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Motivation: Presence of quantum
diffusion in two dimensions?



Perfect metals, metals, and insulators

In this talk, we will use the following classification (N. Mott):

dc conductivity: 04. = lim lim o(w,T)
T—0 w—0

If 0 4. is:
(i) infinite: Perfect metal, superconductor.
(ii) finite: metal.

(iii) zero: insulator.



From perfect to diffusive metals

Let us start with a perfect metal:

S = /ddde@N (8T s N) W+

2m

There is no lattice and there are no impurities: Odc — OO

For the moment we ignore interactions. To this system, add disorder:

Sdz’rt — /ddiﬁdTv(f’?)W(%TW(%T)



From perfect to diffusive metals

The disorder is specified by moments of a disorder distribution:

eg.  V(z)=0

V(z2)V(z") = A (z — ')

Naive expectation: since V is a chemical potential, it has dimension 1.

Vi=1 = [Al=2-4d

So you might have guessed that the perfect metal is stable when d > 2.

However, this is false! Where did we go wrong?



From perfect to diffusive metals

The previous argument missed the finite DOS at the Fermi energy.

Fermi’s Golden Rule:

1 -t
—NV2/ONA F

T ()

/7] =1

The finite DOS introduces a new scale below which the perfect metal is
almost always destroyed.

Instead of ballistic motion, we have quantum diffusion.

In a diffusive regime: we can have finite conductivity. What happens at
T=07



Absence of quantum diffusion in 2d

F. J. Wegner, Z. Phys. B 25, 327 (1976).
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, PRL 42, 673 (1979).

G(L)=dc conductance

e2

Systems without spin-orbit coupling are never metals in 2d at T=0.



Can strong interactions alter this conclusion?

Some experimental evidence for 2d metals:
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But this question can only be settled by theory!




Metallic phases in systems with
vanishing density of states



We consider metallic phases in systems with vanishing DOS.

Such systems can still have a finite DC conductivity: hence ‘metals’.

Helpful example: Graphene + 1/r Coulomb interactions.

2 1 2
—_ ~ 4T DOS ~ T O'dcma a=e"/vp
.

This system is unstable to disorder -> disorder leads to a finite DOS
and a vanishing conductivity.

In this talk, I show that Dirac fermions + strong gauge interactions can
host metallic phases.

We will study QED3 + disorder (solvable in large N limit).



Metallic phases of disordered QEDs

Main message of my talk:

1) QEDs + potential disorder: clean metallic phase with irrelevant
disorder and finite interaction strength.

2) QED3 + mass disorder: dirty metallic phase with finite disorder and
finite interaction strengths.

3) If time permits: I will construct non-perturbative examples of stable
metals at small N, with finite DOS and without using the replica trick!



Some organizing principles

When is a non-interacting system with vanishing DOS stable to
disorder?

Let us consider a slightly generalized disorder problem:

V(iz) =0 V(z)V(x') = A

- |$ —QE/‘XO

Note: Gaussian white noise is realized when X0 — d.

The clean system is stable to disorder when Xo > 2.



Some organizing principles

Next consider the stability of an interacting system with vanishing DOS.

A

|Qj — $/|Xint

V(iz) =0 V(z)V(x) =

The interacting system can renormalize (or screen) disorder
correlations. Let us define

Xint — X0 — 277

The clean system is stable to disorder for any d when Xint =~ 2.



Some organizing principles

Xint — X0 — 277

The “"anomalous dimension” of disorder correlations has two sources:
(i) Screening of disorder by strong interactions.

(ii) Anomalous dimension effects - provided disorder couples to
a hon-conserved operator (e.g. mass).

Conserved quantities like charge density are protected from
anomalous dimension effects but not from screening effects.



Some organizing principles

Xint — X0 — 277
Two interesting possibilities are logically possible:

(2) Xint > 2> Xo:

In this case, the interacting system is stable to disorder while the non-
interacting counter part is unstable.

QEDs + potential disorder at large N.

(12) Xint < 2 < X0 :

Now the non-interacting system is stable but the interacting
counterpart is unstable.

QEDs + mass disorder at large N.



QED3 + potential disorder: a clean
metallic phase



QEDs3 at large N

_ 1
Sy = /dQZECZT W,iv, D, V,; + fow

j=1---N D, =0,+1g9a, fu. =0, —0,a,

The large N limit: [N — 00, v = gzN — constant

’\AM,<>\/\/\/V = \AQ + Q O (RPA IS exact).

0w — kuky JK?
k? + ak/8

Dynamically D _
screened photon: py-—

1



QEDs3 at large N

] 1
Sp = /dedT Ui Dy + 5 i

j=1---N D, =0,+1g9a, fu. =0, —0,a,

The large N limit: [N — 00, v = gzN — constant
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g@% Fermion anomalous dimension: 7]y 7~ O(l/N)




QEDs3 + disorder at large N

We add potential disorder to So

Sairt = / PrdrV (2)y, (2, 7)i(x,T)

Gaussian white noise disorder: V4 gj) _

Disorder averaging is done using the replica trick:

JAN _
Sdi’r't — _3 /inUdeT/%a%a(% T)w;bwjb(xv 7_/)

a,b=1---n, n—0



Screening of potential disorder

Potential disorder gets screened by interactions. This is similar to
dynamical screening of the photon:

At leading order in large N, only one diagram survives the replica
limit:

This reflects the renormalization of the disorder variance due to
the ao fluctuations (which also couple to density).



Screening of potential disorder

(e

As a result, the disorder variance at long distances becomes

A

V(E)V(=k) =

A

x— x|

= V(x)V(z') =




Screening of potential disorder

Let us summarize. The non-interacting Dirac problem had

V() V(z') = AP (z—2") — xo=2

By contrast, large N QED screened the disorder with

A

B r— x|

Vi(x)V(x') — Xint = 3

Potential disorder is irrelevant at the large N QED3 fixed point:

This is our first example of a stable metallic phase.



Graphene vs QEDs

We may naively suppose that the QEDs result is the same as
graphene + 1/r interactions.

However, this is not true: transverse gauge fluctuations in QEDs3
are crucial. Here are the differences.

graphene + 1/r interactions QEDs3
1 1
o~ — o~ —
@7 @7
a— 0 a — O(1)
unstable to potential stable to potential
disorder disorder
fixed lines in @ — A fixed point in a — A

plane plane



QED3 + mass disorder: a dirty metallic
phase



QED3 + mass disorder

We previously gave an example of a clean 2d metal.

We next show an example of a dirty metal with a finite disorder,
finite interaction fixed point. This will occur with mass disorder:

Mass disorder in graphene: random staggered chemical potential.




QED3 + mass disorder

So, to the QED3 Lagrangian, we add mass disorder:

S = SO + Sdirt

- o
S, = / Padr | U, Du ;5 + 12,

Sdifrt — /dzxdTM(x)wz(mvT>¢z(xaT)



Sdirt — /dQ.CEdTM(ZE)??EZ (iL’, T)% (il?, 7-)

For free 2d Diracs, mass disorder is marginally irrelevant.

But the mass is not a conserved object: it can have an anomalous
dimension. In large N QED3, the anomalous dimension is known:

Ny ~ a/N >0

As a consequence, the interacting system is unstable to disorder
whereas the non-interacting counterpart is stable.

This is analogous to the story of the Wilson-Fisher fixed point.



QED3 + mass disorder: RG flows

After some exploration, we found that the simplest treatment of
the mass disorder problem involves epsilon and 1/N expansions.

A

x — x'|?

with  M(z) =0, M(x)M(x') =

This disorder is marginal for free fermions in any d. But due to
anomalous dimension effects, it is now slightly relevant. We
expand about

d=3—¢€ e,1/N <« 1

And study the RG flow of the replicated action. We will
set d=2 at the end.



QED3 + mass disorder: RG flows

Since disorder badly breaks Lorentz invariance, there are several
running couplings:

(1) z (dynamical exponent)

(17) v/c

8%

(i) @ = - A"
- A
(1v) A = 52,3

The RG flows are obtained with a dimensional regulator, setting
c=1 and tracking the running of remaining couplings.



QED3 + mass disorder: RG flows

At leading order the 1-loop RG flows are:

zzl-l-é@(l_qﬂ)

o[ 2a- S+ ha- )

Cfl_? — & |:€_|_ gﬁ — go‘ﬁ— %91(”)}

% _ QW&QQ(U)A _ §A2 g1, g2: functions of v.

Infinite N: fixed point has 2, = 1,v, = 1, &, = 3¢/2, A, = 0.

This is the clean QED3 fixed point (¢ — 1).



QED3 + mass disorder: RG flows

At large but finite N, the clean QED?3 fixed point gives way to

¢
© SN
9
v, = 1
SN
~ 3€
Oy = —
2
A, — 27¢€
16 N

The fixed point has both finite interaction and finite disorder
strengths. It describes a dirty metal with a vanishing DOS.



Properties of the finite mass disorder
fixed point

The density of states vanishes as a universal power law:
_ _ 9
p(E) ~ /e ~e—1 ElTan

_ 9
Consequence: universal thermodynamics - e.g. (' ~ T2 4N

The finite disorder strength leads to a finite Drude conductivity
due to elastic impurity scattering:

1 ~ A*TQ/Z*—]. g a*Tp ~J e

T A*

This is the second example of a stable 2d metallic phase.



Conclusion and outlook

In this talk I provided two examples of stable interacting 2d
metals with vanishing DOS.

These descriptions may describe certain spin liquids with power
law correlations - algebraic spin liquids. Our prediction is that
such systems are stable to disorder.

Metal-insulator transitions of these systems are not perturbatively
accessible - require the analysis of the nonlinear Sigma model.
Open problem: nature of the NLSM for these problems.

Open problem: stable 2d metals with finite DOS?



