Condensed Matter Theory

problem set 1

Dr. Tilman Enss & Valentin Kasper

20 April 2016 Institut für Theoretische Physik, Universität Heidelberg due date: 27 April 2016 http://www.thphys.uni-heidelberg.de/~enss/teaching.html Course homepage:

Problem 1: Ideal quantum gas

Consider a system of free bosonic or fermionic particles with Hamiltonian

$$\hat{\mathcal{H}} = \sum_{\alpha} \varepsilon_{\alpha} \hat{a}^{\dagger}_{\alpha} \hat{a}_{\alpha} \,. \tag{1}$$

Compute the partition function $Z = \text{Tr} \exp[-\beta(\hat{\mathcal{H}} - \mu\hat{\mathcal{N}})]$ with $\beta = 1/k_B T$ and $\hat{\mathcal{N}} = \sum_{\alpha} \hat{n}_{\alpha} =$ $\sum_{\alpha} \hat{a}^{\dagger}_{\alpha} \hat{a}_{\alpha}$, as well as the grand potential $\Omega = -(1/\beta) \ln Z$. What are the thermal expectation values of the occupation numbers in equilibrium, $n_{\alpha} = \langle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha} \rangle$ and $N = \langle \hat{\mathcal{N}} \rangle = -\partial \Omega / \partial \mu$?

Problem 2: Correlation functions

[written homework problem: 10P]

Please hand in your written solution to this problem on Wednesday, April 27, before the start of the lecture; it will be discussed in the following tutorial session on Friday, April 29. You may work *in teams (two names per solution).*

Even a noninteracting quantum gas has nontrivial correlations due to Bose or Fermi statistics. In this case all correlations are determined by the one-particle density matrix

$$G_1(\boldsymbol{x}, \boldsymbol{x}') = \langle \hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}(\boldsymbol{x}') \rangle = \sqrt{n(\boldsymbol{x})n(\boldsymbol{x}')} g_1(\boldsymbol{x}, \boldsymbol{x}').$$
(2)

In the homogeneous case these functions depend only on |x - x'|, *i.e.*, one can set x' = 0 and $r = |\mathbf{x}|$. Consider an ideal Bose or Fermi gas (without spin) in a box of volume $V \to \infty$ with single-particle energies $\varepsilon_k = \hbar^2 k^2 / 2m$ and a mean particle density n = N/V.

(a)

3 P

2 P

Using the representation of the field operators $\hat{\psi}(\mathbf{x}) = V^{-1/2} \sum_{\mathbf{k}} \hat{a}_{\mathbf{k}} \exp(i\mathbf{k}\mathbf{x})$ in terms of the annihilation operators \hat{a}_k for particles with momentum **k** and $\langle \hat{a}_k^{\dagger} \hat{a}_a \rangle = \delta_{ka} n_k$, show that the one-particle density matrix for free particles is given by the Fourier transform of the momentum distribution of an ideal Bose or Fermi gas,

$$G_1(\boldsymbol{x}-\boldsymbol{x}') = \int \frac{d^3k}{(2\pi)^3} \frac{e^{-i\boldsymbol{k}\cdot(\boldsymbol{x}-\boldsymbol{x}')}}{e^{\beta(\epsilon_k-\mu)} \mp 1}.$$
(3)

(b)

Compute $g_1(r)$ explicitly in the classical limit $\exp(\beta\mu) \ll 1$, expressed in terms of the thermal wavelength $\lambda_T = h/\sqrt{2\pi m k_B T}$.

(c)

The pair correlation function g_2 is defined via the density correlation function

$$\langle \hat{n}(\boldsymbol{x})\hat{n}(\boldsymbol{x}')\rangle = \langle \hat{n}(\boldsymbol{x})\rangle \langle \hat{n}(\boldsymbol{x}')\rangle g_2(\boldsymbol{x},\boldsymbol{x}') + \langle \hat{n}(\boldsymbol{x})\rangle \delta(\boldsymbol{x}-\boldsymbol{x}').$$
(4)

Show that for free particles the pair correlation function is given by $g_2(\mathbf{x}, \mathbf{x}') = 1 \pm |g_1(\mathbf{x}, \mathbf{x}')|^2$. Bosons thus have a tendency to *bunch* ($g_2(0) = 2$) while fermions *anti-bunch* ($g_2(0) = 0$) due to the Pauli principle.

[*Hint*: Use the identity $\langle a_1^{\dagger} a_2 a_3^{\dagger} a_4 \rangle = \delta_{12} \delta_{34} n_1 n_3 + \delta_{14} \delta_{23} n_1 (1 \pm n_2)$.]

(d)

Compute $g_2(r)$ explicitly for an ideal Fermi gas at temperature T = 0 and discuss the characteristic spatial extent of the resulting "exchange hole" in comparison to the mean particle spacing.

Problem 3: Algebra with Creation and Annhilation Operators

We use the $N \times N$ matrices A and B to define the operators

$$\hat{A} = \sum_{m,n} a_m^{\dagger} A_{mn} a_n \quad \text{and} \quad \hat{B} = \sum_{m,n} a_m^{\dagger} B_{mn} a_n \tag{5}$$

with m, n = 1, ..., N and the bosonic creation (annihilation) operators $a_m^{\dagger}(a_m)$. Furthermore, we introduce the vector **v** with length *N* and the components v_m

$$\hat{\mathbf{v}}^{\dagger} = \sum_{m} \nu_{m} a_{m}^{\dagger} \,. \tag{6}$$

(a) Show that $[\hat{A}, \hat{B}] = \sum_{m,n} a_m^{\dagger}([A, B])_{mn}a_n$ and $[\hat{A}, \hat{\mathbf{v}}^{\dagger}] = \sum_m (A \cdot \mathbf{v})_m a_m^{\dagger}$.

(b) We define the spin operator

$$\hat{S}^{\alpha} = \frac{1}{2} \sum_{m,n=1}^{2} a_{m}^{\dagger} \sigma_{mn}^{\alpha} a_{n}$$

with $\alpha \in \{x, y, z\}$ and the Pauli matrices

$$\sigma^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Show that $[\hat{S}^{\alpha}, \hat{S}^{\beta}] = i \sum_{\gamma} \varepsilon^{\alpha\beta\gamma} \hat{S}^{\gamma}$. Find the eigenstates (in Fock space) and eigenvalues of \hat{S}^{z} .

- (c) Prove the identity $e^{\hat{A}} \hat{\mathbf{v}}^{\dagger} e^{-\hat{A}} = \sum_{m} (e^{A} \cdot \mathbf{v})_{m} a_{m}^{\dagger}$.
- (d) Reconsider (a), (b) and (c) with a_m and a_m^{\dagger} being fermionic operators.

3 P

2 P