

Nicolas Wink (Heidelberg University)

Bad Honnef, April 2018

Nicolas Wink (Heidelberg University)

Requires non-perturbative correlation functions in Minkowski space-time

Requires non-perturbative correlation functions in Minkowski space-time

Direct calculation

Pawlowski, Strodthoff, NW, arxiv:1711.07444

Pawlowski, Strodthoff, NW, arxiv:1711.07444

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.today

<u>cf. poster by Anton Cyrol</u> <u>cf. talk by Mario Mitter</u>

cf. talk by Fabian Rennecke

••••

QCD from the FRG

Collaborative effort fQCD collaboration:

J. Braun, A. Cyrol, W.-j. Fu, M. Leonhardt, M. Mitter, J.M. Pawlowski, M. Pospiech, F. Rennecke, C. Schneider, NW

Introduction

Continuation procedure

From imaginary to real times

Matsubara contour

Continuation procedure

From imaginary to real times

Re(t)

From imaginary to real times

Matsubara contour

Continuation from Matsubara frequencies Schwinger-Keldysh contour

lm(t)

Use analyticity constrains and KMS condition to obtain real time correlation functions form Matsubara formalism

Prerequisites :

Assume the existence of a spectral representation

$$G(p_0, \vec{p}) = \int_{\eta>0} 2\eta \frac{\rho(\eta, \vec{p})}{p_0^2 + \eta^2} + \sum_{j \in \{\text{poles}\}} \frac{R_j}{p_0^2 + M_j^2}$$

Possible to allow for additional complex conjugate poles

Prerequisites :

Assume the existence of a spectral representation

$$G(p_0, \vec{p}) = \int_{\eta>0} 2\eta \frac{\rho(\eta, \vec{p})}{p_0^2 + \eta^2} + \sum_{j \in \{\text{poles}\}} \frac{R_j}{p_0^2 + M_j^2}$$

Possible to allow for additional complex conjugate poles

Strong constrains on the analytic structure from the existence of a spectral representation

Prerequisites :

Assume the existence of a spectral representation

$$G(p_0, \vec{p}) = \int_{\eta > 0} 2\eta \frac{\rho(\eta, \vec{p})}{p_0^2 + \eta^2} + \sum_{j \in \{\text{poles}\}} \frac{R_j}{p_0^2 + M_j^2}$$

Possible to allow for additional complex conjugate poles

Strong constrains on the analytic structure from the existence of a spectral representation

Example :

One-loop perturbation theory

Two bosonic fields with interaction $\sim \Phi \Phi arphi$ Calculate $\Gamma^{(2)}(p)$ for $p^0 \in \mathbb{C}$ Calculate Matsubara sum $\sum G_1(q+p)G_2(q)$ р

Continuation procedure

Illustrative example

Bosonic occupation number

Replace sum by contour integral:

$$T\sum_{n} f(2\pi nT) = -\frac{1}{2} \int_{C} dz \ f(z)[1+2n_{B}(iz)]$$

$$\sum_{T} \frac{1}{(q_0 + p_0)^2 + (\epsilon_{q+p}^1)^2} \frac{1}{(q_0)^2 + (\epsilon_q^2)^2}$$

p+q

р

 $\sum_{T} \frac{1}{(q_0 + p_0)^2 + (\epsilon_{q+p}^1)^2} \frac{1}{(q_0)^2 + (\epsilon_q^2)^2}$

Replace sum by contour integral:

$$T\sum_{n} f(2\pi nT) = -\frac{1}{2} \int_{C} dz \ f(z)[1+2n_{B}(iz)]$$

Bosonic occupation number

Bosonic occupation number

Replace sum by contour integral:

$$T\sum_{n} f(2\pi nT) = -\frac{1}{2} \int_{C} dz \ f(z)[1+2n_{B}(iz)]$$

$$\sum_{T} \frac{1}{(q_0 + p_0)^2 + (\epsilon_{q+p}^1)^2} \frac{1}{(q_0)^2 + (\epsilon_q^2)^2}$$

$$\frac{1}{i} \sum_{\pm} \left(\operatorname{Res}_{1}^{\pm} \cdot \left[1 + 2n_{B}(-ip_{0} + \epsilon_{q+p}^{1}) \right] + \operatorname{Res}_{2}^{\pm} \cdot \left[1 + 2n_{B}(\epsilon_{q}^{2}) \right] \right)$$

$$\frac{1}{i} \sum_{\pm} \left(\operatorname{Res}_{1}^{\pm} \cdot \left[1 + 2n_{B}(-ip_{0} + \epsilon_{q+p}^{1}) \right] + \operatorname{Res}_{2}^{\pm} \cdot \left[1 + 2n_{B}(\epsilon_{q}^{2}) \right] \right)$$

$$p_0 = 2m\pi T \quad m \in \mathbb{Z}$$

Identify ambiguity of the analytic continuation

Continuation procedure

Illustrative example

$$\frac{1}{i} \sum_{\pm} \left(\operatorname{Res}_{1}^{\pm} \cdot [1 + 2n_{B}(-ip_{0} + \epsilon_{q+p}^{1})] + \operatorname{Res}_{2}^{\pm} \cdot [1 + 2n_{B}(\epsilon_{q}^{2})] \right)$$

$$p_0 = 2m\pi T \quad m \in \mathbb{Z}$$

 $e^{\mathbf{i}p_0} = 1$

Identify ambiguity of the analytic continuation

Nicolas Wink (Heidelberg University)

Analyticity off the imaginary axis

Correct decay behaviour at infinity

Continuation procedure

Unique physical analytic continuation identified by setting $e^{ip_0} = \pm 1$ everywhere

Continuation procedure

Continuation procedure

Remarks

Continuation procedure

Remarks

• Numerically accessible

- Numerically accessible ٠
- Corresponds to a contour deformation at vanishing temperature Strodthoff, PRD 95 (2017) no.7, 076002 Pawlowski, Strodthoff, NW, arxiv:1711.07444 ٠

Remarks

- Numerically accessible ٠
- Corresponds to a contour deformation at vanishing temperature Strodthoff, PRD 95 (2017) no.7, 076002 Pawlowski, Strodthoff, NW, arxiv:1711.07444 ٠

Remarks

- Numerically accessible ٠
- Corresponds to a contour deformation at vanishing temperature Strodthoff, PRD 95 (2017) no.7, 076002 ۲

Pawlowski, Strodthoff, NW, arxiv:1711.07444

Considering poles is sufficient ٠

Remarks

• Numerically accessible

$$G(p_0, \vec{p}) = \int_{\eta > 0} 2\eta \frac{\rho(\eta, \vec{p})}{p_0^2 + \eta^2}$$

 Corresponds to a contour deformation at vanishing temperature Strodthoff, PRD 95 (2017) no.7, 076002

Pawlowski, Strodthoff, NW, arxiv:1711.07444

- Considering poles is sufficient
- Branch cuts can be mapped to poles via spectral/integral representations

Remarks

• Numerically accessible

$$G(p_0, \vec{p}) = \int_{\eta > 0} 2\eta \frac{\rho(\eta, \vec{p})}{p_0^2 + \eta^2}$$

- Corresponds to a contour deformation at vanishing temperature Strodthoff, PRD 95 (2017) no.7, 076002 Pawlowski, Strodthoff, NW, arxiv:1711.07444
- Considering poles is sufficient
- Branch cuts can be mapped to poles via spectral/integral representations

Jung, Pawlowski, von Smekal, NW, work in progress

• Generalization to the FRG point of the FRG seven the terms of terms of

Regulator poles

Remarks

• Numerically accessible

$$G(p_0, \vec{p}) = \int_{\eta > 0} 2\eta \frac{\rho(\eta, \vec{p})}{p_0^2 + \eta^2}$$

- Corresponds to a contour deformation at vanishing temperature Strodthoff, PRD 95 (2017) no.7, 076002 Pawlowski, Strodthoff, NW, arxiv:1711.07444
- Considering poles is sufficient
- Branch cuts can be mapped to poles via spectral/integral representations

Jung, Pawlowski, von Smekal, NW, work in progress

• Generalization to the FRG point of the FRG series of the terms of terms

Regulator poles

 $R_k(\vec{q}^{\ 2})$

No changes

Kamikado, Strodthoff, von Smekal, Wambach, Eur.Phys.J. C74, 2806 (2014) Tripolt, Strodthoff , von Smekal, Wambach, Phys.Rev. D89, 034010 (2014)

Remarks

• Numerically accessible

$$G(p_0, \vec{p}) = \int_{\eta > 0} 2\eta \frac{\rho(\eta, \vec{p})}{p_0^2 + \eta^2}$$

- Corresponds to a contour deformation at vanishing temperature Strodthoff, PRD 95 (2017) no.7, 076002 Pawlowski, Strodthoff, NW, arxiv:1711.07444
- Considering poles is sufficient
- Branch cuts can be mapped to poles via spectral/integral representations

Jung, Pawlowski, von Smekal, NW, work in progress

• Generalization to the FRG point of the FRG series of the terms of terms

No changes

Kamikado, Strodthoff, von Smekal, Wambach, Eur.Phys.J. C74, 2806 (2014) Tripolt, Strodthoff , von Smekal, Wambach, Phys.Rev. D89, 034010 (2014)

Additional poles

Foerchinger, JHEP 1205 (2012) 021 Pawlowski, Strodthoff, Phys.Rev. D92 (2015) Pawlowski, Strodthoff, NW arxiv:1711.07444

Direct calculation

Spectral functions of the O(N) model

Effective description of the lightest mesons

Spectral functions of the O(N) model $\rho(\omega, \vec{p}) = -2 \operatorname{Im} G_{\mathrm{R}}(\omega, \vec{p})$

Phase structure

Nicolas Wink (Heidelberg University)

Pion meson

Application to the O(N)-Model

Finite temperature spectral function for various external momenta

Sigma meson

Finite temperature spectral function for various external momenta

Reconstruction

Spectral function (discontinuity)

Propagator in the complex plane

Spectral function defined as the discontinuity of the propagator

$$\rho(\omega, \vec{p}) = 2 \lim_{\varepsilon \to 0} \operatorname{Im} \underline{G_{\mathrm{E}}(-\mathrm{i}(\omega + \mathrm{i}\varepsilon), \vec{p})}$$

retarded propagator

Spectral function (discontinuity)

$$\rho(\omega, \vec{p}) = 2 \lim_{\varepsilon \to 0} \operatorname{Im} \underline{G_{\mathrm{E}}(-\mathrm{i}(\omega + \mathrm{i}\varepsilon), \vec{p})}$$

retarded propagator

Gluon violates reflection-positivity

Spectral function positive and negative

Propagator in the complex plane

Spectral function (discontinuity)

$$\rho(\omega, \vec{p}) = 2 \lim_{\varepsilon \to 0} \operatorname{Im} \underline{G_{\mathrm{E}}(-\mathrm{i}(\omega + \mathrm{i}\varepsilon), \vec{p})}$$

retarded propagator

Gluon violates reflection-positivity

Spectral function positive and negative

Use as much prior knowledge as possible!

- Analytic properties of the gluon spectral function
- Existence of a spectral representation has strong implications on the complex structure

Construct suitable functional basis

Propagator in the complex plane

YM from the FRG

System of coupled equations

$$\partial_t \operatorname{max}^{-1} = -2 \operatorname{m}^{\otimes} - 2 \operatorname{m}^{\otimes} - \frac{1}{2} \operatorname{m}^{\otimes}$$

$$\partial_t = -$$
 + perm.

$$\partial_t = + \mathbf{A} +$$

Aiming at apparent convergence

- Only requires coupling at a perturbative scale
 - Absorbed during scale setting
- All quantities are fully dressed and momentum dependent
- Using Landau gauge

<u>cf. poster by Anton Cyrol</u>

cf. talk by Mario Mitter

Vacuum Yang-Mills

Cyrol, Fister, Mitter, Pawlowski, Strodthoff, Phys.Rev. D94 (2016)

Vacuum QCD Cyrol, Mitter, Pawlowski, Strodthoff, arXiv:1706.06326

Finite temperature Yang-Mills Cyrol, Mitter, Pawlowski, Strodthoff, arXiv:1708.03482

Finite temperature QCD, Extended truncations,... Cyrol, Mitter, Pawlowski, NW, work in progress

YM from the FRG

Aiming at apparent convergence

- Systematic improvement possible
- High numerical accuracy possible
- Direct computation of spectral functions possible in the near future

Suitable for reconstruction methods

<u>cf. poster by Anton Cyrol</u> <u>cf. talk by Mario Mitter</u>

Use as much prior knowledge as possible!

Use as much prior knowledge as possible!

1. Representation:

$$G_{\rm E}(p) = \int_{\mu>0} \frac{\mathrm{d}\mu}{2\pi} \, \frac{2\mu \,\rho(\mu)}{p^2 + \mu^2}$$

2. Normalization: Super-convergence property Oehme, Zimmermann, Phys. Rev. D21 (1980)

$$\int_{\mu>0} \mathrm{d}\mu \ \mu \rho(\mu) = 0$$

3. UV behavior: Perturbation theory

$$\rho(\omega) \sim -\frac{Z_{\rm UV}}{\omega^2 \ln(\omega^2)^{1+\gamma}}$$

4. IR behavior: new

Infrared behavior of spectral functions

Start from

$$G(p_0) = \int_0^\infty \frac{\mathrm{d}\lambda}{\pi} \frac{\lambda \,\rho(\lambda)}{\lambda^2 + p_0^2}$$

Infrared behavior of spectral functions

Gluon:

Scaling solution to Yang-Mills

$$\hat{G}_{\rm A}^{\rm (sca)}(p_0) \sim Z_{\rm IR} \, (\hat{p}_0^2)^{-1+2\kappa}$$

$$\hat{\rho}_{\mathrm{A}}^{(\mathrm{sca})}(\omega) \sim -2 \, Z_{\mathrm{IR}} \mathrm{sgn}(\hat{\omega}) \, (\hat{\omega}^2)^{-1+2\kappa}$$

Gluon spectral function is <u>negative</u> for small frequencies

 $\hat{
ho}_{\scriptscriptstyle \Lambda}^{\scriptscriptstyle (
m sca)}(\omega) \sim -2 \, Z_{\scriptscriptstyle
m IR} {
m sgn}(\hat{\omega}) \, (\hat{\omega}^2)^{-1+2\kappa}$

Gluon spectral function is negative for small frequencies

Infrared behavior of spectral functions

Start from Derivative w.r.t. p_0 $G(p_0) = \int_0^\infty \frac{\mathrm{d}\lambda}{\pi} \frac{\lambda \,\rho(\lambda)}{\lambda^2 + p_0^2} \qquad \Longrightarrow \qquad \partial_{p_0} G(p_0) = -\int_{-\infty}^\infty \frac{\mathrm{d}\lambda}{\pi} \lambda \, p_0 \, \frac{\rho(\lambda)}{(\lambda^2 + p_0^2)^2}$ Limit $p_0 \rightarrow 0$ $\lim_{p_0 \to 0^+} \partial_{p_0} G(p_0) = -\frac{1}{2} \lim_{\omega \to 0^+} \partial_{\omega} \rho(\omega)$ Scaling solution to Yang-Mills $\hat{G}^{(\text{sca})}_{\Lambda}(p_0) \sim Z_{\text{IB}} (\hat{p}_0^2)^{-1+2\kappa}$

Gluon:

Constructing a basis for the reconstruction:

$$\rho(\omega, \vec{p}) = 2 \lim_{\varepsilon \to 0} \operatorname{Im} G_{\mathrm{E}}(-\mathrm{i}(\omega + \mathrm{i}\varepsilon), \vec{p})$$

Constructing a basis for the reconstruction:

Analytically continue the retarded propagator to the entire complex plane

$$\rho(\omega, \vec{p}) = 2 \lim_{\varepsilon \to 0} \operatorname{Im} G_{\mathrm{E}}(-\mathrm{i}(\omega + \mathrm{i}\varepsilon), \vec{p})$$

Constructing a basis for the reconstruction:

Analytically continue the retarded propagator to the entire complex plane

Poles

$$\hat{G}_{Ans}^{pole}(p_0) = \sum_{k=1}^{N_{ps}} \prod_{j=1}^{N_{pp}} \left(\frac{\hat{\mathcal{N}}_k}{(\hat{p}_0 + \hat{\Gamma}_{k,j})^2 + \hat{M}_{k,j}^2} \right)^{\delta_{k,j}}$$

$$\rho(\omega, \vec{p}) = 2 \lim_{\varepsilon \to 0} \operatorname{Im} G_{\mathrm{E}}(-\mathrm{i}(\omega + \mathrm{i}\varepsilon), \vec{p})$$

Constructing a basis for the reconstruction:

Analytically continue the retarded propagator to the entire complex plane

Poles

$$\hat{G}_{Ans}^{pole}(p_0) = \sum_{k=1}^{N_{ps}} \prod_{j=1}^{N_{pp}} \left(\frac{\hat{\mathcal{N}}_k}{(\hat{p}_0 + \hat{\Gamma}_{k,j})^2 + \hat{M}_{k,j}^2} \right)^{\delta_{k,j}}$$
 $\hat{G}_{Ans}^{poly}(p_0) = \sum_{j=1}^{N_{poly}} \hat{a}_k \left(\hat{p}_0^2 \right)^{\frac{j}{2}}$

 Polynomial

$$\rho(\omega, \vec{p}) = 2 \lim_{\varepsilon \to 0} \operatorname{Im} G_{\mathrm{E}}(-\mathrm{i}(\omega + \mathrm{i}\varepsilon), \vec{p})$$

Constructing a basis for the reconstruction:

Analytically continue the retarded propagator to the entire complex plane

$$\begin{split} & \begin{array}{l} \text{Poles} \\ & \hat{G}_{\text{Ans}}^{\text{pole}}(p_0) = \sum_{k=1}^{N_{\text{ps}}} \prod_{j=1}^{N_{\text{pp}}^{(k)}} \left(\frac{\hat{\mathcal{N}}_k}{(\hat{p}_0 + \hat{\Gamma}_{k,j})^2 + \hat{M}_{k,j}^2} \right)^{\delta_{k,j}} \\ & \\ & \hat{G}_{\text{Ans}}^{\text{poly}}(p_0) = \sum_{j=1}^{N_{\text{poly}}} \hat{a}_k \left(\hat{p}_0^2 \right)^{\frac{j}{2}} \\ & \quad \hat{G}_{\text{Ans}}^{\text{asy}}(p_0) = (\hat{p}_0^2)^{-1-2\alpha} \left[\log \left(1 + \frac{\hat{p}_0^2}{\hat{\lambda}^2} \right) \right]^{-1-\beta} \\ & \quad \text{Cuts} \end{split}$$

Full ansatz
$$G_{\text{Ans}}(p_0) = \mathcal{K} \, \hat{G}_{\text{Ans}}^{\text{pole}}(p_0) \, \hat{G}_{\text{Ans}}^{\text{poly}}(p_0) \, \hat{G}_{\text{Ans}}^{\text{asy}}(p_0)$$

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.today

Gluon spectral function

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.today

Results

Gluon spectral function IR Spectral function ρ_A [GeV⁻²] Full spectral function Low frequency asymptotic -25F, 10^{-2} 10^{-1} Frequency ω [GeV] 0.00 Spectral function ρ_{A} [GeV⁻²] UV × _1 10⁻⁴ 0.6 0.8 1.0 1.2 1.4 0.4 Frequency ω [GeV] Full spectral function Large frequency asymptotic 10 12 6 14 8

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.today

Frequency ω [GeV]
Gluon spectral function

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.today

- Direct calculation of spectral functions in functional methods
- Reconstruction of the gluon spectral function with all priors

Thank you for your attention!

- Finite temperature gluon spectral functions
- Transport coefficients

Backup slides

Breit-Wigner benchmark

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.today

Comparison with other works

Bayesian reconstruction

Pade/Schlessinger point

Cyrol, Pawlowski, Rothkopf, NW arxiv:1804.today

Comparison with other works

Strauss, Fischer, Kellermann, Phys.Rev.Lett. 109 (2012)

Dudal, Oliveira, Silva, Phys.Rev. D89 (2014)

Pion meson

Application to the O(N)-Model

Finite temperature spectral function for various external momenta

Sigma meson

Application to the O(N)-Model

Finite temperature spectral function for various external momenta

Nicolas Wink (Heidelberg University)

In medium non-commuting limits

Nicolas Wink (Heidelberg University)

Retarded Greens function

NW, Master thesis

Euclidean momentum dependent dressings

Nicolas Wink (Heidelberg University)

Bad Honnef, April 2018

Pawlowski, Strodthoff, NW, arxiv:1711.07444

Pawlowski, Strodthoff, NW, arxiv:1711.07444

