Condensed Matter Theory

problem set 11

Dr. Tilman Enss & Valentin Kasper 29 June 2016 Institut für Theoretische Physik, Universität Heidelberg due date: 8 July 2016 Course homepage: http://www.thphys.uni-heidelberg.de/~enss/teaching.html

Problem 29: Bogoliubov transformation

(a) The bosonic operators \hat{a} , \hat{a}^{\dagger} satisfy the canonical commutation relations $[\hat{a}, \hat{a}^{\dagger}] = 1$, $[\hat{a}, \hat{a}] = 0$. Define a new pair of operators by the transformation

$$\hat{b} = u\hat{a} + v\hat{a}^{\dagger}, \qquad \hat{b}^{\dagger} = u^{*}\hat{a}^{\dagger} + v^{*}\hat{a}$$
 (1)

with $u, v \in \mathbb{C}$. Under which condition is this transformation canonical, *i.e.*, $[\hat{b}, \hat{b}^{\dagger}] = 1$? Find a parametrization for u and v in terms of real numbers.

(b) The Bogoliubov Hamiltonian for spin-1/2 electrons ($\sigma = \uparrow, \downarrow$) with isotropic dispersion relation ξ_k and real energy gap $\Delta \in \mathbb{R}$ is defined as

$$\mathcal{H} = \sum_{k\sigma} \xi_k c^{\dagger}_{k\sigma} c_{k\sigma} - \sum_k \left(\Delta c_{-k\downarrow} c_{k\uparrow} + \Delta c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow} \right).$$
⁽²⁾

Show that this Hamiltonian can be brought into the matrix form

$$\mathcal{H} = \sum_{k} \begin{pmatrix} c_{k\uparrow}^{\dagger} & c_{-k\downarrow} \end{pmatrix} \begin{pmatrix} \xi_{k} & -\Delta \\ -\Delta & -\xi_{k} \end{pmatrix} \begin{pmatrix} c_{k\uparrow} \\ c_{-k\downarrow}^{\dagger} \end{pmatrix} + \sum_{k} \xi_{k} .$$
(3)

Diagonalize \mathcal{H} with the help of the Bogoliubov transformation

$$\begin{pmatrix} c_{k\uparrow} \\ c^{\dagger}_{-k\downarrow} \end{pmatrix} = \begin{pmatrix} \cos\theta_k & \sin\theta_k \\ \sin\theta_k & -\cos\theta_k \end{pmatrix} \begin{pmatrix} \gamma_{k\uparrow} \\ \gamma^{\dagger}_{-k\downarrow} \end{pmatrix};$$
(4)

determine θ_k such that the anomalous terms with $\gamma\gamma$ and $\gamma^{\dagger}\gamma^{\dagger}$ vanish. Sketch the spectrum of fermionic quasiparticles $\gamma_{k\sigma}$ as a function of k and of ξ_k .

Problem 30: Energy of the superconducting ground state

Compute the condensation energy in the superconducting ground state ($\Delta > 0$) relative to the normal state ($\Delta = 0, E_k = |\xi_k|$),

$$\Delta E = \langle \mathcal{H} - \mu N \rangle_{\rm S} - \langle \mathcal{H} - \mu N \rangle_{\rm N}, \qquad (5)$$

expressed in terms of the gap Δ , the volume and the electronic density of states v_0 , in the limit of weak coupling $v_0g \ll 1$. One can, *e.g.*, compute the expectation value of $\mathcal{H} - \mu N$ with the BCS wave function |BCS}, or (recommended) evaluate the term for the ground state energy in the Bogoliubov Hamiltonian. Assume that the attractive interaction is constant in a shell of width $\hbar \omega_D$ around the Fermi surface (as in the lecture), and use particle-hole symmetry within this shell, $-\sum_{k < k_F} \xi_k = \sum_{k > k_F} \xi_k$.

Problem 31: Hubbard-Stratonovich transformation

The partition function of an electron-phonon system can be written as the path integral

$$\mathcal{Z} = \int D\psi^* D\psi \int D\phi^* D\phi \exp\left\{-S_{\rm el}[\psi^*,\psi] - S_{\rm ph}[\phi^*,\phi] - S_{\rm el-ph}[\psi^*,\psi,\phi^*,\phi]\right\}$$
(6)

with Grassmann fields ψ^* , ψ representing the fermions and complex fields ϕ^* , ϕ for the phonons. The action for the phonons S_{ph} and for the electron-phonon interaction $S_{\text{el-ph}}$ have the form

$$S_{\rm ph}[\phi^*,\phi] = \sum_q \phi_q^*(-i\omega_m + \omega_q)\phi_q \tag{7}$$

$$S_{\text{el-ph}}[\psi^*,\psi,\phi^*,\phi] = \sum_q M_q \rho_q(\phi_q + \phi^*_{-q})$$
(8)

with the electronic density operator $\rho_q = \sum_k \psi_{k+q}^* \psi_k$, electron-phonon coupling M_q , and the usual kinetic term $S_{\rm el}[\psi^*, \psi]$ for the electrons. The multi-indices $q = (i\omega_m, q)$ are a shorthand notation for frequency and momentum indices, and the sum $\sum_q = \sum_q \beta^{-1} \sum_m$ includes a Matsubara sum as well as a momentum sum.

Perform a Gaussian integration over the phonon fields ϕ^* , ϕ in \mathbb{Z} and derive an effective action $S_{\text{eff}}[\psi^*, \psi]$ for the electrons alone (neglect a constant term which does not depend on ψ^* and ψ):

$$\mathcal{Z} = \int D\psi^* D\psi \, e^{-S_{\rm eff}[\psi^*,\psi]} \tag{9}$$

$$e^{-S_{\rm eff}[\psi^*,\psi]} = \int D\phi^* D\phi \, \exp\left\{-S_{\rm el}[\psi^*,\psi] - S_{\rm ph}[\phi^*,\phi] - S_{\rm el-ph}[\psi^*,\psi,\phi^*,\phi]\right\}$$
(10)

The effective action contains an interaction term between the electrons; compare this to the result of the Fröhlich transformation given in the lecture.