Condensed Matter Theory

Dr. Tilman Enss \& Valentin Kasper
Institut für Theoretische Physik, Universität Heidelberg

problem set 1

20 April 2016
due date: 27 April 2016
Course homepage: http://www.thphys.uni-heidelberg.de/~enss/teaching.html

Problem 1: Ideal quantum gas

Consider a system of free bosonic or fermionic particles with Hamiltonian

$$
\begin{equation*}
\hat{\mathcal{H}}=\sum_{\alpha} \varepsilon_{\alpha} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha} \tag{1}
\end{equation*}
$$

Compute the partition function $Z=\operatorname{Tr} \exp [-\beta(\hat{\mathcal{H}}-\mu \hat{\mathcal{N}})]$ with $\beta=1 / k_{B} T$ and $\hat{\mathcal{N}}=\sum_{\alpha} \hat{n}_{\alpha}=$ $\sum_{\alpha} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha}$, as well as the grand potential $\Omega=-(1 / \beta) \ln Z$. What are the thermal expectation values of the occupation numbers in equilibrium, $n_{\alpha}=\left\langle\hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha}\right\rangle$ and $N=\langle\hat{\mathcal{N}}\rangle=-\partial \Omega / \partial \mu$?

Problem 2: Correlation functions

[written homework problem: 10P]
Please hand in your written solution to this problem on Wednesday, April 27, before the start of the lecture; it will be discussed in the following tutorial session on Friday, April 29. You may work in teams (two names per solution).

Even a noninteracting quantum gas has nontrivial correlations due to Bose or Fermi statistics. In this case all correlations are determined by the one-particle density matrix

$$
\begin{equation*}
G_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=\sqrt{n(\boldsymbol{x}) n\left(\boldsymbol{x}^{\prime}\right)} g_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) . \tag{2}
\end{equation*}
$$

In the homogeneous case these functions depend only on $\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|$, i.e., one can set $\boldsymbol{x}^{\prime}=0$ and $r=|\boldsymbol{x}|$. Consider an ideal Bose or Fermi gas (without spin) in a box of volume $V \rightarrow \infty$ with single-particle energies $\varepsilon_{\boldsymbol{k}}=\hbar^{2} \boldsymbol{k}^{2} / 2 m$ and a mean particle density $n=N / V$.

(a)

Using the representation of the field operators $\hat{\psi}(\boldsymbol{x})=V^{-1 / 2} \sum_{k} \hat{a}_{k} \exp (i \boldsymbol{k} \boldsymbol{x})$ in terms of the annihilation operators \hat{a}_{k} for particles with momentum \boldsymbol{k} and $\left\langle\hat{a}_{k}^{\dagger} \hat{a}_{q}\right\rangle=\delta_{k q} n_{k}$, show that the one-particle density matrix for free particles is given by the Fourier transform of the momentum distribution of an ideal Bose or Fermi gas,

$$
\begin{equation*}
G_{1}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{e^{-i k \cdot\left(x-x^{\prime}\right)}}{e^{\beta\left(\epsilon_{k}-\mu\right) \mp 1}} . \tag{3}
\end{equation*}
$$

(b)

Compute $g_{1}(r)$ explicitly in the classical limit $\exp (\beta \mu) \ll 1$, expressed in terms of the thermal wavelength $\lambda_{T}=h / \sqrt{2 \pi m k_{B} T}$.

> (c)

The pair correlation function g_{2} is defined via the density correlation function

$$
\begin{equation*}
\left\langle\hat{n}(\boldsymbol{x}) \hat{n}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=\langle\hat{n}(\boldsymbol{x})\rangle\left\langle\hat{n}\left(\boldsymbol{x}^{\prime}\right)\right\rangle g_{2}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)+\langle\hat{n}(\boldsymbol{x})\rangle \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) . \tag{4}
\end{equation*}
$$

Show that for free particles the pair correlation function is given by $g_{2}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=1 \pm$ $\left|g_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right|^{2}$. Bosons thus have a tendency to bunch $\left(g_{2}(0)=2\right)$ while fermions anti-bunch ($\left.g_{2}(0)=0\right)$ due to the Pauli principle.
[Hint: Use the identity $\left\langle a_{1}^{\dagger} a_{2} a_{3}^{\dagger} a_{4}\right\rangle=\delta_{12} \delta_{34} n_{1} n_{3}+\delta_{14} \delta_{23} n_{1}\left(1 \pm n_{2}\right)$.]
(d)

Compute $g_{2}(r)$ explicitly for an ideal Fermi gas at temperature $T=0$ and discuss the characteristic spatial extent of the resulting "exchange hole" in comparison to the mean particle spacing.

Problem 3: Algebra with Creation and Annhilation Operators

We use the $N \times N$ matrices A and B to define the operators

$$
\begin{equation*}
\hat{A}=\sum_{m, n} a_{m}^{\dagger} A_{m n} a_{n} \quad \text { and } \quad \hat{B}=\sum_{m, n} a_{m}^{\dagger} B_{m n} a_{n} \tag{5}
\end{equation*}
$$

with $m, n=1, \ldots, N$ and the bosonic creation (annihilation) operators $a_{m}^{\dagger}\left(a_{m}\right)$. Furthermore, we introduce the vector \mathbf{v} with length N and the components v_{m}

$$
\begin{equation*}
\hat{\mathbf{v}}^{\dagger}=\sum_{m} v_{m} a_{m}^{\dagger} \tag{6}
\end{equation*}
$$

(a) Show that $[\hat{A}, \hat{B}]=\sum_{m, n} a_{m}^{\dagger}([A, B])_{m n} a_{n}$ and $\left[\hat{A}, \hat{\mathbf{v}}^{\dagger}\right]=\sum_{m}(A \cdot \mathbf{v})_{m} a_{m}^{\dagger}$.
(b) We define the spin operator

$$
\hat{S}^{\alpha}=\frac{1}{2} \sum_{m, n=1}^{2} a_{m}^{\dagger} \sigma_{m n}^{\alpha} a_{n}
$$

with $\alpha \in\{x, y, z\}$ and the Pauli matrices

$$
\sigma^{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Show that $\left[\hat{S}^{\alpha}, \hat{S}^{\beta}\right]=i \sum_{\gamma} \varepsilon^{\alpha \beta \gamma} \hat{S}^{\gamma}$. Find the eigenstates (in Fock space) and eigenvalues of \hat{S}^{z}.
(c) Prove the identity $e^{\hat{A}} \hat{\mathbf{v}}^{\dagger} e^{-\hat{A}}=\sum_{m}\left(e^{A} \cdot \mathbf{v}\right)_{m} a_{m}^{\dagger}$.
(d) Reconsider (a), (b) and (c) with a_{m} and a_{m}^{\dagger} being fermionic operators.

