Condensed Matter Theory

problem set 5

Dr. Tilman Enss \& Valentin Kasper

18 May 2016
Institut für Theoretische Physik, Universität Heidelberg
due date: 27 May 2016
Course homepage: http://www.thphys.uni-heidelberg.de/~enss/teaching.html

Problem 12: Berry phase

We consider the adiabatic movement of a particle according to the Schrödinger equation $i \hbar \partial_{t}|\psi\rangle=$ $H(t)|\psi\rangle$ with a time-dependent Hamiltonian $H(t)$. At each instant in time, consider the nondegenerate eigenvalue problem $H(t)|n(t)\rangle=E_{n}(t)|n(t)\rangle$.
(a) Make the ansatz $|\psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i \theta_{n}(t)}|n(t)\rangle$ with $\theta_{n}(t)=\frac{1}{\hbar} \int_{0}^{t} d t^{\prime} E_{n}\left(t^{\prime}\right)$ and derive

$$
\begin{equation*}
\partial_{t} c_{m}(t)=-c_{m}\left\langle m \mid \partial_{t} m\right\rangle-\sum_{n \neq m} c_{n} \frac{\langle m| \partial_{t} H|n\rangle}{E_{n}(t)-E_{m}(t)} e^{i\left(\theta_{m}-\theta_{n}\right)} \tag{1}
\end{equation*}
$$

(b) Assume that the Hamiltonian changes slowly in time. In this limit, show that the coefficients of the ansatz are given by $c_{m}(t)=c_{m}(0) e^{i \gamma_{m}(t)}$ with the Berry phase

$$
\begin{equation*}
\gamma_{m}(t)=i \int_{0}^{t} d t^{\prime}\left\langle m\left(t^{\prime}\right) \mid \partial_{t^{\prime}} m\left(t^{\prime}\right)\right\rangle \tag{2}
\end{equation*}
$$

Prove that the Berry phase $\gamma_{m}(t)$ is real.
(c) Consider now the Berry phase on a closed curve C parametrized by $\mathbf{r}(t)$ and show that it can be written as

$$
\begin{equation*}
\gamma_{m}=\int_{C} d \mathbf{r} \cdot \mathbf{A}=\int_{S} d \mathbf{S} \cdot(\nabla \times \mathbf{A}) \tag{3}
\end{equation*}
$$

where the curl is given by

$$
\begin{equation*}
\nabla \times \mathbf{A}=i \sum_{m \neq n} \frac{\langle n| \nabla H|m\rangle\langle m| \nabla H|n\rangle}{\left(E_{n}-E_{m}\right)^{2}} . \tag{4}
\end{equation*}
$$

(d) Consider a particle in one dimension subject to a periodic electrostatic potential $V(x)$ and a slowly varying time-dependent vector potential $A(t)$,

$$
\begin{equation*}
i \hbar \partial_{t} \psi(t)=\left[\frac{1}{2 m}\left(p-\frac{e}{c} A(t)\right)^{2}+V(x)\right] \psi(t) \tag{5}
\end{equation*}
$$

Express the Berry phase in terms of Bloch eigenfunctions.

Problem 13: Matsubara sum

Compute the sum

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8} \tag{6}
\end{equation*}
$$

using the Matsubara technique for fermionic Matsubara frequencies $\omega_{n}=(2 n+1) \pi / \beta, n \in \mathbb{Z}$. Temperature is just a formal parameter that will drop out of the final result.

Problem 14: Interaction energy

Consider a translation invariant system of spinless fermions with the Hamiltonian

$$
\begin{aligned}
\hat{\mathcal{H}} & =\hat{T}+\hat{V}-\mu \hat{N} \\
& =\int d^{3} x \psi^{\dagger}(x)\left(\frac{-\nabla^{2}}{2 m}-\mu\right) \psi(x)+\frac{1}{2} \int d^{3} x d^{3} x^{\prime} \psi^{\dagger}(x) \psi^{\dagger}\left(x^{\prime}\right) v\left(x-x^{\prime}\right) \psi\left(x^{\prime}\right) \psi(x) .
\end{aligned}
$$

Show that

$$
\begin{equation*}
\langle\hat{V}\rangle=\sum_{k} \int d E \frac{E+\mu-k^{2} / 2 m}{2} A(k, E) f(E) \tag{7}
\end{equation*}
$$

where $f(E)=\left(e^{\beta E}+1\right)^{-1}$ is the Fermi function. It is remarkable that the expection value of the two-particle operator \hat{V} for the interaction energy can be expressed in terms of the singleparticle spectral function. One can, e.g., do the following steps:
(a) Start with the equation of motion for the Heisenberg operator, $i \partial_{t} \psi(x, t)$, and explicitly compute the commutator $[\psi(x, t), \hat{V}]$.
(b) Multiply from the left with $\psi^{\dagger}\left(x^{\prime}, t^{\prime}\right)$ and take the expectation value in the limit $t^{\prime} \rightarrow t+0$, $x^{\prime} \rightarrow x$. Then integrate over x and identify $\langle\hat{V}\rangle$.
(c) Express the remaining terms by the Green function $G\left(x t, x^{\prime} t^{\prime}\right)$ in the same limit.
(d) Write the Green function using its Fourier components $G(k, \omega)$ and express these in terms of $A(k, E)$ as in the lecture. What happens for a noninteracting system?

