concept)

coupling strength significant in sufficiently deep and large

voids (without Λ)

application to best fit ΛLTB models nearly done

observable predictions from light propagation (work in

progress)

18 / 18


	()LTB models in general
	Linear perturbations
	Evolution equations and features
	Results

