Condensed Matter Theory

Dr. Tilman Enss \& Valentin Kasper
Institut für Theoretische Physik, Universität Heidelberg
Course homepage: http://www.thphys.uni-heidelberg.de/~enss/teaching.html

Problem 15: Grassmann algebra

(a) Compute the integral

$$
\begin{equation*}
\int d \eta^{*} d \eta e^{-\eta^{*} a \eta} \tag{1}
\end{equation*}
$$

for Grassmann numbers η, η^{*} and $a \in \mathbb{C}$.
(b) The Grassmann δ function is defined as

$$
\begin{equation*}
\delta\left(\xi, \xi^{\prime}\right) \equiv \int d \eta e^{-\eta\left(\xi-\xi^{\prime}\right)} \tag{2}
\end{equation*}
$$

for Grassmann numbers $\xi^{\prime} \xi^{\prime}$ and η, in analogy to the corresponding expression for complex numbers. Compute the integral in (2) explicitly and show that

$$
\begin{equation*}
\int d \xi^{\prime} \delta\left(\xi, \xi^{\prime}\right) f\left(\xi^{\prime}\right)=f(\xi) \tag{3}
\end{equation*}
$$

for an arbitrary Grassmann function $f(\xi)=f_{0}+f_{1} \xi$ with coefficients $f_{0}, f_{1} \in \mathbb{C}$.
(c) Compute $1 / f(\xi)$. Under which condition is this expression well-defined?
(d) For an m-particle Fock state $|m\rangle=c_{1}^{\dagger} \ldots c_{m}^{\dagger}|0\rangle$ and a fermionic coherent state $|\xi\rangle$, derive the identity

$$
\begin{equation*}
\langle m \mid \xi\rangle\langle\xi \mid m\rangle=\langle-\xi \mid m\rangle\langle m \mid \xi\rangle . \tag{4}
\end{equation*}
$$

(e) Consider a Grassmann algebra with two generators ξ_{1} and ξ_{2}. Specify a basis for this algebra; which dimension does it have? The basis elements $\left\{z_{i}\right\}$ of the algebra satisfy multiplication rules of the form $z_{i} \cdot z_{j}=\left(M_{i}\right)_{k j} z_{k}$; find an explicit matrix representation for each basis element that satisfies the same rules, and express the general Grassmann function

$$
\begin{equation*}
A\left(\xi_{1}, \xi_{2}\right)=a_{0}+a_{1} \xi_{1}+a_{2} \xi_{2}+a_{12} \xi_{1} \xi_{2} \tag{5}
\end{equation*}
$$

as a matrix in this representation.

Problem 16: Perturbation theory

Consider the integral

$$
\begin{equation*}
I(g)=\int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} x^{2}-g x^{4}\right\} \tag{6}
\end{equation*}
$$

to mimic a particle with an anharmonic term, or "interaction", of strength g. Expand the integral into a series $I(g)=\sum_{n} g^{n} I_{n}$ for $g>0$ and show that for large n,

$$
\begin{equation*}
g^{n} I_{n} \sim\left(-\frac{16 g n}{e}\right)^{n} \tag{7}
\end{equation*}
$$

by expressing the Gaussian integrals $\int d x x^{4 n} e^{-x^{2} / 2}$ in terms of factorials and using the Stirling formula $n!\sim(n / e)^{n}$. Discuss whether the series converges, and if not, at which order the expansion starts to break down (depending on g). How large is the radius of convergence around $g=0$ (consider negative g)? Estimate the error of a partial resummation up to order $n_{\text {max }}$,

$$
\begin{equation*}
\left|I(g)-\sum_{n=0}^{n_{\max }} g^{n} I_{n}\right| \tag{8}
\end{equation*}
$$

Given g, estimate the value of $n_{\max }$ where the error is minimal. How large is the error at $n_{\max }$?

Problem 17: Landau levels in graphene

The Hamiltonian for graphene close to the K point of the Brillouin zone takes the form of a Dirac Hamilton operator (cf. problem 6):

$$
\hat{H}_{0}^{K}=v_{F} \boldsymbol{\tau} \cdot \boldsymbol{p}, \quad \text { with } \quad \boldsymbol{p}=\left(p_{x}, p_{y}\right)^{T} \quad \text { and the Pauli matrices } \quad \boldsymbol{\tau}=\left(\tau_{x}, \tau_{y}\right) .
$$

Electrons in an external magnetic field can be described by replacing the momentum operator by its gauge invariant form $\boldsymbol{p} \rightarrow \boldsymbol{P}=\boldsymbol{p}+e \boldsymbol{A}(\boldsymbol{r})$ where $\boldsymbol{B}=\nabla \times \boldsymbol{A}(\boldsymbol{r})$.
(a) Calculate the commutator $\left[P_{x}, P_{y}\right]$ and show that P_{x} and P_{y} are conjugate variables. For this purpose use a vector potential in Landau gauge $\boldsymbol{A}(\boldsymbol{r})=B(-y, 0,0)$ and express the result in terms of the magnetic length $l_{B}=\sqrt{\hbar /(e B)}$.
(b) Introduce ladder operators a, a^{\dagger} as linear combinations of P_{x} and P_{y}. They should satisfy $\left[a, a^{\dagger}\right]=1$. Express the matrix-valued Dirac Hamiltonian in a magnetic field \hat{H}_{B}^{K} in terms of ladder operators and the characteristic frequency $\omega=\sqrt{2} v_{F} / l_{B}$.
(c) To determine the eigenvalues and eigenstates of the Hamiltonian we want to solve the eigenvalue equation $\hat{H}_{B}^{K} \psi_{n}=\epsilon_{n} \psi_{n}$. Here, ψ is a 2 -spinor, $\psi_{n}=\left(u_{n}, v_{n}\right)^{T}$. Show that the second spinor component v_{n} is an eigenstate of the occupation number operators $n=a^{\dagger} a$, i.e., $v_{n} \propto|n\rangle$.

(d) Now you can determine the energy eigenvalues ϵ_{n} as a function of the occupation number. These are the so-called relativististic Landau levels of graphene. Sketch ϵ_{n} as a function of the magnetic field.
(e) With the solution for v_{n} you can also determine the solution for u_{n}. Give an explicit expression for the full spinor $\psi_{\lambda, n}$ and discuss the case $n=0$. Note that there are positive and negative energy solutions ($\lambda= \pm$).
(f) Relativistic Landau levels can be observed experimentally by transmission spectroscopy. In this method the intensity of the light transmitted by a graphene sample is measured. Monochromatic light induces dipole transitions between Landau levels $n \rightarrow n+1$. Calculate the transition energies Δ_{n} and compare your results with the measurement given in the figure below ${ }^{1}(B=0.4 \mathrm{~T})$.

[^0]
[^0]: ${ }^{1}$ taken from M. L. Sadowski et al., Phys. Rev. Lett. 97, 266405 (2006)

