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Problem 18: Hartree-Fock

A uniform spin-s Fermi system has a spin-independent interaction potential v(r) = (e2/r)e−r/a.
(a) Evaluate the self-energy at T = 0 in the Hartree-Fock approximation (you may use Math-

ematica for the last integral). Hence �nd the excitation spectrum Ek and the Fermi energy
µ = EkF .

(b) Show that the exchange contribution to EkF is negligible for a long-range interaction (kFa ≫
1) but that the direct and exchange terms are comparable for a short-range interaction
(kFa ≪ 1).

(c) In this approximation prove that the e�ectivemassm∗ at the Fermi surface, which is de�ned
by Ek = EkF + (kF/m∗)(k − kF) + ⋯ , is determined solely by the exchange contribution.
Compute m∗, and discuss the limiting cases kFa ≫ 1 and kFa ≪ 1.

(d) What is the relation between the limit a →∞ of thismodel and the electron gas in a uniform
positive background?

Problem 19: Potential scattering in 1d

In potential scattering, each particle scatters independently from a �xed potential. �e solution
can therefore be given exactly, and serves to illustrate how multiple scattering is formulated with
geometric series.

(a) Consider a one-dimensional systemwith single-particleHamiltonianH and eigenstates ∣α⟩,
H∣α⟩ = εα ∣α⟩ . (1)

�e resolvent operator G(z) is de�ned by

(z1 −H)G(z) = 1 . (2)

Show that G(z) can be represented in real space as

g(x , y; z) = ⟨x∣G(z)∣y⟩ =∑
α

Ψα(x)Ψ∗α (y)
z − εα

. (3)

[Note: �e poles of G(z) as a function of the complex variable z lie on the real axis and determine

the eigenvalues ofH. g(x , y;ω + i0) is the retarded Green function.]

1



(b) Consider speci�cally a particle which scatters o� a δ potential of strength V at position
x = 0 (in units where ħ = 1),

H = − ∂2x
2m
+Vδ(x) . (4)

Show that the (full) Green function can be written as

g(x , y; z) = g0(x , y; z) + g0(x , 0; z)t(z)g0(0, y; z) (5)

in terms of the noninteracting (free) Green function (V = 0)

(z + ∂2x
2m
)g0(x , y; z) = δ(x − y) (6)

and the T matrix

t(z) = V

1 −Vg0(0, 0; z)
. (7)

Eq. (5) describes a particle propagating freely between separate scattering events.

(c) Compute the free Green function g0(0, 0; z) and the T matrix t(z) for Im z > 0. Sketch the
frequency dependence of the spectral function−(1/π) Im t(ω+i0) for positive and negative
V . Under which condition does the retarded T matrix t(ω+ i0) have a pole for real ω, and
what is the physical meaning of this pole?

[Hint: �e square root
√
ω + iδ = i√−ω + δ′ for real ω < 0 and in�nitesimal positive δ, δ′ > 0.]

(d*) Compute the local density of states at position x and frequency ω,

ν(x ,ω) = − 1
π
Im g(x , x;ω + i0) . (8)

Using your result, show that (a) backscattering o� the potential leads to spatial oscillations
in ν(x ,ω); and (b) for an attractive potentialV < 0 and for negative frequencies ω < 0 there
is a bound state at x = 0 which decays exponentially with ∣x∣.
[Intermediate result: �e full Green function reads

g(x , x; z) = − im√
2mz

(1 − imV

imV +√2mz
exp(2i∣x∣√2mz)) . (9)

for y = x and Im z > 0.]

Problem 20: Gaussian integration

Explicitly compute the Gaussian integral for Grassmann variables η∗i , ηi (i = 1, 2) and a 2 × 2-
matrix Hi j,

I = ∫ dη∗1 dη1dη
∗
2dη2 exp[−η∗i Hi jη j], (10)

for instance, by expanding the exponential function into a Taylor series.
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