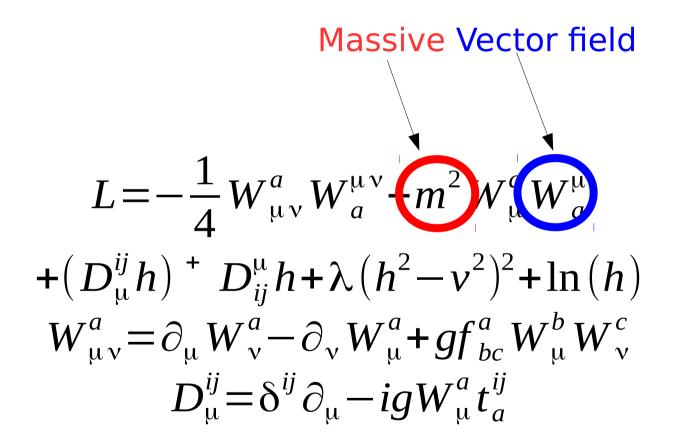
The ambiguity of confinement

Axel Maas

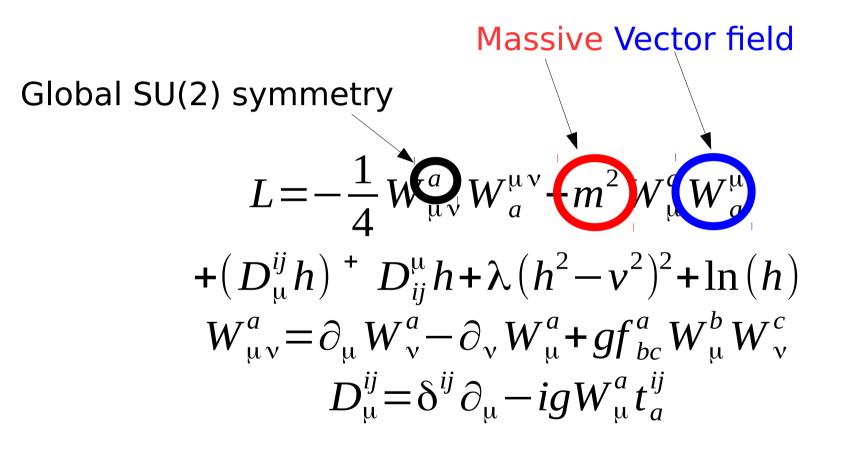
5th of April 2018 Bad Honnef Germany

NAWI Graz Natural Sciences

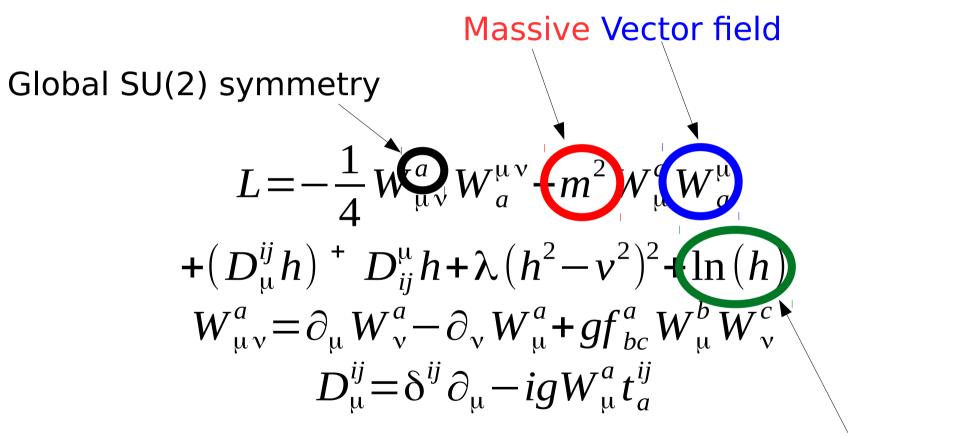
Der Wissenschaftsfonds.


Consider the following theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + m^{2} W^{a}_{\mu} W^{\mu}_{a}$$
$$+ (D^{ij}_{\mu}h)^{+} D^{\mu}_{ij}h + \lambda (h^{2} - v^{2})^{2} + \ln (h)$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$


Consider the following theory

Vector field $L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + m^{2} W^{\mu\nu}_{\mu} W^{\mu}_{\sigma}$ + $(D_{\mu}^{ij}h)^{+}D_{ii}^{\mu}h+\lambda(h^{2}-v^{2})^{2}+\ln(h)$ $W^a_{\mu\nu} = \partial_{\mu} W^a_{\nu} - \partial_{\nu} W^a_{\mu} + g f^a_{bc} W^b_{\mu} W^c_{\nu}$ $D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - i g W^a_{\mu} t^{ij}_a$


Consider the following theory: Not a gauge theory

Consider the following theory: Not a gauge theory

Consider the following theory: Not a gauge theory

Non-trivial tree-level structure defects or large λ

Well-defined theory, can be simulated on the lattice

[Jersak et al.'85, Evertz et al.'86]

- Formfactors of particles depend (continously) on parameters of the theory
 - Accessible on the lattice
 - Variational analysis in operator basis

- Formfactors of particles depend (continously) on parameters of the theory
 - Accessible on the lattice
 - Variational analysis in operator basis
- Some cases: (Almost) point-particle-like

- Formfactors of particles depend (continously) on parameters of the theory
 - Accessible on the lattice
 - Variational analysis in operator basis
- Some cases: (Almost) point-particle-like
- Others: Looks like having a substructure
 - Peaks at 1/2, 1/3, 1/4,...

- Formfactors of particles depend (continously) on parameters of the theory
 - Accessible on the lattice
 - Variational analysis in operator basis
- Some cases: (Almost) point-particle-like
- Others: Looks like having a substructure
 - Peaks at 1/2, 1/3, 1/4,...
 - But particles are elementary
 - Integration variables of the path integral

The Reason

The Reason

- Theory can be covariantized
- Just a gauge-fundamental Higgs theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j}) + D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - \nu^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

The Reason

 $W^a_{\mathfrak{u}} \rightarrow W^a_{\mathfrak{u}}$

- Theory can be covariantized
- Just a gauge-fundamental Higgs theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

• Local SU(2) gauge symmetry

 $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\phi^{b} \qquad h_{i} \rightarrow h_{i} + gt^{ij}_{a}\phi^{a}h_{j}$

 Global SU(2) symmetry of vectors becomes SU(2) global symmetry of the scalars

$$h_i \rightarrow h_i + a^{ij} h_j + b^{ij} h_j^*$$

The "Reason"

 $W^a_{\mathfrak{u}} \rightarrow W^a_{\mathfrak{u}}$

- Theory can be covariantized
- Just a gauge-fundamental Higgs theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

• Local SU(2) gauge symmetry

 $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\phi^{b} \qquad h_{i} \rightarrow h_{i} + gt^{ij}_{a}\phi^{a}h_{j}$

 Global SU(2) symmetry of vectors becomes SU(2) global symmetry of the scalars

$$h_i \rightarrow h_i + a^{ij} h_j + b^{ij} h_j^*$$

Detailed correspondence

- States do have a one-to-one correspondence in both theories
- Elementary states in ungauged theories can be described by gauge-invariant states in the gauge theory
- Confinement equates to gauge-invariance
- Different substructure mapped to dominance of different composite operators in the gauged theory
 - Not always in one-to-one correspondence with the number of gauged fields
 - No simple interpretation as 'constituents'

- Elementary particles do not exist as degrees of freedom in the ungauged theory
- Exist in the equivalent gauged theory

- Elementary particles do not exist as degrees of freedom in the ungauged theory
- Exist in the equivalent gauged theory
- Would be considered confined if only looking at the gauged theory

- Elementary particles do not exist as degrees of freedom in the ungauged theory
- Exist in the equivalent gauged theory
- Would be considered confined if only looking at the gauged theory
 - But confinement is meaningless in the ungauged theory – there are no substructure particles

- Elementary particles do not exist as degrees of freedom in the ungauged theory
- Exist in the equivalent gauged theory
- Would be considered confined if only looking at the gauged theory
 - But confinement is meaningless in the ungauged theory – there are no substructure particles
- But really are only auxiliary degrees of freedom for a simple tree-level form

- Elementary particles do not exist as degrees of freedom in the ungauged theory
- Exist in the equivalent gauged theory
- Would be considered confined if only looking at the gauged theory
 - But confinement is meaningless in the ungauged theory – there are no substructure particles
- But really are only auxiliary degrees of freedom for a simple tree-level form
- Apparent substructure in the ungauged form is an emergent feature
 - Essentially a dressing of the bare states

 Rewriting of a gauge theory as an ungauged theory in general complex

- Rewriting of a gauge theory as an ungauged theory in general complex
 - Possible for QED
 - Including the Aharanov-Bohm effect [Strocchi et al.'74]

- Rewriting of a gauge theory as an ungauged theory in general complex
 - Possible for QED
 - Including the Aharanov-Bohm effect [Strocchi et al.'74]
 - Yang-Mills theory induces an infinite number of variables, Wilson loops of all sizes [Gambini et al. '96]

- Rewriting of a gauge theory as an ungauged theory in general complex
 - Possible for QED
 - Including the Aharanov-Bohm effect [Strocchi et al.'74]
 - Yang-Mills theory induces an infinite number of variables, Wilson loops of all sizes [Gambini et al. '96]
- Conversely: Many ungauged theories can be written explicitly as a gauge theory
 - Covariantization hypothesis: Always possible [Kibble '67, Pitts '09, Francois '18]

- Rewriting of a gauge theory as an ungauged theory in general complex
 - Possible for QED
 - Including the Aharanov-Bohm effect [Strocchi et al.'74]
 - Yang-Mills theory induces an infinite number of variables, Wilson loops of all sizes [Gambini et al. '96]
- Conversely: Many ungauged theories can be written explicitly as a gauge theory
 - Covariantization hypothesis: Always possible [Kibble '67, Pitts '09, Francois '18]
- If confinement is more than gauge-invariance then it needs to be defined gauge-invariantly

- Rewriting of a gauge theory as an ungauged theory in general complex
 - Possible for QED
 - Including the Aharanov-Bohm effect [Strocchi et al.'74]
 - Yang-Mills theory induces an infinite number of variables, Wilson loops of all sizes [Gambini et al. '96]
- Conversely: Many ungauged theories can be written explicitly as a gauge theory
 - Covariantization hypothesis: Always possible [Kibble '67, Pitts '09, Francois '18]
- If confinement is more than gauge-invariance then it needs to be defined gauge-invariantly
 - Note: Gauge-invariance implies positivity, but positivity not necessarily implies being physical [Seiler '82]

Criterion	Satisfied in	Not satisfied in	Consequence	
-----------	--------------	------------------	-------------	--

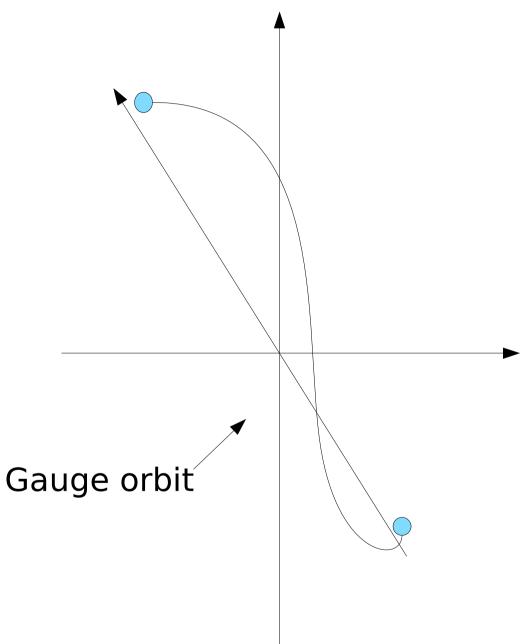
Criterion	Satisfied in	Not satisfied in	Consequence
Wilson string tension	Some Yang- Mills, adjoint matter	QCD, some Yang-Mills theories Actually, a 'hadronic' correlator	QCD is not confining

Criterion	Satisfied in	Not satisfied in	Consequence
Wilson string tension	Some Yang- Mills, adjoint matter	QCD, some Yang-Mills theories Actually, a 'hadronic' correlator	QCD is not confining
Center symmetry	SU(N) Yang- Mills, adjoint matter	QCD, other Yang-Mills theories	QCD is not confining

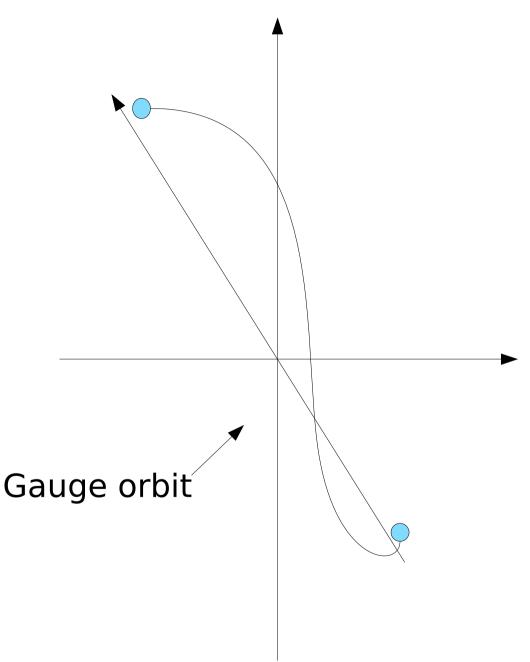
Criterion	Satisfied in	Not satisfied in	Consequence
Wilson string tension	Some Yang- Mills, adjoint matter	QCD, some Yang-Mills theories Actually, a 'hadronic' correlator	QCD is not confining
Center symmetry	SU(N) Yang- Mills, adjoint matter	QCD, other Yang-Mills theories	QCD is not confining
No states with non- integer baryon number	QCD, some QCD-like theories	Yang-Mills, any adjoint matter, some QCD-like theories (G2, SUSY)	Pure group theory, not a dynamical effect

Criterion	Satisfied in	Not satisfied in	Consequence
Wilson string tension	Some Yang- Mills, adjoint matter	QCD, some Yang-Mills theories Actually, a 'hadronic' correlator	QCD is not confining
Center symmetry	SU(N) Yang- Mills, adjoint matter	QCD, other Yang-Mills theories	QCD is not confining
No states with non- integer baryon number	QCD, some QCD-like theories	Yang-Mills, any adjoint matter, some QCD-like theories (G2, SUSY)	Pure group theory, not a dynamical effect
No massless vector states	QCD, Yang- Mills theory	Likely not always true with adjoint scalars	What about QED?

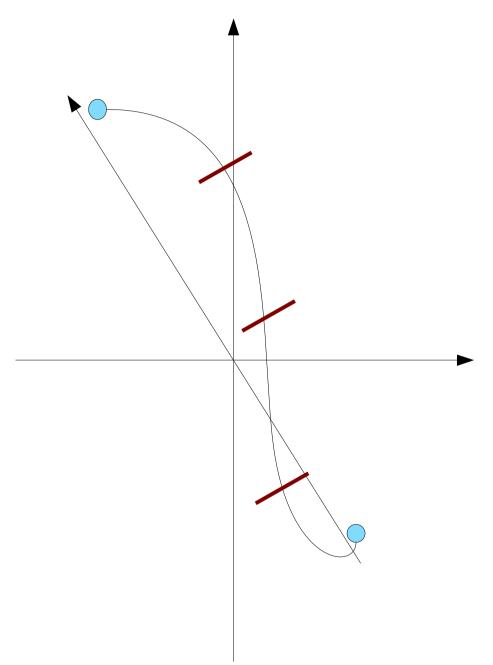
Criterion	Satisfied in	Not satisfied in	Consequence
Wilson string tension	Some Yang- Mills, adjoint matter	QCD, some Yang-Mills theories Actually, a 'hadronic' correlator	QCD is not confining
Center symmetry	SU(N) Yang- Mills, adjoint matter	QCD, other Yang-Mills theories	QCD is not confining
No states with non- integer baryon number	QCD, some QCD-like theories	Yang-Mills, any adjoint matter, some QCD-like theories (G2, SUSY)	Pure group theory, not a dynamical effect
No massless vector states	QCD, Yang- Mills theory	Likely not always true with adjoint scalars	What about QED?
Topological objects/condensates	Some gauge theories	Only mediators	No defintion

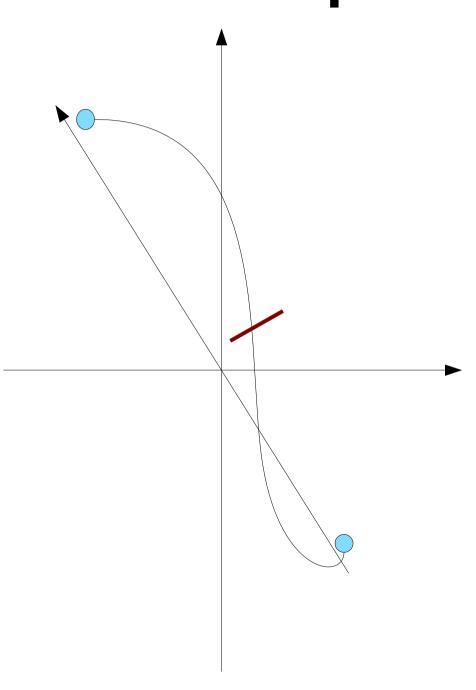

Criterion	Satisfied in	Not satisfied in	Consequence
Wilson string tension	Some Yang- Mills, adjoint matter	QCD, some Yang-Mills theories Actually, a 'hadronic' correlator	QCD is not confining
Center symmetry	SU(N) Yang- Mills, adjoint matter	QCD, other Yang-Mills theories	QCD is not confining
No states with non- integer baryon number	QCD, some QCD-like theories	Yang-Mills, any adjoint matter, some QCD-like theories (G2, SUSY)	Pure group theory, not a dynamical effect
No massless vector states	QCD, Yang- Mills theory	Likely not always true with adjoint scalars	What about QED?
Topological objects/condensates	Some gauge theories	Only mediators	No defintion
Other symmetries	Some theories	Usually not for dynamical objects	Does not apply to dynamical content

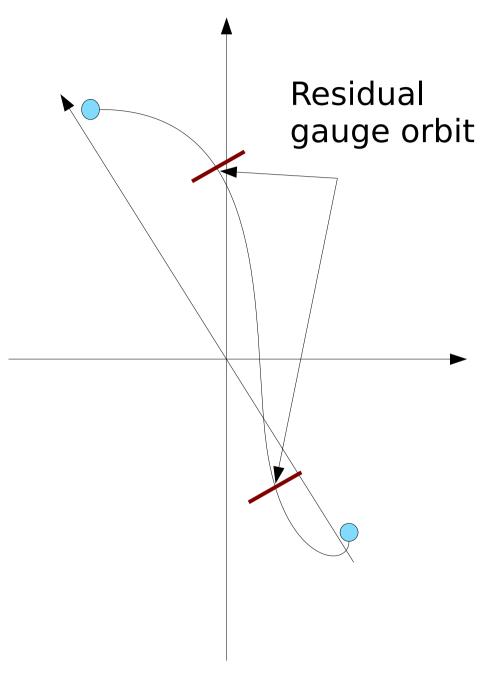
Discussed possibilities

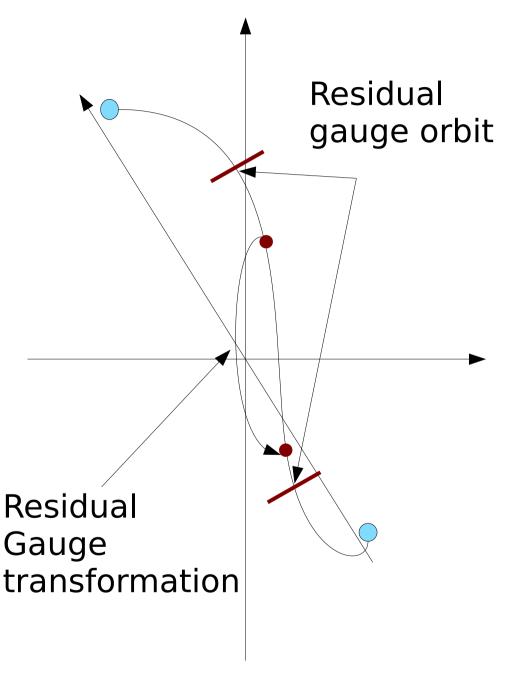

Criterion	Satisfied in	Not satisfied in	Consequence
Wilson string tension	Some Yang- Mills, adjoint matter	QCD, some Yang-Mills theories Actually, a 'hadronic' correlator	QCD is not confining
Center symmetry	SU(N) Yang- Mills, adjoint matter	QCD, other Yang-Mills theories	QCD is not confining
No states with non- integer baryon number	QCD, some QCD-like theories	Yang-Mills, any adjoint matter, some QCD-like theories (G2, SUSY)	Pure group theory, not a dynamical effect
No massless vector states	QCD, Yang- Mills theory	Likely not always true with adjoint scalars	What about QED?
Topological objects/condensates	Some gauge theories	Only mediators	No defintion
Other symmetries	Some theories	Usually not for dynamical objects	Does not apply to dynamical content

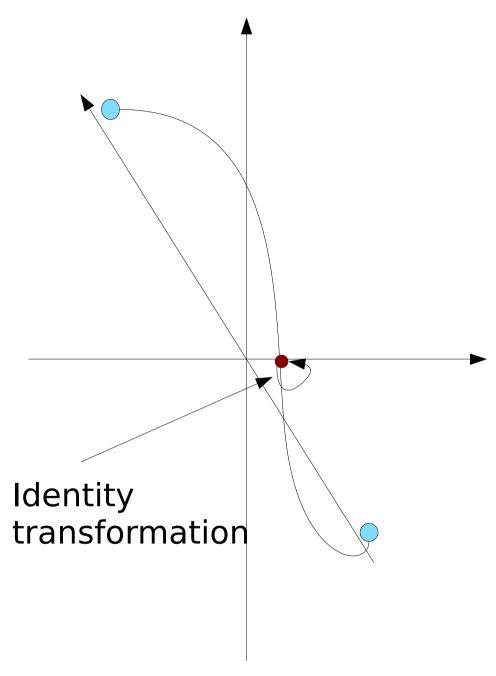
No generally satisfied criterion

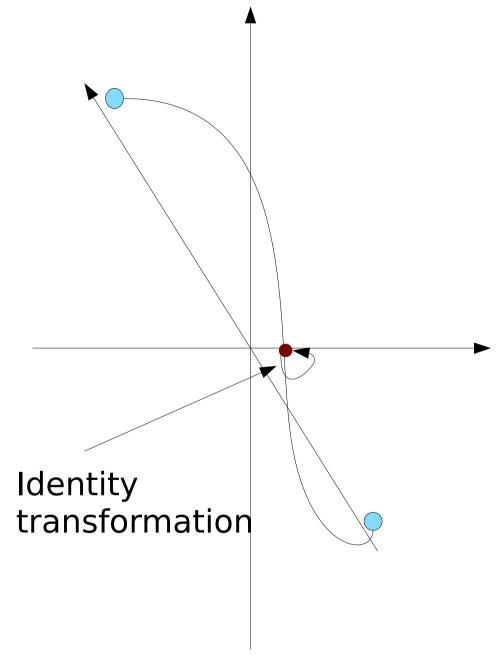

 Gauge symmetry is the existence of equivalent field configurations along gauge orbits

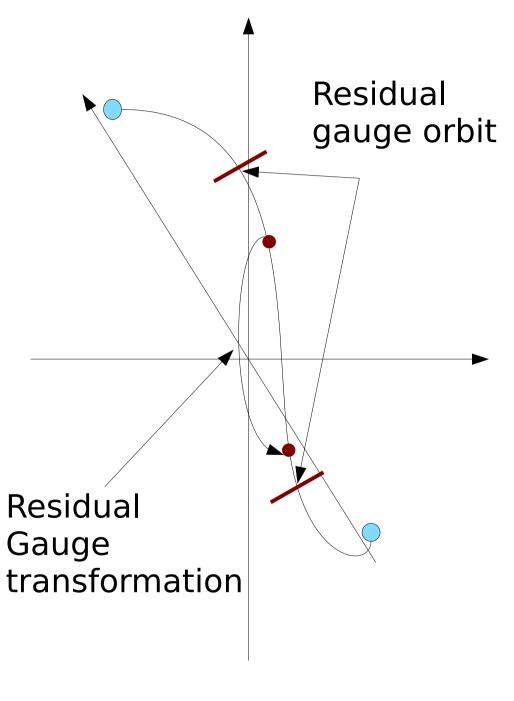

 Gauge-fixing is the introduction of a non-flat weight along a gauge orbit, such that all copyindependent quantities remain unchanged

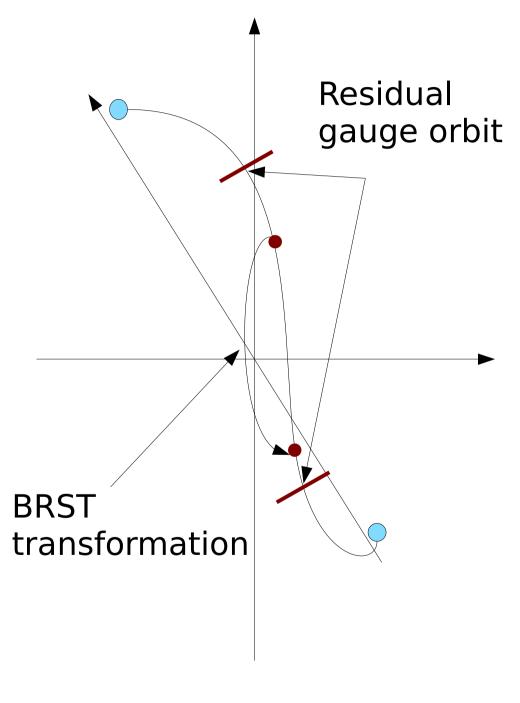

- Two possibilities
 - Averaging over all or some copies

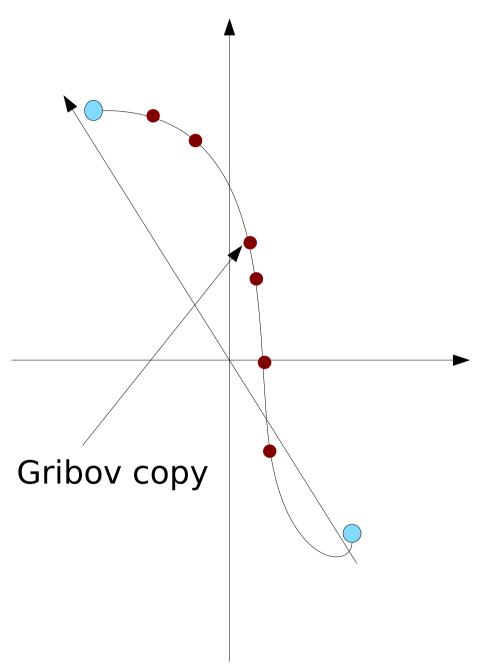

- Two possibilities
 - Averaging over all or some copies
 - Single out one copy as representative
 - Limiting case of an average

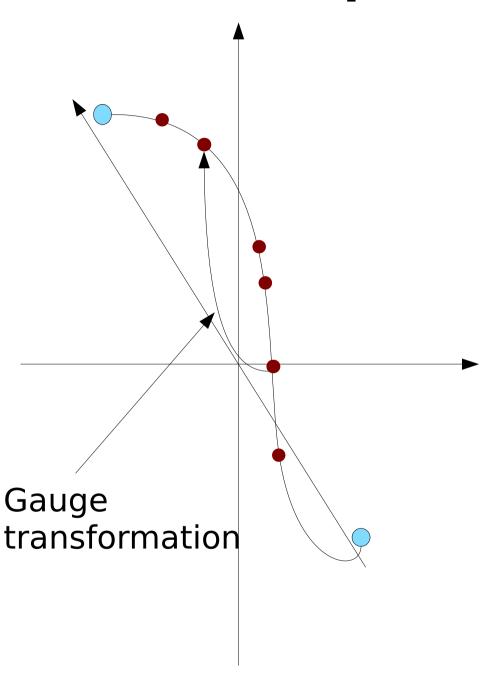

- Any gauge fixing yields a residual set of gauge copies
 - Residual gauge orbit
 - May be a single one

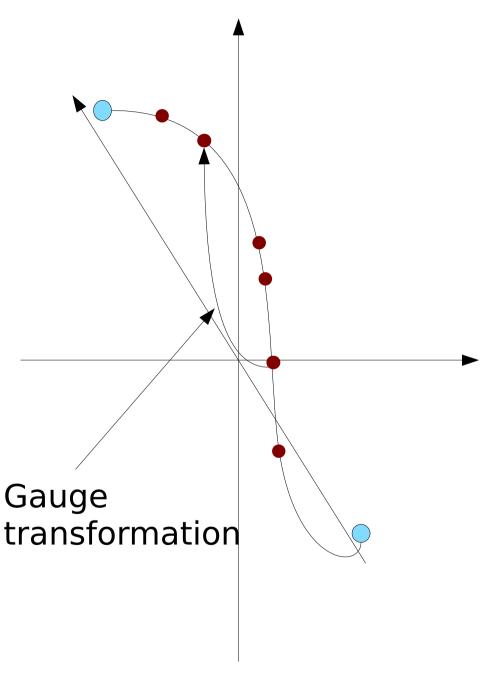

- Any gauge fixing yields a residual set of gauge copies
 - Residual gauge orbit
 - May be a single one
- Residual copies are linked by gauge transformations

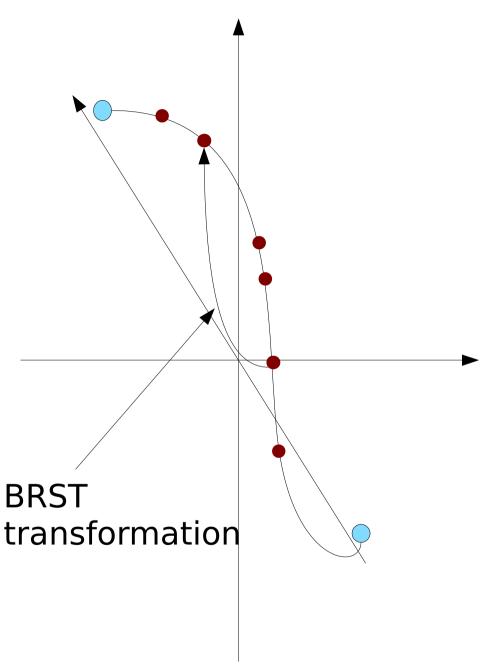

- Any gauge fixing yields a residual set of gauge copies
 - Residual gauge orbit
 - May be a single one
- Residual copies are linked by gauge transformations
- Gauges with a single copy: Identity transformation

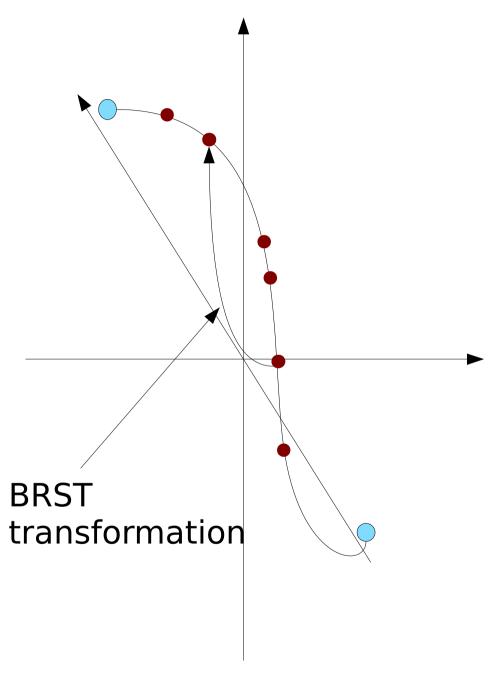

- Any gauge fixing yields a residual set of gauge copies
 - Residual gauge orbit
 - May be a single one
- Residual copies are linked by gauge transformations
- Gauges with a single copy: Identity transformation
 - May become non-trivial by introduction of ghost fields
 - Gauge field is invariant under ghost transformations
 - E.g. perturbative Landau gauge

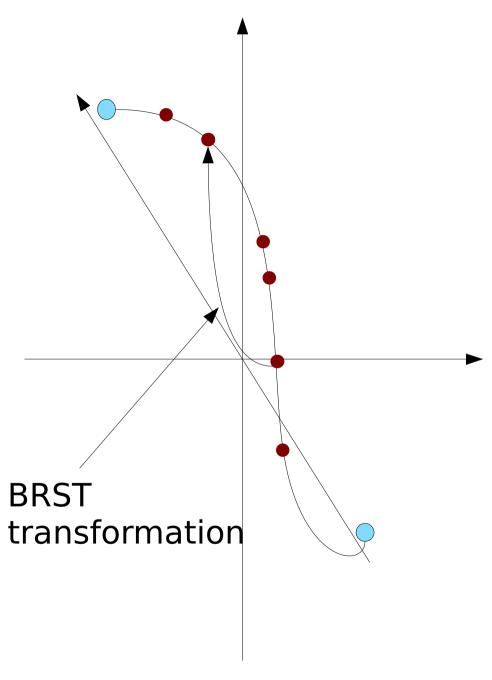

- Any gauge fixing yields a residual set of gauge copies
 - Residual gauge orbit
 - May be a single one
- Residual copies are linked by gauge transformations
- Perturbative limit

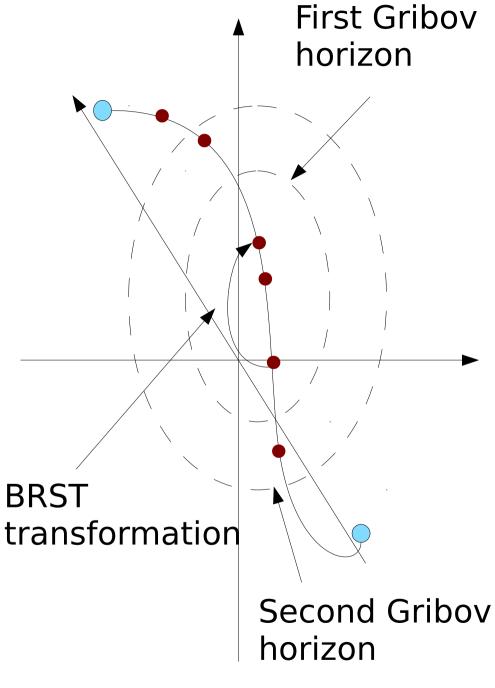

- Any gauge fixing yields a residual set of gauge copies
 - Residual gauge orbit
 - May be a single one
- Residual copies are linked by gauge transformations
- Perturbative limit
 - Introduce ghost fields
 - Auxilliary fields!
 - Symmetry is BRST
 - Still only gauge transformations for the gauge field


- Beyond perturbation theory
 - Disconnected pieces of the gauge orbit left after gauge-fixing: Gribov copies


- Beyond perturbation theory
 - Disconnected pieces of the gauge orbit left after gauge-fixing: Gribov copies
 - Connected by (large) gauge transformation


- Beyond perturbation theory
 - Disconnected pieces of the gauge orbit left after gauge-fixing: Gribov copies
 - Connected by (large) gauge transformation
- Set of all transformations is a symmetry of the gauge-fixed theory


- Beyond perturbation theory
 - Disconnected pieces of the gauge orbit left after gauge-fixing: Gribov copies
 - Connected by (large) gauge transformation
- Set of all transformations is a symmetry of the gauge-fixed theory
 - Non-perturbative BRST symmetry


- Beyond perturbation theory
 - Disconnected pieces of the gauge orbit left after gauge-fixing: Gribov copies
 - Connected by (large) gauge transformation
- Set of all transformations is a symmetry of the gauge-fixed theory
 - Non-perturbative BRST symmetry
 - Localizable by (more) ghost fields

- Beyond perturbation theory
 - Disconnected pieces of the gauge orbit left after gauge-fixing: Gribov copies
 - Connected by (large) gauge transformation
- Set of all transformations is a symmetry of the gauge-fixed theory
 - Non-perturbative BRST symmetry
 - Localizable by (more) ghost fields (?)

- Beyond perturbation theory
 - Disconnected pieces of the gauge orbit left after gauge-fixing: Gribov copies
 - Connected by (large) gauge transformation
- Set of all transformations is a symmetry of the gauge-fixed theory
 - Non-perturbative BRST symmetry
 - Localizable by (more) ghost fields (?)
- True for full gauges

- BRST invariance is a weaker version of gauge invariance
 - Invariance under a subset of gauge transformations

- BRST invariance is a weaker version of gauge invariance
 - Invariance under a subset of gauge transformations
- Non-perturbatively constructed it states that all gauge-dependent degrees of freedom left after gauge-fixing are still unphysical

- BRST invariance is a weaker version of gauge invariance
 - Invariance under a subset of gauge transformations
- Non-perturbatively constructed it states that all gauge-dependent degrees of freedom left after gauge-fixing are still unphysical
- Equivalent to gauge-invariance a two-step process:
 - Eliminate part of gauge-dependence by gauge-fixing
 - Remove remaining part by BRST invariance

- BRST invariance is a weaker version of gauge invariance
 - Invariance under a subset of gauge transformations
- Non-perturbatively constructed it states that all gauge-dependent degrees of freedom left after gauge-fixing are still unphysical
- Equivalent to gauge-invariance a two-step process:
 - Eliminate part of gauge-dependence by gauge-fixing
 - Remove remaining part by BRST invariance
- Conceptually more demanding to create than just gauge invariance
 - But in actual calculations potentially simpler

• All universally applicable notions really equate to gauge invariance

- All universally applicable notions really equate to gauge invariance
- No need for a separate notion of confinement
 - Only separates physical from auxiliary degrees of freedom
 - Like classical mechanics [van Holten '05]

- All universally applicable notions really equate to gauge invariance
- No need for a separate notion of confinement
 - Only separates physical from auxiliary degrees of freedom
 - Like classical mechanics [van Holten '05]
- Quantities like the Wilson string tension remain non-trivial, interesting quantities
 - E.g. impact for Regge trajectories

- All universally applicable notions really equate to gauge invariance
- No need for a separate notion of confinement
 - Only separates physical from auxiliary degrees of freedom
 - Like classical mechanics [van Holten '05]
- Quantities like the Wilson string tension remain non-trivial, interesting quantities
 - E.g. impact for Regge trajectories
- But no longer baggage of inexplicable questions attached