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Problem 1: Ideal quantum gas

Consider a system of free bosonic or fermionic particles with Hamiltonian

Ĥ = ∑
α

εα â
†
α âα . (1)

Compute the partition function Z = Tr exp[−β(Ĥ − µN̂ )] with β = 1/kBT and N̂ = ∑α n̂α =
∑α â

†
α âα, as well as the grand potential Ω = −(1/β) lnZ. What are the thermal expectation

values of the occupation numbers in equilibrium, nα = ⟨â†α âα⟩ and N = ⟨N̂ ⟩ = −∂Ω/∂µ?
Problem 2: Correlation functions [written homework problem: 10P]

Please hand in your written solution to this problem on Wednesday, April 27, before the start of
the lecture; it will be discussed in the following tutorial session on Friday, April 29. You may work
in teams (two names per solution).
Even anoninteracting quantumgas has nontrivial correlations due toBose or Fermi statistics.

In this case all correlations are determined by the one-particle density matrix

G1(x , x′) = ⟨ψ̂†(x)ψ̂(x′)⟩ =√n(x)n(x′) g1(x , x′). (2)

In the homogeneous case these functions depend only on ∣x − x′∣, i.e., one can set x′ = 0 and
r = ∣x∣. Consider an ideal Bose or Fermi gas (without spin) in a box of volume V → ∞ with
single-particle energies εk = ħ2k

2/2m and a mean particle density n = N/V .

(a) 3 P
Using the representation of the �eld operators ψ̂(x) = V−1/2∑k âk exp(ikx) in terms of
the annihilation operators âk for particles with momentum k and ⟨â†

k
âq⟩ = δkqnk, show

that the one-particle density matrix for free particles is given by the Fourier transform of
the momentum distribution of an ideal Bose or Fermi gas,

G1(x − x′) = ∫ d3k(2π)3 e−ik⋅(x−x
′)

eβ(єk−µ) ∓ 1 . (3)

(b) 2 P
Compute g1(r) explicitly in the classical limit exp(βµ) ≪ 1, expressed in terms of the
thermal wavelength λT = h/√2πmkBT .
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(c) 3 P
�e pair correlation function g2 is de�ned via the density correlation function

⟨n̂(x)n̂(x′)⟩ = ⟨n̂(x)⟩ ⟨n̂(x′)⟩ g2(x , x′) + ⟨n̂(x)⟩ δ(x − x′) . (4)

Show that for free particles the pair correlation function is given by g2(x , x′) = 1 ±∣g1(x , x′)∣2. Bosons thus have a tendency to bunch (g2(0) = 2) while fermions anti-bunch
(g2(0) = 0) due to the Pauli principle.
[Hint: Use the identity ⟨a†1 a2a

†
3a4⟩ = δ12δ34n1n3 + δ14δ23n1(1 ± n2).]

(d) 2 P
Compute g2(r) explicitly for an ideal Fermi gas at temperature T = 0 and discuss the
characteristic spatial extent of the resulting “exchange hole” in comparison to the mean
particle spacing.

Problem 3: Algebra with Creation and Annhilation Operators

We use the N × N matrices A and B to de�ne the operators

Â = ∑
m,n

a†mAmnan and B̂ = ∑
m,n

a†mBmnan (5)

with m, n = 1, . . . ,N and the bosonic creation (annihilation) operators a†m(am). Furthermore,
we introduce the vector v with length N and the components vm

v̂
† = ∑

m

vma
†
m . (6)

(a) Show that [Â, B̂] = ∑m,n a
†
m([A, B])mnan and [Â, v̂†] = ∑m(A ⋅ v)ma†m.

(b) We de�ne the spin operator

Ŝα =
1

2

2

∑
m,n=1

a†mσ
α
mnan

with α ∈ {x , y, z} and the Pauli matrices

σ x = (0 1
1 0
) , σ y = (0 −i

i 0
) , σ z = (1 0

0 −1
) .

Show that [Ŝα , Ŝβ] = i∑γ εαβγ Ŝγ. Find the eigenstates (in Fock space) and eigenvalues of

Ŝz.

(c) Prove the identity e Â v̂† e−Â = ∑m(eA ⋅ v)ma†m.
(d) Reconsider (a), (b) and (c) with am and a†m being fermionic operators.
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