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Universality in low dimensions: 2D
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• superfluidity
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• KT transition: unbinding of vortex-antivortex pairs
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… also for out-of-equilibrium systems?
… new universal phenomena tied to non-equilibrium?

• correlations

low temperature high temperature

• continuous phase rotations:
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

Experimental Platform: Exciton-Polariton Systems
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• phenomenological description: stochastic driven-dissipative Gross-Pitaevskii-Eq
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physics soon exits the regime of weakly interacting bosons that
describes ultracold atoms; second, the lifetime is short enough that
we must confront the role of non-equilibrium physics25. Never-
theless, the principal experimental characteristics expected for BEC
are clearly reported here: condensation into the ground state arising
out of a population at thermal equilibrium; the development of
quantum coherence, indicated by long-range spatial coherence, and
sharpening of the temporal coherence of the emission.

Experimental procedure
The sample we studied consists of a CdTe/CdMgTe microcavity
grown by molecular beam epitaxy. It contains 16 quantum wells,

displaying a vacuum field Rabi splitting of 26meV (ref. 26). The
microcavity was excited by a continuous-wave Ti:sapphire laser,
combined with an acousto-optic modulator (1-ms pulse, 1% duty
cycle) to reduce sample heating. The pulse duration is sufficiently
long (by four orders of magnitude) in comparison with the charac-
teristic times of the system to guarantee a steady-state regime. The
laser beam was carefully shaped into a ‘top hat’ intensity profile
providing a uniform excitation spot of about 35 mm in diameter on
the sample surface, as shown in Fig. 4i. The excitation energy was
1.768 eV, well above the polariton ground state (1.671 eV at cavity
exciton resonance), at the first reflectivity minimum of the Bragg
mirrors, allowing proper coupling to the intra-cavity field. This
ensures that polaritons initially injected in the system are incoherent,
which is a necessary condition for demonstrating BEC. In atomic
BEC or superfluid helium, the temperature is the parameter driving
the phase transition. Here the excitation power, and thus the injected
polariton density, is an easily tunable parameter, and so we chose it as
the experimental control parameter. The large exciton binding
energy in CdTe quantum wells (25meV), combined with the large
number of quantum wells in the microcavity, is crucial in maintain-
ing the strong coupling regime of polaritons at high carrier density.
The far-field polariton emission pattern was measured to probe the
population distribution along the lower polariton branch. The
spatially resolved emission and its coherence properties are accessible
in a real-space imaging set-up combined with an actively stabilized

Figure 1 |Microcavity diagram and energy dispersion. a, A microcavity is a
planar Fabry–Perot resonator with two Bragg mirrors at resonance with
excitons in quantum wells (QW). The exciton is an optically active dipole
that results from the Coulomb interaction between an electron in the
conduction band and a hole in the valence band. In microcavities operating
in the strong coupling regime of the light–matter interaction, 2D excitons
and 2D optical modes give rise to new eigenmodes, called microcavity
polaritons. b, Energy levels as a function of the in-plane wavevector kk in a
CdTe-based microcavity. Interaction between exciton and photon modes,
with parabolic dispersions (dashed curves), gives rise to lower and upper
polariton branches (solid curves) with dispersions featuring an anticrossing
typical of the strong coupling regime. The excitation laser is at high energy
and excites free carrier states of the quantum well. Relaxation towards the
exciton level and the bottom of the lower polariton branch occurs by
acoustic and optical phonon interaction and polariton scattering. The
radiative recombination of polaritons results in the emission of photons that
can be used to probe their properties. Photons emitted at angle v correspond
to polaritons of energy E and in-plane wavevector kk ¼ ðE="cÞsinv:

Figure 2 | Far-field emission measured at 5K for three excitation
intensities. Left panels, 0.55P thr; centre panels, P thr; and right panels,
1.14P thr; where P thr ¼ 1.67 kWcm22 is the threshold power of
condensation. a, Pseudo-3D images of the far-field emission within the
angular cone of^238, with the emission intensity displayed on the vertical axis
(in arbitrary units).With increasing excitation power, a sharp and intensepeak
is formed in the centre of the emission distribution ðvx ¼ vy ¼ 08Þ;
corresponding to the lowest momentum state kk ¼ 0. b, Same data as in a
but resolved in energy. For such a measurement, a slice of the far-field
emission corresponding to vx ¼ 08 is dispersed by a spectrometer and
imaged on a charge-coupled device (CCD) camera. The horizontal axes
display the emission angle (top axis) and the in-plane momentum (bottom
axis); the vertical axis displays the emission energy in a false-colour scale
(different for each panel; the units for the colour scale are number of counts
on the CCD camera, normalized to the integration time and optical density
filters, divided by 1,000 so that 1 corresponds to the level of dark counts:
1,000). Below threshold (left panel), the emission is broadly distributed in
momentum and energy. Above threshold, the emission comes almost
exclusively from the kk ¼ 0 lowest energy state (right panel). A small blue
shift of about 0.5meV, or 2%of the Rabi splitting, is observed for the ground
state, which indicates that the microcavity is still in the strong coupling
regime.
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• Bose condensation seen despite non-equilibrium conditions

Kasprzak et al., Nature 2006

• stochastic driven-dissipative Gross-Pitaevskii-Eq
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Sneak preview

I Key physical features: driven-dissipative stochastic Gross-Pitaevskii Equation

I stochastic PDE with Markovian noise: hx(t, x)i = 0 and

hx(t, x)x⇤(t0 , x

0)i = gd(t � t0)d(x � x

0)

I Bose-Einstein condensation phase transition

I mean-field: neglect noise

I homogeneous condensate f(t, x) = f0

) |f0|2 =
gp � gl

k

for gp > gl

) chemical potential µ = l |f0|2

I 2nd order phase transition

• mean field

• neglect noise

• homogeneous solution �(x, t) = �0

• naively, just as Bose condensation in equilibrium!
• Q: What is “non-equilibrium” about it?

Experimental Platform: Exciton-Polariton Systems
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• rewrite stochastic Gross-Pitaevski equation

“What is non-equilibrium about it?”
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• Representation of stochastic Langevin dynamics as MSRJD functional integral 
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• Equilibrium conditions signalled by presence of symmetry under:

“What is non-equilibrium about it?”: Field theory

• Implication 1 [equivalence]: (classical) fluctuation-dissipation 
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➡ equilibrium conditions as a symmetry
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equilibrium dynamics
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non-equilibrium dynamics
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• coherent and dissipative dynamics may 
occur simultaneously

• but they are not independent

• coherent and driven-dissipative dynamics do 
occur simultaneously

• they result from different dynamical resources
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➡ what are the physical consequences of the spread in the complex plane?
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

“What is non-equilibrium about it?”: Geometric interpretation
• Implication 2: geometric constraint

Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory for Driven 
Open Quantum Systems, Reports on Progress in Physics (2016)
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• mapping of the driven-dissipative GPE to KPZ-type equation
• fundamental difference to conventional context: 

➡ weak non-equilibrium drive: two competing scales

• smooth non-equilibrium fluctuations   -> emergent KPZ length scale 

• non-equilibrium vortex physics            -> emergent length scale 

• result: different sequence in 2D and 1D
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on a coherent pumping of the cavity at a finite angle,
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et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
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the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
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theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.
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FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

KPZ variable: condensate phase, compact

➡  strong non-equilibrium drive: new first order phase transition (one dimension)



Low frequency phase dynamics

• driven-dissipative stochastic GPE

• integrate out fast amplitude fluctuations:

@t✓ = Dr2✓ + �(r✓)2 + ⇠
phase diffusion phase nonlinearity Markov noise

Kardar, Parisi, Zhang, 
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lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
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• spin wave becomes non-linear 
• nonlinearity: single-parameter measure of non-equilibrium strength 

(ruled out in equilibrium by symmetry)
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2 Dimensions 

E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015) 
G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)
L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)
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• RG flow of the effective dimensionless KPZ coupling parameter

strong coupling: disordered / 
rough non-equilibrium phase

weak coupling: 
equilibrium phase

• general trend: non-equilibrium effects in systems with soft mode are 

• enhanced in d = 1,2 

• softened in d = 3 (below a threshold)
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Im

Re

g2 =
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g(L⇤) = 1

Physical implication I: Smooth KPZ fluctuations
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can serve as a quantitative measure for the departure from ther-
mal equilibrium. Note that � = 0 in equilibrium, and that � is
well-defined also for Kd = 0, which is the microscopic value
of the di↵usion constant Kd in the model for driven-dissipative
condensates introduced in Sec. II B 2. It turns out to be most
convenient to combine � with the quantities [19]

D = Kc
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ud
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(see Sec. II B 2 for the definition of the noise strength � and the
mean-field condensate density ⇢0) to define the dimensionless
non-equilibrium strength as [5]:

g = ⇤d�2
0
�2�

D3 , (190)

where ⇤0 is the UV momentum cuto↵. Thus, the answer to
the question of whether equilibrium vs. non-equilibrium uni-
versal behavior is realized in driven-dissipative condensates, is
encoded in the RG flow of g.

In the condensed phase, the RG flow of g is driven domi-
nantly by fluctuations of the gapless Goldstone mode discussed
in Sec. II D 6, i.e., by fluctuations of the phase of the conden-
sate field. The latter were shown [269–272] to be governed by
the Kardar-Parisi-Zhang (KPZ) equation [73], in which � de-
fined in Eq. (188) appears as the coe�cient of the characteristic
non-linear term, see Eq. (199). Below in Sec. IV A, we present
an alternative mapping of the long-wavelength condensate dy-
namics to the KPZ equation, starting from the Keldysh action in
Eq. (73) and integrating out the gapped density mode within the
Keldysh functional integral. As a consequence of the mapping
to the KPZ equation, the RG flow of g in d spatial dimensions is
at the one-loop level given by [5]

@`g = � (d � 2) g +
(2d � 3) Cd

2d
g2, (191)

where ` = ln(⇤/⇤0), ⇤ is the running momentum cuto↵, and
Cd = 21�d⇡�d/2�(2 � d/2) is a geometric factor. The key role
that is played by spatial dimensionality becomes manifest in the
canonical scaling of g, which is encoded in the first term on the
RHS of the flow equation: to wit, g is relevant in 1D where
d�2 < 0, marginal in 2D, and irrelevant in 3D since then d�2 >
0. In 2D, the loop correction — the second term on the RHS of
Eq. (191) — is positive, making g marginally-relevant. This has
far-reaching consequences for a driven-dissipative condensate in
which the microscopic value of g is small, i.e., which is close to
equilibrium: upon increasing the scale at which the system is ob-
served, the non-equilibrium nature is more pronounced in one-
and two-dimensional systems, whereas e↵ective equilibrium is
established on large scales in three-dimensional systems. In 1D
the canonical scaling towards strong coupling is balanced at an
attractive strong-coupling fixed point (SCFP) g⇤ by the loop cor-
rection. This term vanishes at d = 3/2, and for d > 3/2 the one-
loop equation does not have a stable SCFP, which, however, is
recovered in a non-perturbative FRG approach [252–254]. The

d1 2 3

g

1

Figure 10. Equilibrium vs. non-equilibrium phase diagram for driven-
dissipative condensates (cf. Ref. [252]). The line g = 1, where g is
defined in Eq. (190) and measures the deviation from equilibrium con-
ditions, separates the close-to-equilibrium regime for g < 1 from the
strong-coupling, far-from-equilibrium regime at g > 1. Red dots indi-
cate the fixed-point values of g that are reached if the RG flow is initial-
ized in the close-to-equilibrium regime. In dimensions one and two, the
equilibrium fixed point at g = 0 is unstable, and the RG flow along the
dashed lines is directed towards the blue line of strong-coupling fixed
points. Thus, a system that is microscopically close to equilibrium will
exhibit strongly non-equilibrium behavior at large scales. On the other
hand, in three spatial dimensions, an initially small value of g is dimin-
ished under renormalization, and the universal large-scale behavior is
governed by the e↵ective equilibrium fixed point at g = 0. The green
line indicates the existence of a critical value gc in d > 2, corresponding
to a transition between the e↵ective equilibrium phase and a true non-
equilibrium phase that is realized for large microscopic values g > gc.

RG flow of g that is found within this approach is illustrated
qualitatively in Fig. 10, which shows that also in 2D the flow is
out of the shaded close-to-equilibrium regime with g < 1, and
towards a strong-coupling, non-equilibrium fixed point. The sit-
uation is quite di↵erent in 3D: in this case, if the microscopic
value of g is small, at large scales an e↵ective equilibrium with a
renormalized value g! 0 is reached. However, for d > 2, there
exists a critical line of unstable fixed points gc, separating the
basins of attraction of the equilibrium and non-equilibrium fixed
points, for g < gc and g > gc respectively. Thus, in addition
to the e↵ective equilibrium phase, a true non-equilibrium phase
may be reached in systems that are far from equilibrium even at
the microscopic level also in 3D [273]. The properties of this
phase have not been explored so far.

The rest of this section is organized as follows: in Sec. IV B,
we review the dynamical critical behavior at the driven-
dissipative condensation transition in 3D [26, 181, 274], which,
according to the above discussion, is governed by an e↵ective
equilibrium fixed point. Signatures of the non-equilibrium na-
ture of the microscopic model are present in the asymptotic fade-
out of the deviation from equilibrium at large scales. In contrast,
the universal scaling behavior of driven-dissipative condensates
in both 2D [19] and 1D [265–267] is quite distinct from the equi-
librium case and governed by the SCFP of the KPZ equation.

FRG analysis: Canet, Chate, Delamotte, 
Wschebor, PRL (2010), PRE (2012)



• RG flow of the effective dimensionless KPZ coupling parameter

• 2D: implication: a length scale is generated
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well-defined also for Kd = 0, which is the microscopic value
of the di↵usion constant Kd in the model for driven-dissipative
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uation is quite di↵erent in 3D: in this case, if the microscopic
value of g is small, at large scales an e↵ective equilibrium with a
renormalized value g! 0 is reached. However, for d > 2, there
exists a critical line of unstable fixed points gc, separating the
basins of attraction of the equilibrium and non-equilibrium fixed
points, for g < gc and g > gc respectively. Thus, in addition
to the e↵ective equilibrium phase, a true non-equilibrium phase
may be reached in systems that are far from equilibrium even at
the microscopic level also in 3D [273]. The properties of this
phase have not been explored so far.

The rest of this section is organized as follows: in Sec. IV B,
we review the dynamical critical behavior at the driven-
dissipative condensation transition in 3D [26, 181, 274], which,
according to the above discussion, is governed by an e↵ective
equilibrium fixed point. Signatures of the non-equilibrium na-
ture of the microscopic model are present in the asymptotic fade-
out of the deviation from equilibrium at large scales. In contrast,
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Physical implications I: Absence of quasi-LRO

• generated length scale distinguishes two regimes:

• long-range behavior of two-point/ spatial coherence function:

r

h�⇤(r)�(0)i

algebraic quasi-long range order 
(Kosterlitz-Thouless phase)

sub-exponential non-
equilibrium disordered  

(rough) phase

L⇤

➡ algebraic order absent in any two-dimensional driven open system at the largest distances
➡ but crossover scale exponentially large for small deviations from equilibrium

h�⇤(r)�(0)i ⇡ n0e
�h[✓(x)�✓(0)]2i leading order cumulant expansion

L⇤ = a0e
16⇡
g2

⇠ r�↵

e�r2� , � ⇡ 0.37 (d = 2)



Physical implications II: Non-equilibrium Kosterlitz-Thouless

• compact nature of phase allows for vortex defects in 2D! vortex anti-vortex

• in 2D equilibrium: perfect analogy between vortices and electric charges

• log(r) interactions,              forces  1/(✏r)

• dielectric constant            = superfluid stiffness✏�1

T<TKT$ T>TKT$
superfluid$=$dipole$gas$$
(“vortex$insulator”)$

Normal$=$plasma$
metallic$screening$

✏�1 ! 0✏�1 > 0

superfluid = dipole gas

➡ how is this scenario modified in the driven system?

normal fluid = plasma
metallic screening

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable

P = ("� 1)E
ext

=

Z
d2r rP(r)



Duality approach

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable

• phase compactness = local discrete gauge invariance of 

✓t,x 7! ✓t,x + 2⇡nt,x

 t,x =
p
⇢t,xe

i✓t,x

✓t,x 2 [0, 2⇡), nt,x 2 Z

• deterministic part: lattice regularization

unit lattice 
direction =: L[✓]t,x deterministic noise

@t✓x = �
X

a


D sin(✓

x

� ✓
x+a

) +

�

2

(cos(✓
x

� ✓
x+a

)� 1)

�
+ ⌘

x

➡ needs to be taught to the KPZ equation:



✓t,x 2 [0, 2⇡)

Duality approach

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable

• temporal part: stochastic update

✓t+✏,x = ✓t,x + ✏ (L[✓]t,x + ⌘t,x) + 2⇡nt,x

✓t,x 2 [0, 2⇡)

• NB: phase can jump, continuum limit eps -> 0 ill defined, derivatives discrete

• phase compactness = local discrete gauge invariance of 

✓t,x 7! ✓t,x + 2⇡nt,x

 t,x =
p
⇢t,xe

i✓t,x

✓t,x 2 [0, 2⇡), nt,x 2 Z

✓t,x 2 [0, 2⇡)

➡ needs to be taught to the KPZ equation:



Duality approach: Comparison to non-compact case

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for non-compact variable

Z =
X

{ñt,x}

Z
D[✓]eiS[✓,ñ]

Z =

Z
D[✓̃]D[✓]eiS[✓,✓̃]

manifestly gauge invariant!

stochastic differential 
equation

continuous noise MSRJD 
functional integral,

stochastic difference 
equation

discrete noise MSRJD 
functional integral,

✓t+✏,x = ✓t,x + ✏ (L[✓]t,x + ⌘t,x) + 2⇡nt,x

lattice regularized deterministic term

• KPZ equation for compact variable



Duality approach

Z /
X

{nvX ,ñvX ,
JvX ,J̃vX}

Z
D[�, �̃,A, Ã]eiS[�,�̃,A,Ã,nv,ñv,Jv,J̃v ]

• dual description: 

• interpretation: study the associated Langevin equations

vortex density 
and current

smooth spin wave fluctuations 
(equivalent KPZ equation)

• discrete gauge invariant dynamical functional integral

Z =
X

{ñt,x}

Z
D[✓]eiS[✓,ñ]

S =
X

t,x

ñt,x [��t✓t,x + ✏ (L[✓]t,x + i�ñt,x)]

• introduce Fourier conjugate variables, use continuity equations to parameterise in terms of gauge fields, 
Poisson transform



Electrodynamic Duality

KPZ non-linearity and noise

r ·E = 2⇡nv

r⇥E+
1

D
B = 0

r⇥B� @E

@t
= 2⇡Jv � ẑ⇥r

✓
�

2
E2 + ⇣̄

◆

r ·B = 0

• Langevin equations = modified nonlinear noisy Maxwell equations

modified continuity eq

phase dynamics

irrotational flow

E = �r��A,

B = Dr⇥A

fixed by modified gauge invarianceẼ = �r�� @tÃ,

B̃ = r⇥ Ã

vortex density 
& current

dri
dt

= µniE(t, ri) + ⇠i
phenomenologically added 

vortex dynamics

@t ! 1/D

• formulated in electric and magnetic fields alone:

• reproducing KPZ: identify E ⌘ ẑ⇥r✓ & integrate out magnetic field, neglect vortices 

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• next: integrate out gapless electric field degrees of freedom = phase fluctuations

• equilibrium            : exactly

• non-equilibrium: perturbatively in 
� = 0

�



A single vortex-antivortex pair

dr

dt
= �µrV (r) + ⇠ r

• equation of motion for a single vortex-antivortex pair

r

equilibrium: Coulomb potential (2D)

➡ noise-activated unbinding for a single pair (at exp small rate)

driven-dissipative system

V (r) ⇡ 1

"
ln(r/a)� �2

12"3D2

�
ln(r/a)3

�

V (r) =
1

"
ln(r/a)

Lv = a0e
2D
�

length scale:

see also: I Aranson 
et al., PRB (1998)

two-vortex problem



Many pairs: Modified Kosterlitz-Thouless RG flow
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Many pairs: Modified Kosterlitz-Thouless RG flow
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➡ vortex unbinding for any value of the noise strength



Summary: 2D
• two emergent length scales in complementary approaches: 

Lv

KPZ length

Lv = a0e
2D
�

vortex length

• scaling for the relevant fixed points

h�⇤(r)�(0)i ⇠ e�r2� , � = 0.4

KPZ fixed point

h�⇤(r)�(0)i ⇠ e�r

free vortex/disordered fixed point

• for incoherently pumped exciton-polariton systems, 

algebraic/equilibrium vortex/non-equilibrium

Lv ⌧ L⇤

L⇤ = a0e
16⇡
g2

E. Altman, L. Sieberer, L, Chen, SD, J. Toner, PRX (2015)
L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)
G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)

• caveats for observability: 

• length scales exponentially large

• assumes stationary states (unknown 
non-universal vortex dynamics)



1 Dimension 

L. He, L. Sieberer, E. Altman, SD, PRB (2015) 
L. He, L. Sieberer, SD, PRL (2017)

L⇤ Lv



⇠ e�a|t�t0|1/2

⇠ e�b|t�t0|2/3

⇠ e�c|t�t0|

equilibrium diffusive

KPZ

disordered

algebraic exponential

➡ Situation reversed compared to 2D!
➡ KPZ scaling should be observable in exciton-polariton experiments in 1D 

(“bad cavity limit”, lifetime 1ps, system size 150 mu m)

Sequence of Scales
L. He, L. Sieberer, E. Altman, SD, PRB (2015)

see also: K. Yi, V. Gladilin, M. Wouters, PRB (2015)
L. He, L. Sieberer, SD, PRL (2017)

• direct numerical solution of driven-dissipative GPE in one dimension

• Study temporal instead of spatial coherence function

• Crossover scale Tv ⇠ eEc/�T⇤ ⇠ ��2

noise level

subexponential 
KPZ scaling

exponential 
disordered 

scaling

numerical evidence 

➡ what causes the 
emergent length scale 
beyond KPZ?



Space-time vortices in 1D XP condensate

• Physical origin: compactness of phase field

topologically nontrivial phase field configurations on (1+1)D space-time plane

• unbound at infinitesimal noise level (weak non-equilibrium)

• interaction potential: (@
t

+D@2
x

)�1 ⇠ (Dt)�1/2e�x

2
/(4Dt)

cf. 2D static equilibrium: r�2 ⇠ log(|x|)

1. temporal scaling (random uncorrelated charges)

• explains qualitative features

2. noise level dependence of crossover scale Tv ⇠ eEc/�

⇠ e�c|t�t0|

vortex in space-
time planespatial phase slip

,
+⇡

+⇡+0

+0

round trip 

�' = 2⇡

(mapping to static 2D active smectic A liquid crystal)
Toner and Nelson, PRB (1984)



Strong non-equilibrium: Compact KPZ vortex turbulence
• In search of the phase diagram for XP condensates 

Vortex turbulence (VT)

�

noise level

non-equilibrium strength 

�

Pv = O(1)?
physics in strong non-
equilibrium condition



Strong non-equilibrium: Compact KPZ vortex turbulence
• In search of the phase diagram for XP condensates 

Noise activated vortices (TV)

KPZ (conventional) dominated 
physics Vortex turbulence (VT)

�

noise level

non-equilibrium strength 

� color code: vortex density on 
space-time plane 

Pv = O(1)
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Figure S3. (Color online) (a) The dependence of P

v

on nonequilibrium strength �̃ at di↵erent noise levels in the weak noise regime when �̃ is
tuned across the critical value �̃⇤ of the first order transition. The black dashed vertical line corresponds to the estimated value of �̃⇤. From down
to up (up to down), curves on the left (right) hand side of the black dashed line correspond to noise levels � = 0.01, 0.011, 0.012, 0.013, 0.014,
respectively. The filled circles are data points obtained by numerical simulations, while the pairs of filled triangles with the same color at upper
and lower positions correspond to the estimated values of the left and the right limit of P

v

at �̃⇤, i.e. P

v

(�̃! �̃⇤�) and P

v

(�̃! �̃⇤+), respectively.
Values of other parameters used in simulations are K

d

= r

d

= u

d

= 1, K

c

= 0.1. �̃ is tuned by changing r

c

= u

c

from 1.4 to 3.0. (b) The
space-time vortex density jump �P

v

at the first order transition at di↵erent noise levels �. (c) The first order transition line (double line)
terminates at a second oder transition critical point the end of the first order transition line (black filled circle). See text for more details.

function R(x) ⌘ (a0+a1x+a2x

2)/(1+b1x+b2x

2) fit to the data
points lying on the left and right hand side of the transition,
respectively, which are shown as solid curves in Fig. S3(a).
Then, the value of P

v

(�̃ ! �̃⇤�) (P
v

(�̃ ! �̃⇤+)) is obtained
by performing extrapolation at �̃⇤ of the corresponding curve
on the left (right) hand side of the transition. The dependence

of �P

v

on the noise level � are shown in Fig. S3(b), where
we notice �P

v

decreases with respect to � and vanishes at
�⇤ ⇡ 0.01402 with a diverging derivative of �P

v

with respect
to �. These observations indicate the first order tradition line
on the �̃�� plane terminates at higher noise level at a second
order critical point (�̃⇤,�⇤) (cf. Fig. S3(c)).
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Strong non-equilibrium: Compact KPZ vortex turbulence
• In search of the phase diagram for XP condensates 

Noise activated vortices (TV)

KPZ (conventional) dominated 
physics Vortex turbulence (VT)

�

noise level

non-equilibrium strength 

� color code: vortex density on 
space-time plane 

Pv = O(1)

amplification even by small phase fluctuations• .

• reason: deterministic dynamical instability in compact KPZ: evolution of phase differences 

decreases amplifies

➡ Transition to chaos?
chaotic solutions nonlinear dynamics: 
e.g. Aranson et al., RMP (2002)



onset of vortex turbulence

• scaling of the momentum distribution at intermediate momenta (full stochastic GPE)

scaling due to thermally activated vortices:

Compact KPZ vortex turbulence: Signatures
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of large ˜

�. To this end, we numerically calculate the vor-
tex density P

v

from the full SCGLE at fixed low noise
level with � = 10

�2, cf. Fig. 1(d). At small ˜�, P
v

is ex-
ponentially small in line with the discussion above. How-
ever, when tuning above a critical strength �

⇤ ' 3.1,
we notice a sudden increase in vortex density by around
10 orders of magnitude. This describes a sharp first or-
der transition at low noise level. We observe numerically
that vortices are continuously created and annihilated
and show a high mobility during their life time, there-
fore we label this phase as “vortex turbulence” (VT).

More quantitatively, the VT phase exhibits distinct fea-
tures in the momentum distribution n

q

⌘ h ⇤
(q) (q)i,

which is directly accessible in experiments, cf. Fig. 3. n

q

shows scaling behavior at large q, i.e., n
q

/ q

�� with �

being some positive exponent. Below the transition, the
value of � is around 2, which is a typical feature for ther-
mally excited uncorrelated vortices [18]. In contrast, for
the VT phase above the transition, � shows significant
deviation from the value for thermal vortices. For the
parameter choice in Fig. 3, � value for the observed VT
phase is around 5, but shows a weak parameter depen-
dence. As seen in the main plot of Fig. 3, the exponent �
also undergoes a first order transition, indicating a sharp
experimentally measurable feature signaling the onset of
the VT phase.

The physical origin of the VT phase and the associated
first order transition can be traced back to a dynami-
cal instability triggered by the nonequilibrium strength
above a critical value. To this end, we consider the dy-
namical equations for the phase differences between near-
est neighboring sites, �

i

⌘ ✓

i

� ✓

i+1, at zero noise level,
which assumes the form @

t

�

i

' �(2�

i

+�

i+1��

i�1)+

˜

�

⇣
(�

i�1)
2 � (�

i+1)
2
⌘
/4 when �

i

is small. The first
term on the right hand side is a restoring term which at-
tenuates the phase difference, while the second term sig-
nificantly amplifies it for ˜�� 1 even for small spatial vari-
ations. This causes the dynamical instability and gives
rise to creation of vortices without resorting to “thermal
excitations”. Taking into account the exponential sup-
pression of thermally excited vortices at low noise level,
and the fact that the vortices generation due to dynam-
ical instability hardly depends on noise level, this ratio-
nalizes the existence of a first order transition tuned by
˜

� and witnessed by the vortex density in steady state.
At stronger noise, the first order transition behavior is
smeared out by thermal vortices as indicated in Fig. 1.

This discussion of the VT transition reveals its nature
to be rooted in the physics of the cKPZ equation, and
more precisely, to its driven non-equilibrium nature. Nu-
merically solving this equation at low noise level, we ob-
tain ˜

�

⇤ ⇠ 20 for the critical non-equilibrium strength.
This can be compared to the numerical simulations of
the SCGLE at weak noise, which yields the significantly
reduced value ˜

�

⇤ ' 3.1. This can be understood by tak-
ing into account the mutual feedback of density and phase
fluctuations: phase fluctuations can cause a local density
depression via a phase-density coupling term proportional
to diffusion constant K

d

(cf. Eq. (1)), which in turn
causes strong phase fluctuations and gives rise to vortex
creation and annihilation. We remark here that dynami-
cal instabilities associated with certain special classes of
solutions of the deterministic complex Ginzburg-Landau
equation (CGLE) were identified in the context of nonlin-

Figure 3: (Color online) Scaling behavior of the momen-
tum distribution nq ⇠ q�� at different rc, revealing the
first order transition from a power law / q�2 to / q�5.
Inset: Momentum distributions from which the power law
is extracted. The upper and lower black lines correspond
to the power laws / q�5 and / q�2. From right to left,
the curves in between the two black lines correspond to
rc = uc = 3.0, 2.8, 2.6, 2.4, 2.2, 2.0, 1.98, 1.92, 1.9, 1.8, 1.6, 1.5,
respectively. The other parameters are the same as in Fig. 1
(d). See text for more details.

ear dynamics [28]. Our investigation indicates that this
dynamical instability is generic and originates from the
intrinsic non-equilibrium feature of problem.

Indications on experimental observations.– Our theo-
retical investigations presented above provide two impor-
tant indications for the further experiments of 1D DDC.
First, there exists a new nonequilibrium phase, i.e. vor-
tex turbulence phase, in the far from equilibrium regime,
whose distinct features in the momentum distribution is
directly accessible in DDC systems with momentum re-
solved correlation measurements [12]. Its physical real-
ization require a large nonequilibrium strength ˜

� above
a critical value �⇤, whose magnitude can be significantly
lowered by a diffusion rate K

d

in 1D DDC, suggesting, for
instance, DDC with relative large diffusion in 1D array
of microwave resonators coupled to an array of supercon-
ducting qubits could be a good candidate [29]. Second,
our investigations firmly suggest the direct experimental
observation of KPZ physics in current available experi-
mental setups with 1D exciton-polariton condensates is
very promising. This is due to fact typical 1D exciton-
polariton condensates at weak noise are well protected
from the influences of thermal vortices by a exponentially
large time scale t

v

, and also the instability to VT phase by
a typically nearly zero diffusion rate K

d

and relative small
nonequilibrium strength ˜

� [22]. These considerations cor-
roborate previous theoretical investigations of 1D DDC
in weak noise regime employing typical relevant exper-
imental parameters in exciton-polariton systems, where
typical KPZ physics was shown to be experimentally ob-
servable [19].

Conclusions.– The non-equilibrium phase diagram of
one-dimensional driven open condensates is crucially im-
pacted by space-time vortices, as the relation to the com-
pact KPZ equation reveals: At weak non-equilibrium
strength, they govern the asymptotic behavior of the tem-
poral correlation functions, however only beyond an ex-
ponentially large crossover time scale. This protects KPZ
physics and suggests its observability in current exciton-
polariton experiments. Moreover, these defects cause the
existence of a new phase under strong non-equilibrium

nq = h ⇤(q) (q)i ⇠ q��

� ⇡ 2

� ⇡ 5

scaling due to turbulent 
vortices:

• experiments: vortex turbulence favored in systems with strong diffusion, � ⇠ Kd/Kc

coherent propagation, inverse 
effective polariton massdiffusion constant

F. Baboux et al. PRL (2016)• flat band of 1D Lieb lattice realized with micropillar cavity arrays
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Figure S3. (Color online) (a) The dependence of P
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on nonequilibrium strength �̃ at di↵erent noise levels in the weak noise regime when �̃ is
tuned across the critical value �̃⇤ of the first order transition. The black dashed vertical line corresponds to the estimated value of �̃⇤. From down
to up (up to down), curves on the left (right) hand side of the black dashed line correspond to noise levels � = 0.01, 0.011, 0.012, 0.013, 0.014,
respectively. The filled circles are data points obtained by numerical simulations, while the pairs of filled triangles with the same color at upper
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Summary
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Lv ⌧ L⇤ Lv � L⇤

➡ 2 dimensions: ➡ 1 dimension:

➡ two intrinsic non-equilibrium length/time scales

Lv L⇤ Lv

➡ low dimensional driven open quantum systems: 
non-equilibrium always relevant at large distances 

➡ phase dynamics: compact KPZ 
➡ compactness crucial
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• weak non-equilibrium conditions

• strong non-equilibrium conditions

➡ phase transition to vortex turbulent regime
➡ challenge: analytical understanding via duality?

L. He, L. Sieberer, SD, PRL 
(2017)
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