Evolution of linear perturbations in (Λ) LTB models

Sven Meyer
in collaboration with:
Matthias Redlich, Simon Hirscher \& Matthias Bartelmann

ITA/ZAH
University of Heidelberg
Heidelberg, October 26, 2015

Outline

(1) (Λ) LTB models in general
(2) Linear perturbations
(3) Evolution equations and features
(4) Results

Simplest inhomogeneous generalisation of the standard FLRW metric based on an exact solution of Einstein's field equations
(1) radially inhomogeneous
(2) spherically symmetric about single "central" worldline
(3) dust solution
$T_{\mu \nu}=\rho(t, r) u_{\mu} u_{\nu}$

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\frac{a_{\|}^{2}(t, r)}{1-\kappa(r) r^{2}} \mathrm{~d} r^{2}+r^{2} a_{\perp}^{2}(t, r) \mathrm{d} \Omega^{2}
$$

Motivation

Original idea:

- large Gpc scale spherical void
(embedded into FLRW)
- accounts for DE effects on backward lightcone

http://www.thphys.uni-heidelberg.de / ~cosmo/dokuwiki/doku.php/altmodels

Problems:

- global $h_{\mathrm{CMB}}<0.4 \longleftrightarrow$ local $h_{\mathrm{SNe}}=0.738$ (Riess et al. (2011))
- no evidence for strong anisotropy away from our position (kSZ effect)
- cosmological constant Λ
- $\Lambda+$ radial inhom. \rightarrow LLTB
- constrain deviations from homogeneity \Rightarrow test the Copernican Principle

Provide more observables to
(1) definitely distinguish and Λ LTB model from Λ CDM
(2) confirm and strengthen findings on spherical voids on a broad scientific basis investigate linear structure growth in (Λ) LTB models

Linear structure growth in Λ LTB: structures evolve position-dependent and anisotropic
spherically symmetry at background level:
expansion into spherical harmonics $Y^{(\ell m)}(\theta, \phi)$ and cov. derivatives (Clarkson et al. (2010), Gundlach \& Martín-García (2000), Gerlach \& Sengupta (1978))

$$
\begin{array}{rlr}
\phi & =\sum_{(\ell m)} \phi^{(\ell m)} Y^{(\ell m)} & \\
\phi_{a} & =\sum_{(\ell m)} \phi^{(\ell m)} Y_{a}^{(\ell m)}+\bar{\phi}^{(\ell m)} \bar{Y}_{a}^{(\ell m)} & \\
\text { expressions-Vector-Tensor } \mathcal{S}^{2} \\
& & \text { Sets of gauge invariant } \\
\phi^{(\ell m)} V^{(\ell m)}+\bar{\phi}^{(\ell m)} \bar{V}^{(\ell m)} & & \text { quantities can be found }
\end{array}
$$

different from FLRW gauge invariant quantities $\left\{\Psi, \Phi, V_{i}, h_{i j}\right\}$!

metric perturbations - Clarkson et al. (2010)

Abstract set of gauge invariant metric perturbations:
$\left\{\chi^{(\ell m)}, \varphi^{(\ell m)}, \varsigma^{(\ell m)}, \eta^{(\ell m)}\right\}$

$$
\begin{aligned}
\ddot{\chi}-\frac{\chi^{\prime \prime}+C \chi^{\prime}}{Z^{2}}+3 H_{\|} \dot{\chi}-\left[A-\frac{(\ell-1)(\ell+2)}{r^{2} a_{\perp}^{2}}\right] \chi & =\mathcal{S}_{\chi}\left(\varsigma, \varsigma^{\prime}, \varphi, \dot{\varphi}\right) \\
\ddot{\varphi}+4 H_{\perp} \dot{\varphi}-\left(\frac{2 \kappa}{a_{\perp}^{2}}-\Lambda\right) \varphi & =\mathcal{S}_{\varphi}\left(\varsigma, \chi, \dot{\chi}, \chi^{\prime}, \ell\right) \\
\dot{\varsigma}+2 H_{\| \varsigma} & =\mathcal{S}_{\varsigma}\left(\chi^{\prime}\right) \\
\eta & =0
\end{aligned}
$$

Similar for matter perturbations $\left\{\Delta^{(\ell m)}, w^{(\ell m)}, v^{(\ell m)}\right\}$
Dynamical coupling of gauge invariants !

main differences compared to FLRW:

- dynamical coupling during spacetime evolution
- physical interpretation: LTB gauge invariants \neq FLRW gauge invariants

Numerical solution

- initial conditions
- boundary conditions
- discretization (Finite Elements)

extract observables

- light propagation:
- sensitive to combination of gauge-invariants \leftarrow Ricciand Weyl focussing terms
- consequences: κ, γ

Dirichlet B.C.s

regularity at $r=0$:

$$
a^{(\ell m)}(t, 0)=0
$$

Gundlach et al. (2000)
artificial boundary
at $r=r_{*}$:

$$
a^{(\ell m)}\left(t, r_{*}\right)=0
$$

(adapted from
February et al. (2014))

- initial universe at large redshift sufficiently homogeneous and isotropic
- start from initial scalar perturbations in spatially flat FLRW limit (Ψ)

- discretize domain of interest in radius (Finite Elements)
- expand variables in basis polynomials
- time evolution of coefficients (method of lines)

Distributed and Unified Numerics Environment

evolve each spherical harmonic coefficients $(\ell, m) \leftarrow$ parallelised

Overview on algorithm \& angular Powerspectra

background model

- void density profile
- asymptotically embedded into FLRW model
- Evolve linear PDEs for each (ℓ, m)-mode forward in time
$C^{\ell}(z)=\sum_{m=-\ell}^{\ell} \frac{\mid a^{(\ell m)}\left(t(z),\left.r(z)\right|^{2}\right.}{2 \ell+1}$
evolve backwards to initial time/redshift $\left(z_{\text {ini }} \sim 100\right)$

- initial perturbations (FLRW limit)
- $\varphi^{(\ell m)}=-2 \Psi^{(\ell m)}$
- $\chi^{(\ell m)}=\varsigma^{(\ell m)}=0$

LTB model embedded into EdS

Gaussian void profile: $\rho\left(t_{0}, r\right)=\rho_{\mathrm{bg}} \cdot f\left(r, \Omega_{\mathrm{in}}, L\right)$

$$
f\left(r, \Omega_{\mathrm{in}}, L\right)=1+\left(\Omega_{\mathrm{in}}-1\right) \exp \left(-\frac{r^{2}}{2 L^{2}}\right)
$$

$$
\epsilon(t, r)=\frac{H_{\|}-H_{\perp}}{H_{\|}+2 H_{\perp}}
$$

average coupling strength

$$
\epsilon_{\varphi}^{\ell}(z)=\left|\frac{\sqrt{C_{\varphi}^{\ell}(t(z), r(z))}-\sqrt{C_{\varphi, \text { uc }}^{\ell}(t(z), r(z))}}{\sqrt{C_{\varphi, \text { uc }}^{\ell}(t(z), r(z))}}\right|
$$

angular powerspectra at

$$
z=0.5, \Omega_{\mathrm{in}}=0.2, L=2 \mathrm{Gpc}
$$

coupling strength

Geodesic deviation:

$$
\nabla_{k}^{2} \eta^{\mu}=R_{\nu \alpha \beta}^{\mu} k^{\alpha} k^{\beta} \eta^{\nu}
$$

decomposition into Sachs basis, affine parameter :

$$
\begin{aligned}
\eta^{\mu} & =\eta_{1} n_{1}^{\mu}+\eta_{2} n_{2}^{\mu} \\
\frac{\mathrm{d}}{\mathrm{~d} \lambda}(\ldots) & =k^{\mu} \nabla_{\mu}(\ldots) \\
\eta_{a}(\lambda) & =\left.D_{a b}(\lambda) \frac{\mathrm{d} \eta_{b}}{\mathrm{~d} \lambda}\right|_{\lambda=0}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{d}^{2} D_{a b}}{\mathrm{~d} \lambda^{2}} & =\mathcal{T}_{a c} D_{c b} \\
\text { with } \mathcal{T}_{a b} & =\underbrace{-\frac{1}{2} R_{\alpha \beta} k^{\alpha} k^{\beta} \delta_{a b}}_{\text {Ricci focussing }}+\underbrace{C_{\alpha \beta \gamma \delta} n_{a}^{\alpha} k^{\beta} k^{\gamma} n_{b}^{\delta}}_{\text {Weyl focussing }}
\end{aligned}
$$

Express Ricci and Weyl focussing in terms of LTB gauge invariants

Jacobi equation: $D_{a b}=D_{A}^{(\mathrm{LTB})} \delta_{a b}+D_{a b}^{(1)}$ (central observer)

$$
\frac{\mathrm{d}^{2} D_{a b}^{(1)}}{\mathrm{d} \lambda^{2}}=-4 \pi G \rho(t, r)(1+z)^{2} D_{a b}^{(1)}+r a_{\perp}(t, r) \mathcal{T}_{a b}^{(1)}\left[\left\{\eta^{(\ell m)}, \chi^{(\ell m)}, \varsigma^{(\ell m)}, \varphi^{(\ell m)}\right\}\right]
$$

Lensing amplification:

$$
\left(A_{a b}\right)=\frac{\left(D_{a b}\right)}{D_{A}^{(\mathrm{LTB})}}=\frac{\left(D_{a b}\right)}{r a_{\perp}}=\left(\begin{array}{cc}
1-\kappa & 0 \\
0 & 1-\kappa
\end{array}\right)-\left(\begin{array}{cc}
\gamma_{1} & \gamma_{2} \\
\gamma_{2} & -\gamma_{1}
\end{array}\right)
$$

Lensing quantities

$$
\begin{aligned}
\kappa & =-\frac{1}{2} \frac{D_{11}^{(1)}+D_{22}^{(1)}}{r a_{\perp}} \\
\gamma_{1} & =-\frac{1}{2} \frac{D_{11}^{(1)}-D_{22}^{(1)}}{r a_{\perp}} \\
\gamma_{2} & =-\frac{1}{2} \frac{D_{12}^{(1)}+D_{21}^{(1)}}{r a_{\perp}}
\end{aligned}
$$

- determine angular power spectra $C_{\kappa \kappa}^{\ell}$ and $C_{\gamma \gamma}^{\ell}$
- compare to observationally determined spectra

Conclusion

- numerical solution of evolution equations of gauge invariant perturbations in Λ LTB spacetimes (proof of concept)
- coupling strength significant in sufficiently deep and large voids (without Λ)
- application to best fit Λ LTB models nearly done
- observable predictions from light propagation (work in progress)

