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Background: Graphene consists of a planar hexagonal Bravais lattice with a basis of two
Carbon atoms, labeled A and B, see �gure below (taken from Castro Neto et al., Rev. Mod.
Phys. 81, 109 (2009)). Strong covalent σ bonds are formed by planar sp2 orbitals of the carbon
atoms. In this �gure, blue circles indicate carbon atoms on the A sublattice, while yellow
circles indicate carbon atoms on the B sublattice. �e vectors a1 and a2 are the lattice unit
vectors. �e carbon-carbon distance in graphene is a ≈ 0.142 nm.

�e remaining pz orbitals, standing perpendicular to the lattice plane, form a band of
mobile electrons. Graphene features a number of fascinating properties (e.g., high electron
mobility, gapless semiconductor, . . . ) that can be traced back to its band structure. Further-
more, electrons in graphene behave like massless two-dimensional Dirac fermions.
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Problem 6: Band structure of graphene and Dirac electrons

�e tight-binding Hamiltonian for the mobile electrons in graphene makes the assumption
that electrons can hop with hopping amplitude t between neighboring sites with nearest
neighbor vectors

δ1 = a

2
(1,√3), δ2 = a

2
(1,−√3), δ3 = −a(1, 0), (1)

and therefore it reads

H = −t ∑
⟨i , j⟩,σ

(a†σ ,ibσ , j +H.c.), (2)
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where ai ,σ (a
†
i ,σ) annihilates (creates) an electron with spin σ ∈ {↑, ↓} on site R i on sublat-

tice A (and equivalently for sublattice B). �e brackets ⟨⋅⟩ denote a summation over near-
est neighbors. Furthermore, we de�ne the Fourier transform of the ladder operators by
cσ ,i = 1

N ∑k e
−ik⋅R i cσ ,k where c ∈ {a, b}.

(a) From the information given in the �gure above, derive explicit expressions for the
lattice vectors a1 and a2 and also determine the reciprocal lattice vectors b1 and b2.

(b) Plot the �rst Brillouin zone and give explicit expressions for the positions of the cor-
ners of the Brillouin zone. �ere are two inequivalent corners, typically denoted by K
and K ′, that cannot be connected by reciprocal lattice vectors. You should �nd

K = (2π
3a

,
2π

3
√
3
) , K ′ = (2π

3a
,−

2π

3
√
3
) . (3)

(c) Use the Fourier transform towrite the tight-bindingHamiltonian inmomentum space
and determine its energy eigenvalues E±(k). Note that due to the lattice structure with
a basis of two atoms you will obtain two energy bands. You should �nd a result of the
form

E±(k) = ±t√3 + f (k) (4)

with f (k) = 2 cos(√3kya) + 4 cos(
√
3

2
kya) cos(3

2
kxa) . (5)

(d) Optional, in case you have access toMathematica orMaple: Plot the energy dispersion
in momentum space in the �rst Brillouin zone. It looks quite pretty, so please try!

(e) Calculate the points in momentum space where the energy vanishes. �ese points are
called ‘Dirac points’ for reasons that become clear below.

(f) Expand the full energy band structure calculated in (c) close to the K (or K ′) vector
with k = K + q with ∣q∣≪ ∣K ∣ and give the linearized energy dispersion close to K as
E±(q).

(g) Extra (and more di�cult): Show that the linearized version of the Hamiltonian close
to the K andK ′ points corresponds to a sum of two two-dimensional Dirac- (orWeyl-
) Hamiltonians which be can written as ∼ ±τ(∗) ⋅k with Pauli matrices τx ,y in sublattice
space.
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Problem 7: Bloch/Wannier Functions for Cold Atoms in Optical Lattices

We consider neutral atoms con�ned to one dimension. �e atoms are subject to a periodic
standing wave inducing the following potential to the atoms

V(x) = V0 sin
2(kLx) (6)

with kL = π/d and d is the distance between two minima. �e eigenvalue problem for a
single particle in this periodic potential with energy eigenvalue εn,k is given by

−

ħ2

2M

∂2

∂x2
ϕn,k(x) +V(x)ϕn,k(x) = εn,kϕn,k(x) . (7)

(a) Use the Bloch ansatz ϕn,k(x) = un,k(x)e ikx with un,k(x + d) = un,k(x) and rewrite the
above eigenvalue problem in terms of un,k(x).

(b) Fourier expand un,k with coe�cients cn,k(l) and derive the following recurrence rela-
tion

ER (2l + k

kL
)2 cn,k(l) − V0

4
[cn,k(l + 1) − 2cn,k(l) + cn,k(l − 1)] = εn,k(l)cn,k(l) (8)

where we introduced the recoil energy ER = ħ2k2L/(2M).
(c) In order to obtain the spectrum one truncates the system (8) for ∣l ∣ ≤ lmax and solves

the remaining eigenvalue problem numerically. Choose the parameters V0 = 6ER,
lmax = 10 and sketch the �rst three bands over the Brillouin zone.

(d) For a deep lattice, Taylor expand the potential to second order at x = 0, i.e., V(x) =
Mω2x2/2, and determine the spectrum of the single well. Give a criterion for the
validity of the deep lattice approximation.

(e) For deep optical lattices we use the ground-state function of the harmonic oscillator
to approximate the Wannier functions for the �rst band,

w1(x − xn) = (√πa)−1/2 exp [−(x − xn)2
2a2

] , (9)

with xn = nd and oscillator length a = √ħ/(Mω). Calculate the tunnel matrix ele-
ment in the deep-lattice limit

J = ∫ ∞
−∞

dx w∗1 (x − xn) (− ħ2

2M

∂2

∂x2
+V(x))w1(x − xn+1) . (10)
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