The Ward identity of scale transformations

Roberto Percacci

SISSA, Trieste

Functional Renormalization Heidelberg, March 10, 2017

References

Based on:

R.P. and G.P. Vacca, "The background scale Ward identity in quantum gravity" Eur.Phys.J. C77 (2017) no.1, 52 arXiv:1611.07005 [hep-th]

and work in progress with G. P. Vacca and V. Skrinjar.

Scale transformations

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu$$

Rescaling of lenghts

$$\delta s = \epsilon s$$

can be realized either by $\delta x^{\mu} = \epsilon x^{\mu}$ or $\delta g_{\mu\nu} = 2\epsilon g_{\mu\nu}$. Choose the latter.

Anomalous scale invariance

Scalar field in external metric with action $S(\phi; g_{\mu\nu})$. Probe behavior under scale transformations.

$$\delta_{\epsilon}g_{\mu\nu} = 2\epsilon g_{\mu\nu}$$

$$\delta_{\epsilon}\Phi = -\frac{d-2}{2}\epsilon\Phi$$

Assume

$$\delta_{\epsilon}S = 0$$

Scale invariance broken in the quantum theory.

The cutoff term

$$\Delta S_k(\phi; g_{\mu\nu}) = \int d^d x \sqrt{g} \, \phi \, R_k \, \phi \; .$$
 $R_k = k^2 r(y) \; ; \qquad y = \Delta/k^2$

Since

$$\delta_{\epsilon}\Delta = -2\epsilon\Delta$$
.

we have $\delta_{\epsilon}R_{k}=-2\epsilon k^{2}yr'$.

On the other hand $\partial_t R_k = 2k^2r - 2k^2yr'$, so

$$\delta_{\epsilon}R_{k} = -2\epsilon R_{k} + \epsilon \partial_{t}R_{k} .$$

The cutoff term transforms as

$$\delta_{\epsilon} \Delta S_k(\phi; g_{\mu\nu}) = \epsilon \frac{1}{2} \int d^d x \sqrt{g} \, \phi \, \partial_t R_k \, \phi \; .$$

The EAA

$$egin{aligned} W_k(J;g_{\mu
u}) &= \log\int (d\Phi) extit{Exp}igg[-S-\Delta S_k + \int d^dx\, J\Phiigg] \ &\Gamma_k(arphi;g_{\mu
u}) = -W_k(J;g_{\mu
u}) + \int d^dx\, Jarphi - \Delta S_k(arphi) \end{aligned}$$

where
$$\varphi = \langle \phi \rangle = \frac{\delta W_k}{\delta J}$$

The Ward identity

$$\delta_{\epsilon} W_{k} = -\langle \delta_{\epsilon} \Delta S_{k} \rangle + \int d^{d}x \, J \langle \delta_{\epsilon} \Phi \rangle
= \epsilon \left[-\frac{1}{2} \operatorname{Tr} \partial_{t} R_{k} \frac{\delta^{2} W_{k}}{\delta J \delta J} + \frac{1}{2} \int d^{d}x \sqrt{g} \, \frac{\delta W_{k}}{\delta J} \partial_{t} R_{k} \frac{\delta W_{k}}{\delta J} \right]
+ \frac{d-2}{2} \int d^{d}x \, J \frac{\delta W_{k}}{\delta J} ,$$

$$\delta_{\epsilon} \Gamma_{k}(\varphi) = -\delta_{\epsilon} W_{k} + \int d^{d}x \, J \delta_{\epsilon} \varphi - \delta_{\epsilon} \Delta S_{k}(\varphi)$$

$$= \epsilon \frac{1}{2} \operatorname{Tr} \partial_{t} R_{k} \frac{\delta^{2} W_{k}}{\delta J \delta J}$$

$$= \epsilon \frac{1}{2} \operatorname{Tr} \left(\frac{\delta^{2} \Gamma_{k}}{\delta \varphi \delta \varphi} + R_{k} \right)^{-1} k \frac{dR_{k}}{dk} = \epsilon \partial_{t} \Gamma_{k}$$

Meaning

$$\delta_{\epsilon} \Gamma_{k} = \epsilon \partial_{t} \Gamma_{k}$$

thus defining

$$\delta_{\epsilon}^{E} = \delta_{\epsilon} - \epsilon k \frac{d}{dk}$$

we have

$$\delta^{E}\Gamma_{k}=0$$

The trace anomaly

$$\epsilon \int d^{d}x \left[2g_{\mu\nu} \frac{\delta\Gamma_{k}}{\delta g_{\mu\nu}} - \frac{d-2}{2} \varphi \frac{\delta\Gamma_{k}}{\delta\varphi} \right] = \epsilon k \frac{d\Gamma_{k}}{dk}$$

$$\int dx \sqrt{g} \langle T^{\mu}{}_{\mu} \rangle_{k} = \frac{d-2}{2} \int dx \varphi \frac{\delta \Gamma_{k}}{\delta \varphi} + k \frac{d\Gamma_{k}}{dk}$$

Local transformations

Assume S is invariant under Weyl transformations

$$\delta_{\epsilon}g_{\mu\nu} = 2\epsilon(x)g_{\mu\nu}$$

$$\delta_{\epsilon}\Phi = -\frac{d-2}{2}\epsilon(x)\Phi$$

Plan

If we can write cutoff actions that are invariant under extended transformations where the fields transform as above and also

$$\delta \mathbf{k} = -\epsilon(\mathbf{x})\mathbf{k}$$

then we will find the same msWI as before.

Note that *k* cannot be constant!

Weyl calculus

Introduce a dilaton field χ and define flat abelian gauge field $b_{\mu}=-\chi^{-1}\partial_{\mu}\chi$ transforming as $\delta b_{\mu}=\partial_{\mu}\epsilon$. For scalar field ϕ of weight w

$$D_{\mu}\phi = \partial_{\mu}\phi - wb_{\mu}\phi$$

More generally

$$\hat{\mathsf{\Gamma}}_{\mu}{}^{\lambda}{}_{
u} = \mathsf{\Gamma}_{\mu}{}^{\lambda}{}_{
u} - \delta^{\lambda}_{\mu} b_{
u} - \delta^{\lambda}_{
u} b_{\mu} + g_{\mu
u} b^{\lambda}$$

is invariant under local Weyl transformations, hence for a tensor of weight \boldsymbol{w}

$$D_{\mu}t=\hat{
abla}_{\mu}t-wb_{\mu}t$$

is diffeomorphism and Weyl covariant.

Cutoff terms

Replacing ∇_{μ} by D_{μ} the cutoff terms now satisfy

$$\delta_{\epsilon} \Delta S_k = \int dx \, \epsilon \, k \frac{\delta}{\delta k} \Delta S_k$$

Local ERGE

$$\delta k \frac{\delta \Gamma_k}{\delta k} = \frac{1}{2} STr \left[\left(\frac{\delta^2 \Gamma_k}{\delta \phi \delta \phi} + \mathcal{R}_k \right)^{-1} \delta k \frac{\delta \mathcal{R}_k}{\delta k} \right]$$

Modified Weyl WI

$$\delta_{\epsilon} \Gamma_{k} = \int dx \, \epsilon k \frac{\delta \Gamma_{k}}{\delta k}$$

$$\langle T^{\mu}{}_{\mu}\rangle_{k}(x) = \frac{d-2}{2}\varphi(x)\frac{\delta\Gamma_{k}}{\delta\varphi(x)} + k(x)\frac{\delta\Gamma_{k}}{\delta k(x)}$$

Note: where is the RG?

Assume $u = k/\chi$ is constant. Think of the EAA as

$$\Gamma_k(\phi; g_{\mu\nu}, \chi) = \Gamma_u(\phi; g_{\mu\nu}, \chi)$$

It satisfies

$$u\frac{d\Gamma_k}{du} = \frac{1}{2} \operatorname{Tr} \left(\frac{\delta^2 \Gamma_k}{\delta \varphi \delta \varphi} + R_k \right)^{-1} u \frac{\delta R_u}{du}$$

R. P., New J. Phys. 13 125013 (2011) arXiv:1110.6758 [hep-th]

A. Codello, G. D'Odorico, C. Pagani, R. P., Class. Quant. Grav. 30 (2013), arXiv:1210.3284 [hep-th]

C. Pagani, R. P. Class. Quant. Grav. 31 (2014) 115005, arXiv:1312.7767 [hep-th]

Definition of EAA requires a background split

$$g_{\mu
u} = ar{g}_{\mu
u} + h_{\mu
u}$$

Two generalizations

- "physical" scale transformation $\delta_{\epsilon}g_{\mu\nu}=2\epsilon g_{\mu\nu}$
- "background" scale transformations $\delta_{\epsilon} g_{\mu\nu} = 0$

Split symmetry

Bare action is invariant under

$$g_{\mu
u}=ar{g}_{\mu
u}+h_{\mu
u}$$
 $\deltaar{g}_{\mu
u}=\epsilon_{\mu
u}\;,\qquad \delta h_{\mu
u}=-\epsilon_{\mu
u}\;.$

but the EAA $\Gamma_k(\mathbf{h}; \bar{\mathbf{g}})$ is not.

Same with exponential split

Plan

- Write the anomalous Ward identity for the split symmetry or a subgroup thereof
- Solve it to eliminate from the EAA a number of fields equal to the number of parameters of the transformation
- Write the flow equation for the EAA depending on the remaining variables

Here I will consider the case of a rescaling of the background

$$\deltaar{g}_{\mu
u}=2\epsilonar{g}_{\mu
u}$$

Define $h^{\mu}_{\ \nu}=h^{T\mu}_{\ \nu}+\frac{1}{d}\delta^{\mu}_{\ \nu}h,\,h=h^{\perp}+\bar{h}$ with $\int dx\sqrt{\bar{g}}h^{\perp}=0$ In exponential parametrization $g_{\mu\nu}$ is left invariant provided

$$\delta h^{T\mu}_{\nu} = 0$$

$$\delta h^{\perp} = 0$$

$$\delta \bar{h} = -2d\epsilon$$

(Note
$$\delta h_{\mu\nu}^T = 2\epsilon h_{\mu\nu}^T$$
)

Gauge fixing

$$egin{align} S_{GF} &= rac{1}{2lpha} \int d^dx \sqrt{ar{g}}\, F_\mu Y^{\mu
u} F_
u, \ &F_\mu &= ar{
abla}_
ho h^
ho_\mu - rac{eta+1}{d}ar{
abla}_\mu h \ &\delta F_\mu &= 0 \ \end{aligned}$$

To compensate $\delta\sqrt{\bar{g}}=d\epsilon\sqrt{\bar{g}}$, choose

$$Y^{\mu
u}=ar{\Delta}^{rac{d-2}{2}}ar{g}^{\mu
u}$$
 .

Since $\delta \bar{\Delta} = -2\epsilon \bar{\Delta}$, we have $\delta S_{GF} = 0$.

$$egin{aligned} S_{gh}(\pmb{C}_{\mu}^*,\pmb{C}^{\mu};ar{\pmb{g}}_{\mu
u}) &= \int \pmb{d}^{m{d}}\pmb{x}\sqrt{ar{\pmb{g}}}\,\pmb{C}_{\mu}^*\pmb{Y}^{\mu
u}\Delta_{FP
u
ho}\pmb{C}^{
ho} \ \delta_{\eta}^{(Q)}ar{\pmb{g}} &= 0 \; ; \qquad ar{m{g}}\delta_{\eta}^{(Q)}\pmb{e}^{m{X}} &= \mathcal{L}_{\eta}m{g}=\mathcal{L}_{\eta}ar{m{g}}\pmb{e}^{m{X}} + ar{m{g}}\mathcal{L}_{\eta}\pmb{e}^{m{X}} \; . \ \Delta_{FP\mu
u}\pmb{C}^{
u} &= ar{
abla}_{
ho}\left((\delta_{\pmb{C}}^{(Q)}m{X})^{
ho}_{\ \mu} + rac{1+eta}{m{d}}\delta^{
ho}_{\ \mu}\mathrm{tr}(\delta_{\pmb{C}}^{(Q)}m{X})
ight) \end{aligned}$$

$$\begin{split} \delta_C^{(Q)} \mathbf{X} &= \frac{a d_{\mathbf{X}}}{e^{a d_{\mathbf{X}}} - \mathbf{1}} \left(\bar{\mathbf{g}}^{-1} \mathcal{L}_C \bar{\mathbf{g}} + \mathcal{L}_C e^{\mathbf{X}} e^{-\mathbf{X}} \right) \\ &= \bar{\mathbf{g}}^{-1} \mathcal{L}_C \bar{\mathbf{g}} + \mathcal{L}_C \mathbf{X} + \frac{1}{2} [\bar{\mathbf{g}}^{-1} \mathcal{L}_C \bar{\mathbf{g}}, \mathbf{X}] + O(C \mathbf{X}^2) \end{split}$$

Choosing

$$\delta C^*_{\mu} = 0 \; , \qquad \delta C^{\mu} = 0 \; .$$

one has

$$\delta \Delta_{FP\mu\nu} C^{\nu} = 0$$

and again $\delta S_{gh} = 0$

Finally

$$\mathcal{S}_{\mathsf{aux}} = \int \mathsf{d} x \sqrt{ar{g}} \, \mathsf{B}_{\mu} \mathsf{Y}^{\mu
u} \mathsf{B}_{
u}$$

If $\delta \emph{B}_{\mu} = 0$ then $\delta \emph{S}_{aux} = 0$

Cutoff terms

$$egin{align} \Delta S_k(h^\mu_{\
u};ar g_{\mu
u}) &= rac{1}{2}\int d^dx \sqrt{ar g}\, h^\mu_{\
u} \mathcal{R}_k(ar\Delta) h^
u_\mu \ \Delta S_k^{gh}(C^*_\mu,C^\mu;ar g_{\mu
u}) &= \int d^dx \sqrt{ar g}\, C^*_\mu \mathcal{R}_k^{gh}(ar\Delta) C^\mu \ \Delta S_k^{aux}(B_\mu;ar g_{\mu
u}) &= \int d^dx \sqrt{ar g}\, B^*_\mu ar g^{\mu
u} \mathcal{R}_k^{aux}(ar\Delta) B_
u \ . \end{align}$$

$$\mathcal{R}_k = c \, k^d r(y)$$
 $\mathcal{R}_k^{gh}(\bar{\Delta}) = c_{gh} k^d r(y)$
 $\mathcal{R}_k^{aux}(\bar{\Delta}) = c_{aux} k^{d-2} r(y)$
and $y = \bar{\Delta}/k^2$

Transformations

As before

$$\delta \mathcal{R}_k = \epsilon (-d\mathcal{R}_k + \partial_t \mathcal{R}_k) .$$

$$\begin{split} \delta \Delta \mathcal{S}_k(h^{\mu}_{\ \nu};\bar{g}_{\mu\nu}) &= \frac{1}{2} \epsilon \int d^d x \sqrt{\bar{g}} \left[h^{T\mu}_{\ \nu} \, \partial_t \mathcal{R}_k h^{T\nu}_{\ \mu} + h \, \partial_t \mathcal{R}_k h \right] \\ &- 2 d \epsilon \int d^d x \sqrt{\bar{g}} \, \mathcal{R}_k h \,, \end{split}$$

$$\delta \Delta \mathcal{S}_k^{gh}(\mathcal{C}_\mu^*,\mathcal{C}^\mu;ar{g}_{\mu
u}) = \epsilon \int d^d x \sqrt{ar{g}} \, \mathcal{C}_\mu^* \partial_t \mathcal{R}_k^{gh} \mathcal{C}^\mu \; .$$

$$\delta \Delta S_k^{\mathsf{aux}}(\mathsf{B}_\mu; ar{g}_{\mu
u}) = \epsilon \, \int \mathsf{d}^{\mathsf{d}} x \sqrt{ar{g}} \, \mathsf{B}_\mu ar{g}^{\mu
u} \partial_t \mathcal{R}_k^{\mathsf{aux}} \mathsf{B}_
u \; .$$

The generating functionals

$$\begin{array}{ll} e^{W_k(j_{T_\mu}\nu,j,J_*^\mu,J_\mu;\bar{g}_{\mu\nu})} &=& \int (dhdC^*dCdB)Exp\Big[-S-S_{GF}-S_{gh}\\ && -\Delta S_k-\Delta S_k^{gh}-\Delta S_k^{aux}\\ && +\int d^dx\left(j_{T_\mu}{}^\nu h^{T_\mu}{}_\nu+jh+J_*^\mu C_\mu^*+J_\mu C^\mu\right)\Big] \end{array}$$

$$\Gamma_{k}(h_{\mu\nu}^{T}, h, C_{\mu}^{*}, C^{\mu}; \bar{g}_{\mu\nu}) = -W_{k}(j_{T\mu}{}^{\nu}, j, J_{*}^{\mu}, J_{\mu}; \bar{g}_{\mu\nu})
+ \int d^{d}x \left(j_{T\mu}{}^{\nu}h^{T\mu}{}_{\nu} + jh + J_{*}^{\mu}C_{\mu}^{*} + J_{\mu}C^{\mu}\right)
-\Delta S_{k} - \Delta S_{k}^{gh} - \Delta S_{k}^{aux}$$

The msWI

$$\delta_{\epsilon} \Gamma_{k} = \epsilon \partial_{t} \Gamma_{k}$$

Under finite transformations

$$\Gamma_{k}(h^{T\mu}_{\nu}, h^{\perp}, \bar{h}, C_{\mu}^{*}, C^{\mu}; \bar{g}_{\mu\nu}) = \Gamma_{\Omega^{-1}k}(h^{T\mu}_{\nu}, h^{\perp}, \bar{h} - 2d \log \Omega, C_{\mu}^{*}, C^{\mu}; \Omega^{2}\bar{g}_{\mu\nu})$$

Solving the msWI

$$\Gamma_{k}(h^{T\mu}_{\nu}, h^{\perp}, \bar{h}, C_{\mu}^{*}, C^{\mu}; \bar{g}_{\mu\nu}) = \hat{\Gamma}_{\hat{k}}(h^{T\mu}_{\nu}, h^{\perp}, C_{\mu}^{*}, C^{\mu}; \hat{g}_{\mu\nu})$$

where e.g.

$$\hat{k}=ar{V}^{1/d} k$$
 ; $\hat{g}_{\mu
u}=ar{V}^{-2/d}ar{g}_{\mu
u}$

We have eliminated one degree of freedom.

In linear parametrization

T. R. Morris, JHEP **1611** (2016) 160, arXiv:1610.03081 [hep-th]

N. Ohta, arXiv:1701.01506 [hep-th]

Can we generalize to local Weyl transformations? If we can write gauge and cutoff actions that are invariant under extended transformations where the fields transform as above and also

$$\delta \mathbf{k} = -\epsilon(\mathbf{x})\mathbf{k}$$

then we will find the same msWI as before.

Weyl calculus

Choose a representative $\hat{g}_{\mu\nu}$ such that

$$ar{g}_{\mu
u}=\mathbf{e}^{2ar{\sigma}}\hat{g}_{\mu
u}\;;\qquad g_{\mu
u}=\mathbf{e}^{2\sigma}\hat{g}_{\mu
u}\;;\qquad \sigma=ar{\sigma}+rac{1}{2oldsymbol{d}}h\;$$

Define flat abelian gauge field

$$b_{\mu} = -\partial_{\mu}\bar{\sigma}$$

transforming as $\delta b_{\mu} = \partial_{\mu} \epsilon$.

Proceed as with matter fields.

Gauge fixing and cutoff terms

Replacing ∇_{μ} by D_{μ} can write invariant GF and ghost terms. Writing

$$Y^{\mu
u}=e^{-(d-2)ar{\sigma}}ar{g}^{\mu
u}$$

we do not need auxiliary fields anymore.

The cutoff terms now satisfy

$$\delta_{\epsilon} \Delta S_{k} = \int dx \, \epsilon \, k \frac{\delta}{\delta k} \Delta S_{k}$$

$$\delta_{\epsilon} \Gamma_{k} = \int \epsilon k \frac{\delta \Gamma_{k}}{\delta k}$$

or

$$\delta_{\epsilon}^{E}\Gamma_{k}=0$$

has solution

$$\Gamma_{k}(h^{T\mu}_{\nu}, h, C_{\mu}^{*}, C^{\mu}; \hat{g}_{\mu\nu}, \bar{\sigma}) = \hat{\Gamma}_{\hat{k}}(h^{T\mu}_{\nu}, \sigma, C_{\mu}^{*}, C^{\mu}; \hat{g}_{\mu\nu})$$

where

$$\hat{k} = e^{\bar{\sigma}} k$$

and we already defined the invariants

$$\sigma = ar{\sigma} + rac{1}{2d}h$$
; $\hat{g}_{\mu
u} = e^{-ar{\sigma}}ar{g}_{\mu
u}$

We have eliminated one function.

HOWEVER...

...the fiducial metric $\hat{g}_{\mu\nu}$ is an unphysical external element. It introduces a new split symmetry

$$\delta \hat{g}_{\mu\nu} = 2\epsilon \hat{g}_{\mu\nu}$$
 ; $\delta \bar{\sigma} = -\epsilon$

that leaves the background metric invariant.

The chosen cutoff does not behave in a simple way under these transformations. Writing and solving the corresponding WI is possible but requires additional approximations.

Summary

- Anomalous WI for scale transformations, both global and local, is expression of dimensional analysis
- Background global scale WI can be solved in full generality.
 Will give correct dependence of EAA on volume.
- Background Weyl WI can probably be solved within some truncations.
- Simple scaling properties require certain choices in the gauge and cutoff terms

To do

- Apply WI to particle physics models with classical scale invariance
- Relation between local FRGE and Osborn's local RG
- Use pure cutoffs in study of gravitational truncated RG flows
- Solve the mWI of background Weyl transformations in some truncation
- WI of physical scale transformations in QG