Condensed Matter Theory

Dr. Tilman Enss \& Valentin Kasper
Institut für Theoretische Physik, Universität Heidelberg
Course homepage: http://www.thphys.uni-heidelberg.de/~enss/teaching.html

problem set 4

Problem 8: Linear Response

We consider a Hamiltonian $H_{S}=H_{S, 0}+V_{S}(t)$, where $H_{S, 0}$ is the full interacting Hamiltonian and $V_{S}(t)$ an external perturbation of the form $V_{S}(t)=F(t) \hat{B}_{S}$ with $F(t)$ a classical field and \hat{B}_{S} a (bosonic) quantum mechanical operator. We will measure the reaction of the observable $A_{H}(t)$ in the Heisenberg picture at time t. The density matrix without perturbation is denoted by $\rho_{S, 0}=Z^{-1} \exp \left(-\beta H_{0}\right)$ and the density matrix with perturbation is called $\rho_{S}(t)$.

Remark: The labels of the operators denote the $S=$ Schrödinger picture, $H=$ Heisenberg picture, and $D=$ Interaction picture (in terms of the "interaction" $V_{S}(t)$).

- The von-Neumann equation is given by $i \hbar \partial_{t} \rho_{S}(t)=\left[H_{S}, \rho_{S}(t)\right]_{-}$. Show that the evolution equation of the density matrix in the interaction picture with the boundary condition $\lim _{t \rightarrow-\infty} \rho_{S}(t)=\rho_{S, 0}$ is given by

$$
\begin{equation*}
\partial_{t} \rho_{D}(t)=\frac{i}{\hbar}\left[\rho_{D}(t), V_{D}(t)\right]_{-} . \tag{1}
\end{equation*}
$$

Solve equation (1) by iteration.

- Derive the linear response formula for the density matrix by truncating the iteration at first order,

$$
\begin{equation*}
\rho_{S}(t)=\rho_{S, 0}-\frac{i}{\hbar} \int_{-\infty}^{t} d t^{\prime} \exp \left(-\frac{i}{\hbar} H_{S, 0} t\right)\left[V_{D}\left(t^{\prime}\right), \rho_{S, 0}\right]_{-} \exp \left(\frac{i}{\hbar} H_{S, 0} t\right) . \tag{2}
\end{equation*}
$$

- Use the above result and show that the change of the observable A_{H} with time can be written as

$$
\begin{equation*}
\left\langle A_{H}(t)\right\rangle-\left\langle A_{H}(0)\right\rangle=\frac{1}{\hbar} \int_{-\infty}^{\infty} d t^{\prime} F\left(t^{\prime}\right) G_{A B}^{\mathrm{ret}}\left(t, t^{\prime}\right) \tag{3}
\end{equation*}
$$

with $G_{A B}^{\mathrm{ret}}\left(t, t^{\prime}\right)=-i \theta\left(t-t^{\prime}\right) \operatorname{Tr}\left\{\rho_{S, 0}\left[A_{H}(t), B_{H}\left(t^{\prime}\right)\right]-\right\}$ and the Heisenberg picture is determined by $H_{s, 0}$. As an explicit example, derive the linear response of the magnetization $\mathbf{M}=\frac{1}{V} \mathbf{m}$ to an external magnetic field $\mathbf{B}(t)$ which is coupled to the magnetic moment $\mathbf{m}=\frac{g, \mu_{B}}{\hbar} \sum_{i} \mathbf{S}_{i}$.

Problem 9: Diffusion equation in 1d

Solve the one-dimensional diffusion equation

$$
\begin{equation*}
\left(\partial_{t}-D \partial_{x}^{2}\right) G^{R}\left(x t, x^{\prime} t^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{4}
\end{equation*}
$$

in Fourier space (k, ω). Then Fourier transform to real space (x, t) using contour integration: determine whether you have to close the contour for ω integration above or below so that $e^{-i \omega t}$ is bounded for $t \gtrless 0$; then apply the residue theorem on the diffusion pole in the complex ω plane. You may set $x^{\prime}=t^{\prime}=0$.

Problem 10: Kramers-Kronig relation

The retarded Green's function is analytic in the upper half plane, therefore its real and imaginary parts are connected by the Kramers-Kronig relation

$$
\begin{equation*}
\operatorname{Re} G^{R}(k, \omega)=\mathcal{P} \int_{-\infty}^{\infty} \frac{d E}{\pi} \frac{\operatorname{Im} G^{R}(k, E)}{E-\omega} \tag{5}
\end{equation*}
$$

where \mathcal{P} denotes the Cauchy principal value. Derive this identity using a contour that runs along the real line, circumvents the pole at $E=\omega$ and is closed by a semicircle at infinity:

Problem 11: Quasiparticle

With the help of ARPES (angle-resolved photo-emission spectroscopy) one can measure the spectral function $A\left(k_{0}, E\right)$ of an electron at a given wavenumber k_{0}. In one such experiment $A\left(k_{0}, E\right)$ shall have the form of a Lorentz curve with the maximum at energy ϵ_{0} and width γ (full width at half height).
(a) What is the properly normalized spectral function $A\left(k_{0}, E\right)$ if the whole spectral weight is contained in this Lorentz peak?
(b) Determine the retarded Green function $G^{R}\left(k_{0}, \omega\right)$.
[Hint: One can, e.g., evaluate the integral in the Lehmann representation as a contour integral. What difference does it make how the contour is closed?]
(c) Compute $G^{R}\left(k_{0}, t\right)$. How large is the lifetime of the quasiparticle qualitatively (physical interpretation \sim time between scatterings)? Under which condition on ϵ_{0} and γ is this a "good" quasiparticle, where one can observe several oscillations in time before it decays?

