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() Brout-Englert-Higgs (BEH) mechanism is one of the most well-known

mechanisms by which massless gauge bosons acquire their mass.

The conventional understanding (usual explanation) of the BEH mechanism is based

on the “spontaneous breaking of gauge symmetry”.

e In general, if a continuous (global) symmetry GG is spontaneously broken G — H,
Nambu-Goldstone theorem: There appear massless particles called the Nambu-

Goldstone (NG) particles associated to the broken part G/H of G

e Especially, for the gauge symmetry (i.e., local symmetry), e.g., G = U(1)

— () : Higgs (massive)

¢(x): Higgs (massive)
¢l@) = {7?(3;) : NG (massless)

ol (x) — 2, (x): (massless) = #,(z) : gauge boson (massive)

The massless NG particles generated associated with the spontaneous breaking of the
continuous gauge symmetry (G are “absorbed” into the massless gauge boson.
Then the NG particles disappear and the gauge boson becomes massive.

The non-vanishing vacuum expectation value (VEV) of the scalar field (0|¢|0) :=

v # 0 is indispensable for spontaneous symmetry breking (SSB) to occur. ,
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(> Fradkin and Shenker Continuity, Osterwalder and Seiler theorem & & %1%t
gauge-scalar model in the lattice gauge theory (at zero temperature)

S = Sgauge|U| + VSscalar|¢, U] with a gauge group G in D spacetime dimensions

1. radially fixed scalar field ||¢(z)||? = v* [Fradkin and Shenker,1979]

Fundamental scalar VS. Adjoint scalar
(G = SU(2), D = 4) (G = SU(2), D = 4)
U(1) gauge theory
_.-"BEHHi BEH(Higgs)
Analyticity .-~ (Higes) <0> (Deconfinement)'<¢>
GREIRR o SSB SSB
03 0(3
Y p K’Y 3) Y v (3
* Heisenberg * Heisenberg
; spin model spin mode|
0 Cohfinement 0 Cenfinement
SU(2) gauge theory SU(2) gauge theory

In the gauge-scalar model with the fundamental scalar field, Higgs phase and
Confinement phase are not separated by the phase transition and are analytically
continued in the phase diagram. (“complementarity” between Higgs and Confinement)
This holds for any compact group (continuous and discrete) G = SU(N),U(1), Z(N),
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2. Fradkin-Shenker continuity still hold for almost radially fixed scalar field A > 1 with
the potential term V = A(||¢(x)||? — v?)? [Osterwalder and Seiler,1978]

3. This is not the case for the radially variable scalar field 0 < A < 1 with the potential

term V = A(||¢(z)||? — v*)? [Munehisa and Munehisa,1986] for Z(2),U(1),SU(2)
[Kondo,1988] for Z(2) [Jersak,1989] for a review

Higgs phase and Confinement phase are separated by the phase transition and are not

analytically continued in the phase diagram.
U(1) gauge theory

0°0) 00 =
! BEH(Higgs)
SERAHIEES) <¢> (Deconf inement)| <¢'>
LE SSB S~ SSB
Y h — 1 0(3) Y h 0(3)
qﬂ* Heisenberg * Heisenberg
spin model spin model
0 Confinement 0 Conf inement
SU(2) gauge theory SU(2) gauge theory

() We want to realize the Fradkin-Shenker continuity in quantum field theory on the
continuum spacetime. If this is possible, we can understand confinement and gluon
mass generation from a different viewpoint of the BEH mechanism.

[' t Hooft,1977][Frohlich, Morchio and Strocchi,1980,1981]
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(©) However, we immediately encounter the obstructions.

Confinement phase respects the gauge symmetry (with no SSB) and confinement is
believed to be understood in the gauge-invariant (or gauge-independent) way.

The usual description of BEH mechanism is based on spontaneous breaking of the
gauge symmetry.

How the BEH phase with spontaneously broken gauge symmetry can be continued
to the confinement phase with the unbroken gauge symmetry?

() We must reconsider the BEH mechanism.

Indeed, spontaneous breaking of gauge symmetry usually assumed for the BEH
mechanism to occur is a rather misleading terminology.

The lattice gauge theory a la Wilson is a formulation of quantum gauge theory
keeping the gauge symmetry manifest.
[Elitzur theorem] local continuous symmetry cannot break spontaneously, if no gauge
fixing is introduced.

The VEV (0|¢|0) of the scalar field which is not gauge invariant is zero (0|¢|0) = 0
unless we fix the gauge. (¢(x)) # 0 is possible only in the non-gauge theory g = 0 (or

B = 00).

5
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Whether the gauge symmetry is spontaneously broken or not in this sense is a concept
depending clearly on the gauge choice. This prevents us from establishing the BEH
mechanism for gauge boson mass generation in a gauge-independent way as a true
physical phenomenon.

[The global symmetry H' which remains unbroken even after fixing the local gauge
symmetry, the remnant global gauge symmetry, can break spontaneously. But the
remnant global symmetry is not unique and depends on the choice of the gauge fixing
condition. We must discuss the BEH mechanism gauge by gauge.]

(> To avoid these difficulties, we give a manifestly gauge-invariant description of
the BEH mechanism in the operator level from the beginning.

Consequently, the massless gauge boson can acquire the mass without relying on the
spontaneous breaking of the gauge symmetry.

e We do not need to introduce the the VEV (0|¢|0) of the scalar field which depends
on the gauge fixing condition.

e T he gauge symmetry is always kept without breaking and we do not need to introduce
the intermediate steps for generating the Nambu-Goldstone bosons and subsequently
absorbing them.
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e We can discuss confinement from the viewpoint of complementarity between Higgs
and Confinement. Because confinement is realized in the phase with a mass gap in
which gauge symmetry is kept unbroken.

(> Due to the gauge-invariant BEH mechanism, we can extract the massive modes %/,
from the original gauge field <7, and the scalar field ¢ in the gauge-independent way.
e The massive mode #,, will rapidly fall off in the distance and hence it is identified
with the short-distance (or high-energy) mode.

e The residual mode must exist, ¥, = @7, — #,,. The residual mode is identified with
the long-distance (or low-energy) mode. In Confinement phase, the residual mode will
mediate the long-range force which is responsible for quark confinement, e.g., area law
of the Wilson loop average or linear quark potential.

To obtain the Yang-Mills theory from the “complementary” gauge-scalar model, we
must discriminate the fundamental scalar and the adjoint scalar. The adjoint scalar
case was already discussed in [1]. Now we treat the fundamental scalar case.
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Contents

2. Radially fixed SU(2) gauge-scalar model: adjoint scalar
3. Radially fixed SU(2) gauge-scalar model: fundamental scalar
4. The results of numerical simulations for SU(2) Yang-Mills theory

5. Conclusion and discussion

For details of the reformulation of the Yang-Mills theory, see

Physics Report Vol.579, pp.1-226 (2015), e-Print: arXiv:1409.1599 [hep-th]
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() We consider G = SU(N) gauge-scalar model with the gauge-invariant Lagrangian:
Lon = — 25(@) - Fuul@) + (P 1b(x)) - (Zul1b() 1)
The scalar field ¢(x) and the Yang-Mills field <7, (x) = M#A(a:)TA obey the gauge transformation:
d(z) = U(z)p(2)U ' (z), Ux) € G = SU(N),
S () = U)o (2)U " (2) + ig” U(x)0,U " (). (2)
The covariant derivative %,[<7] := 8,, — ig[,,, -] transforms 9,[«/] — U(2)2,[«|U ' (z).

In what follows, we assume that the adjoint scalar field ¢(xz) = ¢*(x)T4 (A =1,...,N? — 1)
has the fixed radial length,

b(z) - p(z) = ¢ ()9 (z) = v°. (3)

Notice that ¢(x) - ¢(x) is a gauge-invariant combination.
Notation: For the Lie-algebra valued quantities &/ = ATy and B = BTy

A - B = 2r(AB) = S BP2Ur(TaTs) = 7B (A=1,.., N> —1). (4)
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(> First, we recall the conventional description for the BEH mechanism.
If ¢(x) acquires a non-vanishing VEV (¢(z)) = (¢p) = (¢p*) T}y, then

Dul¢(x) = Oudp(z) — ig|Fu(x), d(2)] = —ig[Fu(z), ($)] + ..., (5)

and

L (P 19(0) - (213(@)) - — gl [ (@), (@A), (BN} + -

— — gPtr6{[Ta, (S)][Tn, (D)} A (@) 7P (2). ()

To break spontaneously the local continuous gauge symmetry G by realizing the non-vanishing VEV
(@) of the scalar field ¢, we choose the unitary gauge in which ¢(x) is pointed to a specific direction
¢d(xr) — o uniformly over the spacetime.

By this procedure the original gauge symmetry GG is not completely broken. Indeed, there may exist
a subgroup H (of (G) which does not change ¢ ..
This is the partial SSB G — H: the mass is provided for the coset G/ H (broken parts), while the
mass is not supplied for the H-commutative part of #,;:

Lo = —5 16l (@) Fu(@)} — (g0) tre o/ (@) (). (7)

Thus the theory reduces to a gauge theory with the residual gauge group H. ”
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For G = SU(2), by taking the usual unitary gauge
(Poc) = T3, == () = 05", (8)

the kinetic term generates the mass term,

1
— >0’ tref{[Tu, T3] [T, Ts)} o™ ) = E(gv)z(d“IM; + ") (9)

e The off-diagonal gluons ,@f;, gfﬁ acquire the same mass My := gwv,

e The diagonal gluon dﬁ remains massless. (I)(x)e SU(2)/U(1) =S .
Even after taking the unitary gauge (8), pmm
U (1) gauge symmetry described by di still remains '/’;{
as the residual local gauge symmetry H = U (1), 1
which leaves ¢, invariant " x
(the local rotation around the axis of the scalar field ¢). .
A
Thus, the SSB is sufficient for the BEH mechanism to take place. \\_ .

But, it is not clear whether the SSB is necessary or not for the BEH mechanism to work. This description
depends on the specific gauge.

11
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(> Gauge-invariant BEH mechanism

Next, we give a gauge-invariant description for the BEH mechanism.
e We construct a composite vector field #,,(x) from <7, (x) and ¢p(x) by

~

Vu(x) = —ig ' [$(2), DA b(2)], S(x) = ¢(x)/v. (10)

e We find that the kinetic term of the gauge-scalar model is identical to the “mass term” of the vector
field %, (x):

P 16(2) - Dl b() = MW () Hlw), M = go, (1)
as far as the constraint (¢ - ¢» = 1) is satisfied. This fact is shown explicitly G = SU(2),
g ", =vT2r([@, 2" (A1l Dl 1$))
=v {(¢ - $) (2" - DA P) — (¢ - D" [ D) (D - Dl P)}
=(2"A)¢) - (D)), (12)

where we have used the constraint (¢ - ¢ = v*) and ¢ - D\ p=¢ -0+ P (97, X P) =
g, - (¢ X ¢) =0, with ¢ - 9,¢ = 0 following from differentiating the constraint.

e Remarkably, the above “mass term” of 7, is gauge invariant, since 7%, obeys the adjoint gauge
transformation:

V(@) = Ule)#u(z)U (). (1?2
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Therefore, #,, becomes massive without breaking the original gauge symmetry.

The above #,, gives a gauge-independent definition of the massive gluon mode in the operator level.
The SSB of gauge symmetry is not necessary for generating the mass of 7.

(We do not need to choose a specific vacuum from all possible degenerate ground states distinguished
by the direction of ¢.)

SURYU(L) = 82

How is this description related to the conventional one?
e Despite its appearance of #,,,
the independent internal degrees of freedom
of #, = (W#A) (A=1,2,3) is equal to dim(G/H) = 2, since

V(@) - d(z) = 0. (14)

Notice that this is a gauge-invariant statement. Thus, #),(x) represent the massive modes corresponding
to the coset space (G/H components as expected. [We understand the residual gauge symmetry left

in the partial SSB: G = SU(2) - H =U(1)]

In fact, by taking the unitary gauge ¢p(x) = ¢ = VP, W, reduces to

Wu(z) — _ig_l[qgoov ‘@M[ﬂ]qgoo] — [qgoov [qgoovﬂu(x)]] = dp(z) — (Fu(z) - quw)quoo- (15)

Then #,, agrees with the off-diagonal components for the specific choice qgfo = §43.
o ¢ A=a=1,2
a 0 (A = 3)
13
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This suggests that the original gauge field <7, is separated into two pieces:
(@) = W) + Vy(a). (17)
By definition, 7,,(x) transforms under the gauge transformation just like 27, (x):
Vi(x) — U(x)¥Y(a)U () +ig ' U(2)0,U " (x). (18)
According to the expression of #,,(x), #,(x) = O is equivalent to
2,1 (x) = 0. (19)

We find that ¥, is constructed from .7, and ¢ as

. s . .
V() = cu(z)p(x) + ig [P(x), Oup(x)], culz) = F,(z) - P(x). (20)
In the unitary gauge ¢ () = Poe = VPoo, L = 542, ¥, agrees with the diagonal component
PO 0 (A=a=1,2)
V. (x) > (F(x) Ps) P —> : 21
(@) = (@) - )b {%%m<A=m 1)
Thus, the above arguments go well in the topologically trivial sector.
The topologically non-trivial sector is discussed later.
14
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e First, we introduce ¥, () and #,(z) as composite field operators of <7, (x) and ¢ ().
e Then we regard a set of field variables {c,(x), #,.(xz), ¢(x)} as obtained from {.=7,(x), p(x)}
based on change of variables:

{cu(), #u(2), d(2)}  {u(2), d(2)}. (22)

e Finally, we identify ¢, (z), #,(x) and ¢(z) with the fundamental field variables for describing the
massive Yang-Mills theory anew.

(Here fundamental means that the quantization should be performed with respect to those variables
{c (x), #.(x), p(x)} which appear in the path-integral measure.)

@ In the gauge-scalar model, &7, (x) and ¢ () are independent field variables. However, the Yang-Mills
theory should be described by .«7,(z) alone and hence ¢ must be supplied by the gauge field &7, (x)
due to the strong interactions. [In other words, the scalar field ¢ should be given as a (complicated)
functional of the gauge field.]

This is achieved by imposing the constraint which we call the reduction condition. We choose e.g.,
x(z) := [¢p(x), 2" D[ ]d(x)] = 0 <= P"[¥V]#,.(x) = 0. (23)

This condition is gauge covariant, x(z) — U(z)x(z)U ' (a).
The reduction condition plays the role of eliminating the extra degrees of freedom introduced by the
radially fixed scalar field into the Yang-Mills theory, since

x(z) - $(z) = 0. (242
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Following the way similar to the Faddeev-Popov procedure, we insert the unity to the functional integral:
7 7 0 red
1= [ Dx's(x) = [ Posix)a™, (25)

where x? := x[«7, ®°] is the reduction condition written in terms of &/ and ®” which is the local

f
rotation of ® by @ and A™ ;= det (%) denotes the Faddeev-Popov determinant associated with
the reduction condition x = 0. See Kondo et al., Phys. Report 579, 1-226 (2015),

T :[D&)Ddé\(x)AredeiSYM[ﬁ/]JriSkin[yf,@]? (26)
— / DIDDW J§(x) AT SymI H/ 1SVl = g q (27)

This Is a gauge-invariant description. We can reproduce the well-known case by taking the special limit
(gauge). For instance,

¢"(z) = v (x), ¢ (z) = &V (28)

In the limit, the gauge-adjoint scalar model with the radially fixed scalar field is reduced to the Yang-Mills
theory with the gauge-fixing term of the Maximal Abelian gauge and the associated Faddeev-Popov

ghost term supplemented with a mass term for the off-diagonal gluons.
16
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According to the decomposition .7, (x) = 7,(x) + #,.(x),
the field strength %, () of the gauge field .7, (x) is decomposed as

Fu ] :=0,8), — 8,4, — ig[e,,, )]

=Fuw|V |+ DV — DNV — ig[ W, 7).

By substituting this decomposition into the gauge-scalar Lagrangian, we obtain
1 v
iy = — Tl FUTV]

—( DWW — D)

1 v 1
+ Eﬁ#y[,y] : Zg[Wﬂﬁ W ] T Z(ZQ[WH" Wy])z

1 ;
My H YAy Dl = 8 — gV ).

(30)

(31)

The field #,, has the ordinary kinetic term and the mass term. Therefore, there is a massive vector
pole in the propagator of #,, (after a certain gauge fixing). Thus, #,, is not an auxiliary field, but is a

propagating field with the mass My (up to possible quantum corrections).
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(> Confined massive phase

Finally, we discuss the implications for quark confinement.
The field strength #,,.,[7](x) of ¥,(x) is shown to be proportional to ¢():

ﬁw[df/](w) =<l’3(w){3ucu(w) — 81/%(33) + Hw(aj)}a
Hyu(@) = ig '$(x) - [0,0(x), 0,$(a))] (32)

We can introduce the Abelian-like SU(2) gauge-invariant field strength £, by
fru () :=q3(33) - Fu[V (@) = Opcu(z) — Ouep(z) + Hyw(). (33)

In the low-energy IF < My or the long-distance r» > Mv}l region, we can neglect #,,. Then the
dominant low-energy modes are described by the restricted Yang-Mills theory:

res 1 v 1 74
L = =37V ZulV] = =" b (34

In the low-energy E& << My, or the long-distance » > Mﬁ,l region, the massive components #,,(x)
become negligible and the other restricted (residual) fields become dominant.

This is a phenomenon called the “Abelian” dominance in quark confinement. ['tHooft 81, Ezawa-lwazaki
82]

The “Abelian” dominance in quark confinement is understood as a consequence of the BEH

mechanism for the “complementary” gauge-scalar model in the gauge-invariant way.
18
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() If the fields <7 and ¢ are a set of solutions of the field equations for the gauge-scalar model
with a radially fixed scalar field, they automatically satisfy the reduction condition for the pure
Yang-Mills theory.

We introduce a Lagrange multiplier field w () to incorporate the constraint

Lip(@) = Los(@) + u(=) ($(2) - p(z) —v*) . (35)
Then the field equations are obtained as

8 Sk

Su(z) =¢(z) - p(z) — v? = 0, (36)
0 SymuRF oV - , _
scri(m) [ Fuulz) — igle(x), DulF]d(z)] =0, (37)
8 S B " B
5¢(R$) = — "D |p(x) + 2u(z)Pp(x) = 0. (38)

The reduction condition is automatically satisfied:
9" (37) = 0 = M| 9" (A F,, = igP" | ]|P, DT @] = igld, P[] D[ 7] P]
(@, (38)] = [&, 2" || D] @] = [¢,2ue] =0

() We can show that magnetic monopoles (configurations) exist in the massive Yang-Mills theory, see
S. Nishino, R. Matsudo, M. Warschinke, K.-I. Kondo, e-Print: arXiv:1803.04339 [hep-th]

Magnetic monopoles in pure SU(2) Yang—Mills theory with a gauge-invariant mass,
19
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We consider the SU(2) gauge-fundamental scalar model with the radially fixed scalar field

1 1
Fow = — L@ FN @) + (D,[#18(@)(D"[18(2)) + ue) () B(a) — 50°)
(1)
where u(x) is the Lagrange multiplier field to incorporate the constraint:

d(z) ®(z) — %vz = 0. (2)

Here ®(x) is the SU(2) doublet formed from two complex scalar fields ¢1(x), ¢d2(x):

_{ P1(x)
2@) = (510, 1), dulw) € C ®)

The Lagrangian density is invariant under the SU(2) gauge transformation given by

P(z) = & (z) = U(z)®(x), U(x) = = SU(2), w(z) = w(@)Ty, Ta = %O’A,

Au(z) = () = U(z)d(z)U(z) " + ig U ()0, U (x) ", (4)

The Lagrange multiplier field w(x) is supposed to be invariant under the SU(2) gauge transformation.
20
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(> Matrix scalar field

We introduce the matrix-valued scalar field © by adding another SU(2) doublet & := im,®* as
o . 5 . (}5; D1 . 0 1

©:=(d &)= (ir® (I))_(—qb’{ . yim=e=| 4 ) (5)

® has the same gauge transformation property as ¢. Then © has the same gauge transformation as P,

O(z) = O'(z) =U(z)O(x), U(x) € SU(2). (6)

It is shown that the normalized matrix-valued scalar field © is an element of SU(2):

v

\/5) € G=5SU(2), v>O0. (7)

o) = 0(@)/ (

The original kinetic term of the scalar field is rewritten in terms of the matrix-valued scalar field as

(Dul))(D[4]2) = Str(D,[#16(2)) D [/10/()). 5)

This is shown as the SU(2) doublet field ® is extracted from the matrix-valued field © by

_ - T _ {0
S(xr) = O(x)2 = \/56( 2, Q (1) : (9)

21
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(> Higgs mechanism for SU(2) gauge-fundamental scalar model
For the gauge group SU(2), we introduce the vector boson field %), defined in terms of the normalized
scalar field © and the original gauge field .7, as

V(@) i=ig (Du[]16(2))O(z)" = —ig 'O(2)(Du[]0(x))’

=ig  [(D,[16()O(@) — O()(D,[/16())]. (10)

We find that the kinetic term of the scalar field & or © is identical to the mass term of the
vector boson field 7" with the mass My :

r((Du[]0(2)) D [0(2)) = Mitr(Hu ()" (@), My = zgv. (11

In order to see the relationship between the new description and the conventional explanation for the
BEH mechanism, we take the unitary gauge, namely, we can use the freedom of SU(2) rotations to
write the expectation value in the form:

) e Bla) — O]} = B, = \% ("6 2) — %1.

(12)

1 0
P(z) = (P(x)) = Py 1= —
()~ (B(@)) (0
By this choice of the vacuum expectation value of the scalar field, the original gauge symmetry

SU(2) is completely broken with no residual gauge symmetry, which is called the complete SSB:

G = SU(2) — H = {1}. Then all the components of the gauge boson become massive. s
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In terms of the matrix-valued scalar field, the kinetic term in the unitary gauge reduces to the mass term

%tr((DM[yf]@(m))TD”[ﬁ]@(CU))

2

1 1
= t1(ig0l 7, (0)[—ig" (2)Ou]) = sg'—tr((2) " (@)). (13)
In the unitary gauge, indeed, %/, reduces to the original gauge field,

W (x) = ig (D, (2)]O)O) = o7, (), (14)

(> Field decomposition for SU(2) gauge-fundamental scalar model

The original gauge field &7, is separated into the massive vector field #,, and the residual one 7,
(@) = V(@) + Wu(@). (15)
Under the gauge transformation U(x) € SU(2), the original fields 7, and © transform as
A, (x) = Ulz)d,(2)U(x) +ig7'U(2)0,U(x)", ©(z) = U(z)O(x). (16)
We have constructed #, so that it transform according to the adjoint representation,

() = U(@)#,(a)U(e)". %)
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Therefore, 7, transform just like the original gauge field,
V(@) = U(x)Vu(2)U(2)" +ig ' U(2)8,U (z)". (18)
To obtain the explicit expression for ¥}, we observe that %, = 0O yields the following condition for ¥,
D, [7]6(z) = 0 & 8,0(z) — ig¥,.(z)O(z) = 0. (19)
The residual field ¥, is obtained by solving this equation using 66" =1 as

Vu(w) = — ig0,0(x)O(z) = ig”'O(2)0,6(x)’

:%ig_l[—aﬂé(m)é(a:ﬁ + 6(2)8,0'], &(z) € SU(2). (20)

(> Field equations to the reduction condition for SU (2) gauge-fundamental scalar model
We discuss the relationship between the reduction condition and the field equation of the gauge-scalar
model described by

Fop = — %tr(%,,ﬂ’“”) + %tr((Du[;zi]@)TD”[ﬂ’]@) + utr (@T@ - %&1) /tr(1)  (21)

For the SU(2) gauge-scalar model with a radially fixed fundamental scalar field, the field equations are
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obtained by variation as

0= ;f(f) —tr (@(a:)T@(:L') — %&1) /tr(1), (22)
0= 5‘;)‘?‘(‘; = — D[] D"[#]0(z) + O(z)u(x), (23)
0= 555(“;) = — (D"#10(2)) D[] + u(@)©(a)", (24)
0= 55;5‘}) =71 %0l A)(@) + 5igl(Dul/10(2))O(x)! — O(z)(D,[#10())T], (25)

=" [ Fu[ () + My #u(z) = 0. (26)
Due to (22), the scalar field © is normalized ©. Multiplying (23) by ©F and (24) by © yields
0 = {—D,[#](D"[7]0) + Ou} &' — O{—(D"[]10) D[] + u®'} = 2692, [7]#". (27)
Applying the covariant derivative to (25) or (26) yields
0 = 2[H)(D, || F " A] + M°H") = M>D, []#". (28)

If the fields &/ and © are a set of solutions of the field equations for the gauge-scalar model
with a radially fixed fundamental scalar field, they automatically satisfy the reduction condition

for the pure Yang-Mills theory. 5
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Imposing the reduction condition x*(z) = 0 (A = 1, 2, 3) eliminates three extra degrees of
freedom introduced through the radially fixed scalar field & € SU(2) (dimSU(2) = 3), which
is necessary to convert the SU(2) gauge-scalar theory to the pure SU(2) Yang-Mills theory.

XA (@) =(2*[#)#)  (2) = 0 = x*(2) := (2*[V]#)%(z) =0 (A =1,2,3).  (29)

The reduction condition x(x) = x“ ()T is rewritten in terms of the scalar field © and the original
gauge field <7, as

x(@) i= 2,[/](D"[/]6(x))O(z)"] = 0. (30)

The reduction condition is gauge covariant equation, x(z) — U(x)x(z)U(z)'. This implies that the
reduction condition retains the same form under the gauge transformation, namely, it is form-invariant.

In order to obtain the expressions in terms of the original scalar field ®, it is sufficient to impose the
condition:

D,[¥]®(z) = 0. (31)

In fact, (19) follows from D, [#]®(x) = 0 = D,[¥]6(z) = 0. For G = SU(2), thus, the gauge
field is decomposed as MMA(:U) = WMA(EL’) + ”I/MA(.:U)

¥ x) = —ig ' [®T(2)0a8,B(x) — 0, DT (2)oad(2)],
7, (2) =ig " [®N(w)oaD, [ D (x) — (Du[#]®(2)) oad(2)]. (32)

26
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SU(2) gauge-scalar model (“complementary”) to the massive SU(2) Yang-Mills theory

G = SU(2) Fundamental ®, © = (&, ®) Adjoint ¢
SSB pattern G — H complete: SU(2) — {1} partial: SU(2) — U(1)
field decomposition wy =W+ Yy Ay =W, + YV,

massive mode %/,

W, =W, Ta € su(2)

#, = —ig ' O(D,[«]0)]
Wi =ig [®loaD,[]D
—(D,[]9)704D]

W= —ig~ '[P, Dul/] 4]
WA — g—leABC'g%B(‘@M[ﬂ]QB)C

I

gauge transformation

W, — UW, U

same as on the left

residual mode ¥,
V=¥ Ta € su(2)

¥, =ig~ 100,01
%A = —ig_l[@o}l@#@
— 0,810 4 P]

V= C;qu - ig_l[qga 8uq3]
Cy = Y- P

A TA —1 _ABC ;B e
Y, =cud” — g le ¢ 0,

gauge transformation

¥V, = U¥ U +ig7'UB,UT

same as on the left

Defining equation D,[7]® =0, D,[¥]© =0 P71 = 0
(7 - & #0) Wy =0
field equation 1 tr (070 — 1v?1) /tr(1) = 0 ¢ -¢d—v'=0

field equation 2

— D, [#/]D"[]© + Ou = 0

— "IN Dul P + 2udp = 0

field equation 3

D || F ) + MEH, = 0

DA F el ) + MEH, = 0

reduction condition y UV H#. =0 GH| Y | #y =0 3
color field n = n'oy4 n = 00360" nt = —dTosd n=a¢,n"=¢4
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Kondo, Kato, Shibata and Shinohara, Phys. Report 579, 1-226 (2015), arXiv:1409.1599 [hep-th]

(> Static quark potential and string tension
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Figure 1: [Kato, Kondo and Shibata, 2014] The static quark-antiquark potentials as functions of
the quark-antiquark distance IR: (from above to below) (i) full potential Vyaqi(R), (ii) restricted part
Viest(R) and (iii) magnetic-monopole part Vinono(R). (Left) on 16" lattice at 8 = 2.4, (Right) on
24% lattice at 8 = 2.5 where the Wilson loop with T' = 12 was used for obtaining Viunn () and
Viest(R), and T' = 8 for Vipono(R).
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(> Chromoelectric flux
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Figure 2: [Kato, Kondo and Shibata, 2014] The chromoelectric and chromomagnetic fields obtained
from the full field U on 24* lattice at 8 = 2.5. (Left panel) y dependence of the chromoelectric field
Ei(y) = Fy(y) (i = z,y, z) at fixed z = 4 (mid-point of ¢q). (Right panel) The distribution of
E.(y, z) obtained for the 8 x 8 Wilson loop with g at (y, z) = (0,0) and g at (y, z) = (0, 8).
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Figure 3: [Kato, Kondo and Shibata, 2014] The chromoelectric field obtained from the restricted field

V on 24* lattice at 8 = 2.5. o
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() magnetic monopole
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Figure 4: [Kato, Kondo and Shibata, 2014] The magnetic-monopole current k induced around the
(Center panel) The

positional relationship between the chromoelectric field E, and the magnetic current k. (Left panel)
The magnitude of the chromoelectric field E, and the magnetic current J,, = |k| as functions of the

chromoelectric flux along the z axis connecting a pair of quark and antiquark.

distance y from the z axis calculated from the original full variables. (Right panel) The counterparts of

the left graph calculated from the restricted variables.

Notice that H,,(x) is locally closed (dH = 0) and hence it can be locally exact (H = dh) due
to the Poincare’lemma. Then H,, () has the Abelian potential A, (x):

Hyu(@) =0, (z) — Oyhy(@). 1)
Therefore, the SU(2) gauge-invariant Abelian-like field strength f,. is rewritten as

fuw(z) =0,Gu(z) — 0,Gu(z), Gul(z) = cu(z) + hu(x). (232]
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We call ¢, the electric potential and A, the magnetic potential. Indeed, h, agrees with the Dirac
magnetic potential, see section 6.10 of the review[Physics Reports]. The magnetic current k*(x) is not
identically zero, since the Bianchi identity valid for ¢, is violated by h,,.

(> In the Yang-Mills theory, indeed, the mass My, can be generated in a dynamical way, e.g., by a
gauge-invariant vacuum condensation (#* . #,,) so that M7, ~ (#" . #,) due to the quartic self-
interactions —1(ig[#,,(x), #,(z)])* among #,,(z) field, in sharp contrast to the ordinary gauge-scalar
model. The analytical calculation for such a condensate was done in [Dudal et al, 2004].

MW iz 2-25Aphys ~ 0.524GeV (3)
The numerical simulations on the lattice in [Shibata et al, 2007] gives

Mw ~ 2.69,/0pnys =~ 1.19GeV, (4)
where opnys IS the string tension of the linear potential in the quark-antiquark potential.
() The mass My is used to show the existence of confinement-deconfinement phase transition at a
finite critical temperature 7., separating confinement phase with vanishing Polyakov loop average at low
temperature and deconfinement phase with non-vanishing Polyakov loop average at high temperature [?].
The critical temperature T, is obtained from the calculated ratio T./Myy for a given value of My,

which provides a reasonable estimate.

() Correlation function "

DVIOUT—-Kondo (Chiba_Univ) Heraeus_seminar BadHonneff-201804

31 /39



r [fm]

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

10 ' T T T T 10 E T T T T T D 124b2 3]
ol r —_— D [24b2 4]
. i D [32b2 3]
LI - g D [32b2 4]
T Tl 1F ol =1 Dog3602.5]
& i 2 n +o 1 Do]3602.5]
= " n om +—e—1 Do [4802.4]
€. & L oo, ™ —a Dm[48b2 5]
01} ns = 0.1 ¢ ° - wx|24b2.3]
L r— A 27 e " *u D X[24b2.4]
- = Daa32b2.4 g Dix[322.3]
T el =+ DaA[36b2.5 = ™~ o n Dil3252.4]
D 001k L e Danl48b2.6 " 0.01 L o 3 Dyx|36b2.4]
O g —— Dy [24b23 o LI D [38b2 5]
o b —a— Dyy[32b2.4 o a D802 4]
—a— Dinfseoas 1 T Dosdez o
0.001 | % D’V,E[zmq 0.001 ¢ . ? —— Dpi24b2.4]
—m— -Dyy[3202.4] e T2 5 —x— D.[32b2.3]
—a— D [36D2 5] [ 1 HEHB {gggg jH
1004 F - DD :[2%2236] 1604 ¢ i +—o 1 D 36b2 5]
—a—i Doa[32b2.4 +—e—1 D[48b2.4]
- = DA[368D2.5 | a1 Do [48b2 5]

1e-05 ! : o D852 1e-05 : ' :

0 05 1 0 0.5 1 1125 2 25
r [Gphys r [Gphys ]
Figure 5. [Shibata, Kato, Kondo, Murakami, Shinohara, and Ito, 2007] Logarithmic plots

of scalar-type two-point correlation functions D, (7) (O(z)O'(y)) as a function of the

Euclidean distance r V(z —y)? for © and O'. (Left panel) O(z)O'(y) = Vﬁ(a:)Vﬁ(y),
Ap(2)As(y), V(@)X (y), X,(@)X;(y), (Right panel) O(2)O'(y) = n’(z)n"(y),
cu(z)eu(y), Xﬁ(m)Xﬁ(y), from above to below using data on the 24* lattice (8 = 2.3, 2.4),
32" lattice (8 = 2.3, 2.4), 36" lattice (8 = 2.4,2.5), and 48" lattice (8 = 2.4,2.5,2.6). Here
plots are given in the physical unit [fm] or in unit of square root of the string tension /G pys.
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Figure 6: [Shibata, Kato, Kondo, Murakami, Shinohara, and Ito, 2007] Logarithmic plots of the
rescaled correlation function 7*/2Doo(r) as a function of r for O = Vﬁ, Aﬁ, s Xﬁ (and X’ﬁ) from
above to below, using the same colors and symbols as those in Fig. 5. Here two sets of data for the
correlation function Dy x(x — y) are plotted according to the two definitions of the Xﬁ field on a

lattice.
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Figure 7: [Shibata, Kato, Kondo, Murakami, Shinohara, and Ito, 2007] Gluon “mass’ and decay
rates (in units of GeV and /Gpnys) as the function of the inverse lattice volume 1/V in the physical
unit. (Left panel) for O = Xﬁ, (X’ﬁ), Erus Aﬁ from above to below extracted according to the fitting:
(O(z)O(y)) ~ %% exp(—Mor), (Right panel) for n“(x) extracted according to the fitting:
(04 ()0 ()} ~ exp(—Mor).

Mx =~ 2.98,/0phys =~ 1.31GeV, My =~ 2.69,/0phys =~ 1.19GeV. (5)

M, =~ 2.24,/Gpnys =~ 0.986GeV, M, ~ 1.94,/6pny: =~ 0.856GeV,
My ~ 1-35w/0'phys ~ 0.596GeV. (6)
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(> Fundamental scalar case: A perturbative approach

Figure 8: (Left) gluon propagator D (k), (Right) ghost propagator A(k).

Fit of the analytical 1-loop calculation of the massive Yang-Mills theory to the numerical simulations on
the lattice in the covariant Landau gauge for SU(3) Yang-Mills theory [A.G. Duarte, O. Oliveira, and
P.J. Silva, Phys. Rev. D94 (2016) 014502.]

~ 1 1
Dy (k = u) =—, A(k=p)l,0=—, at p=4GeV (7)
a—0 M M

M = 0.261 GeV, g = 2.36 (8)
This should be compared with [M. Tissier and N. Wschebor, Phys.Rev. D82, 101701 (2010). |

M = 0.54 GeV, g = 4.9 (9)

These propagators leads to positivity violation which is consistent with gluon confinement.
35
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Conclusion:
() We propose a gauge-independent description of the BEH or Higgs mechanism by
which massless gauge bosons acquire their mass.

The conventional description of the BEH mechanism states that massless gauge
bosons become massive vector bosons by absorbing the Nambu-Goldstone particles
associated with the spontaneous breaking of the gauge symmetry.

This description requires a non-vanishing vacuum expectation value of the scalar field
(0|¢p(x)|0) = v, which is clearly gauge dependent and impossible to be realized without
fixing the gauge.

In the new description, instead, the scalar field is supposed to obey a gauge-invariant
condition which forces the radial length of the scalar field to have a certain fixed value
|p(z)|| = v without breaking the gauge symmetry.

This result is regarded as an explicit realization in the framework of the continuum
field theory of the proposition derived by Fradkin and Shenker, and Osterwalder-Seiler
in the gauge-invariant framework of lattice gauge theory for the gauge-scalar model
with a radially fixed fundamental scalar field.

() We can include a gauge-invariant mass term in the pure Yang-Mills theory. .
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This extension enables one to study quak confinement and mass gap in the pure
Yang-Mills theory as the implications of the BEH mechanism in the “complementary”
gauge-scalar model.

(9 This allows one to decompose the original gauge field &/ into the massive vector
mode # and the residual gauge mode 7', &/ =# + V.

# =massive vector mode, 7 =residual gauge mode

The massive vector modes # mediate only the short-range force between quark
sources. Therefore, the long-range force giving a linear piece of the static quark

potential responsible for quark confinement must be mediated by the residual gauge
mode 7.

In the case of the adjoint scalar field, the residual gauge mode include massless
gauge boson which is able to mediate the long-range force.

In the case of the fundamental scalar field, there are no massless gauge bosons in
the residual mode 7 once the BEH mechanism occurs. In fact, the residual gauge
mode ¥ has exactly the same form as the pure gauge ¥ = ig~'UdU ! with the group
element U which is written in terms of the scalar field ®. Therefore, solitons and
defects converging to the pure gauge in the long distance can be good candidates for

the dominant components in the residual mode. .
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In both cases, we can extract the magnetic monopoles and/or a pair of magnetic
monopole and antimonopole using the color direction field n(xz) defined in terms of
the scalar field ¢(x) in the gauge invariant way which are promising candidate of field
configurations responsible for quark confinement.

Discussion:

For SU(2), the two cases are different for quark confinement.

In the adjoint scalar field case (SU(2) — U(1)),

the external quark source in the fundamental representation cannot be screened by the
adjoint scalar and the chromoelectric flux connecting a pair of quark and antiquark is
formed for » > rq where r < rg the Coulomb-like perturbative part becomes dominant.

In the fundamental scalar field case (SU(2) — {0}),

the external quark source in the fundamental representation can be screened by the
fundamental scalar and the chromoelectric flux connecting a pair of quark and antiquark
will break at certain distance r = r. ~ 1/(2m) with the mass m of the scalar particle.
The static quark potential exhibits the linear potential in the Intermediate region
ro < r < re and flattens in the long-distance region r» > r.. This situation is similar to
the realistic QCD in which light dynamical quarks are included into the theory.

Gluon confinement will be realized by ...
38
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for your attention.
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