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Problem 26: Density of states of a linear chain

Consider the quantum version of the one-dimensional harmonic chain with the Hamiltonian
H = ∑k ωk(a†kak + 1/2) with bosonic operators ak describing phonons with dispersion relation
ωk = ω0∣ sin(ka/2)∣.
(a) Show that the speci�c heat CV is given by

CV = 1

2π

∂

∂T ∫
1.BZ

dk
ωk

eωk/(kBT) − 1 . (1)

(b) Calculate the speci�c heat explicitly, using two simpli�cations: (a) linearize the dispersion
relation, and (b) extend the integral bounds 1

2π ∫1.BZ dk →
1
2π ∫

∞

−∞ dk. Discuss whether the
second simpli�cation is valid at low temperatures.

(c) We introduce the density of states of the phonons as

g(ω) = ∫
1.BZ

dk

2π
δ(ω − ωk) . (2)

Show that the density of states for the linear harmonic chain is given by

g(ω) = 2

πa
√
ω2
− − ω2

. (3)

Problem 27: Einstein phonons

If electrons scatter o� phonons, their self-energy is given to leading order by

Σ(p, iєn) = − 1

βV
∑
q,iωm

G0(p + q, iєn + iωm)Vph(q, iωm). (4)

�e free fermionic Green function G0(p, iєn) = (iєn − ξp)−1 for electrons with dispersion relation
ξp = p2/(2m) − µ, while the phonon-induced interaction can be written as

Vph(q, iωm) = M2 ( 1

iωm − ωq

+ 1−iωm − ωq

) (5)

for bosonic Matsubara frequencies ωm and real electron-phonon coupling M.
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(a) Show that the bosonic Matsubara sum over iωm leads to the expression

Σ(p, iєn) = M2 ∫ d3q(2π)3 [
b(ωq) + f (ξp+q)
iєn − ξp+q + ωq

+ b(ωq) + 1 − f (ξp+q)
iєn − ξp+q − ωq

] (6)

where b(ω) is the Bose and f (ω) the Fermi distribution.

(b) Consider speci�cally Einstein phonons with constant energy ωq = ω0 > 0. Compute the
momentum sum in the electronic self-energy at zero temperature T = 0 where the phonon
occupation b(ω0) = 0 vanishes. Assume further a constant density of states at all energies,
g(ξ) = g(0) for −∞ < ξ < ∞. Derive the self-energy

Σ(p, iєn) = α log ω0 − iєn
ω0 + iєn (7)

where α = g(0)M2. Sketch the real and imaginary parts of the retarded self-energy ΣR(p, ε) =
Σ(p, ε + i0).

(c) �e full electronic Green function is given by the Dyson equation

GR(p, ε) = 1

ε + i0 − ξp − ΣR(p, ε) . (8)

Plot the spectral function of the electrons as a function of p/kF and ε/EF with µ = EF ,
phonon frequency ω0 = 0.1EF and take for i0, e.g., 0.05i. For α = 0 this is the unper-
turbed parabolic dispersion relation of free fermions; which features appear in the presence
of an electron-phonon interaction α = 0.1EF? Interpret the experimental spectral function
of KC8 shown below [ARPES data from A. Grünein et al., Physical Review B 79, 205106
(2009)]; which kind of interaction could the electrons have in this material?

2



Problem 28: Cooper pairs

On top of a Fermi sea at T = 0, two electrons are added which attract each other but interact with
the remaining electrons in the Fermi sea only via the Pauli principle, i.e., they can only occupy
states with k > kF . �e ground state of only these two electrons is a spatially symmetric spin
singlet with zero total momentum and can be written as

∣ψ0⟩ = ∑
k>kF

gkc
†
k↑c

†
−k↓∣0⟩ . (9)

(a) Consider the Schrödinger equationHBCS∣ψ0⟩ = E∣ψ0⟩ with the BCS Hamiltonian

HBCS = ∑
kσ

єkc
†
kσ ckσ + 1

V
∑

k,k′>kF

Ukk′c
†
k↑c

†
−k↓c−k′↓ck′↑ (10)

and the potential Ukk′ for scattering an electron pair with momenta (k′,−k′) into a pair(k,−k). Show that this leads to the following equation for the energy eigenvalue E and the
amplitudes gk:

(E − 2єk)gk = 1

V
∑
k′>kF

Ukk′ gk′ . (11)

If this equation has a solution for E < 2EF then there exists a bound state.

(b) Assume the attractive interaction to be constant in a shell around the Fermi surface,

Ukk′ =
⎧⎪⎪⎨⎪⎪⎩
−g < 0, EF < єk , єk′ < EF + ωD

0 otherwise.
(12)

Derive the equation

1

g
= 1

V
∑

kc>k>kF

1

2єk − E (13)

where єkc = EF +ωD. �en integrate the right-hand side in the approximation of a constant
density of states gσ(ξ) ≈ ν0 near the Fermi surface. Solve this equation for E ≲ 2EF in the
limit of weak coupling ν0g ≪ 1.
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