Condensed Matter Theory

Dr. Tilman Enss \& Valentin Kasper
Institut für Theoretische Physik, Universität Heidelberg
Course homepage: http://www.thphys.uni-heidelberg.de/~enss/teaching.html

Problem 18: Hartree-Fock

A uniform spin-s Fermi system has a spin-independent interaction potential $v(\boldsymbol{r})=\left(e^{2} / r\right) e^{-r / a}$.
(a) Evaluate the self-energy at $T=0$ in the Hartree-Fock approximation (you may use Mathematica for the last integral). Hence find the excitation spectrum E_{k} and the Fermi energy $\mu=E_{k_{F}}$.
(b) Show that the exchange contribution to $E_{k_{F}}$ is negligible for a long-range interaction $\left(k_{F} a \gg\right.$ 1) but that the direct and exchange terms are comparable for a short-range interaction ($k_{F} a \ll 1$).
(c) In this approximation prove that the effective mass m^{*} at the Fermi surface, which is defined by $E_{k}=E_{k_{F}}+\left(k_{F} / m^{*}\right)\left(k-k_{F}\right)+\cdots$, is determined solely by the exchange contribution. Compute m^{*}, and discuss the limiting cases $k_{F} a \gg 1$ and $k_{F} a \ll 1$.
(d) What is the relation between the limit $a \rightarrow \infty$ of this model and the electron gas in a uniform positive background?

Problem 19: Potential scattering in 1d

In potential scattering, each particle scatters independently from a fixed potential. The solution can therefore be given exactly, and serves to illustrate how multiple scattering is formulated with geometric series.
(a) Consider a one-dimensional system with single-particle Hamiltonian \mathcal{H} and eigenstates $|\alpha\rangle$,

$$
\begin{equation*}
\mathcal{H}|\alpha\rangle=\varepsilon_{\alpha}|\alpha\rangle . \tag{1}
\end{equation*}
$$

The resolvent operator $\mathcal{G}(z)$ is defined by

$$
\begin{equation*}
(z \mathbb{1}-\mathcal{H}) \mathcal{G}(z)=\mathbb{1} \tag{2}
\end{equation*}
$$

Show that $\mathcal{G}(z)$ can be represented in real space as

$$
\begin{equation*}
g(x, y ; z)=\langle x| \mathcal{G}(z)|y\rangle=\sum_{\alpha} \frac{\Psi_{\alpha}(x) \Psi_{\alpha}^{*}(y)}{z-\varepsilon_{\alpha}} . \tag{3}
\end{equation*}
$$

[Note: The poles of $\mathcal{G}(z)$ as a function of the complex variable z lie on the real axis and determine the eigenvalues of $\mathcal{H} . g(x, y ; \omega+i 0)$ is the retarded Green function.]
(b) Consider specifically a particle which scatters off a δ potential of strength V at position $x=0$ (in units where $\hbar=1$),

$$
\begin{equation*}
\mathcal{H}=-\frac{\partial_{x}^{2}}{2 m}+V \delta(x) . \tag{4}
\end{equation*}
$$

Show that the (full) Green function can be written as

$$
\begin{equation*}
g(x, y ; z)=g_{0}(x, y ; z)+g_{0}(x, 0 ; z) t(z) g_{0}(0, y ; z) \tag{5}
\end{equation*}
$$

in terms of the noninteracting (free) Green function ($V=0$)

$$
\begin{equation*}
\left(z+\frac{\partial_{x}^{2}}{2 m}\right) g_{0}(x, y ; z)=\delta(x-y) \tag{6}
\end{equation*}
$$

and the T matrix

$$
\begin{equation*}
t(z)=\frac{V}{1-V g_{0}(0,0 ; z)} \tag{7}
\end{equation*}
$$

Eq. (5) describes a particle propagating freely between separate scattering events.
(c) Compute the free Green function $g_{0}(0,0 ; z)$ and the T matrix $t(z)$ for $\operatorname{Im} z>0$. Sketch the frequency dependence of the spectral function $-(1 / \pi) \operatorname{Im} t(\omega+i 0)$ for positive and negative V. Under which condition does the retarded T matrix $t(\omega+i 0)$ have a pole for real ω, and what is the physical meaning of this pole?
[Hint: The square root $\sqrt{\omega+i \delta}=i \sqrt{-\omega}+\delta^{\prime}$ for real $\omega<0$ and infinitesimal positive $\delta, \delta^{\prime}>0$.]
(d^{\star}) Compute the local density of states at position x and frequency ω,

$$
\begin{equation*}
v(x, \omega)=-\frac{1}{\pi} \operatorname{Im} g(x, x ; \omega+i 0) . \tag{8}
\end{equation*}
$$

Using your result, show that (a) backscattering off the potential leads to spatial oscillations in $v(x, \omega)$; and (b) for an attractive potential $V<0$ and for negative frequencies $\omega<0$ there is a bound state at $x=0$ which decays exponentially with $|x|$.
[Intermediate result: The full Green function reads

$$
\begin{equation*}
g(x, x ; z)=-\frac{i m}{\sqrt{2 m z}}\left(1-\frac{i m V}{i m V+\sqrt{2 m z}} \exp (2 i|x| \sqrt{2 m z})\right) . \tag{9}
\end{equation*}
$$

for $y=x$ and $\operatorname{Im} z>0$.]

Problem 20: Gaussian integration

Explicitly compute the Gaussian integral for Grassmann variables $\eta_{i}^{*}, \eta_{i}(i=1,2)$ and a 2×2 matrix $H_{i j}$,

$$
\begin{equation*}
I=\int d \eta_{1}^{*} d \eta_{1} d \eta_{2}^{*} d \eta_{2} \exp \left[-\eta_{i}^{*} H_{i j} \eta_{j}\right] \tag{10}
\end{equation*}
$$

for instance, by expanding the exponential function into a Taylor series.

