750 GeV Diphoton Resonance Experimental Searches and Theoretical Interpretations

Arthur Bolz¹, Philippe d'Argent¹, and Philipp Henkenjohann²

¹Physikalisches Institut, ²Institut für Theretische Physik, Universität Heidelberg

GRK - October 20, 2016

Introduction - Diphoton Resonance Searches at LHC

why $\gamma\gamma$ resonance searches?:

- smooth non-resonant background
 - \rightarrow easy to model
- excellent detector resolution for hight- p_T photons
- essential channel for early Higgs discovery

searches were performed at 8TeV already (spin-0/-2):

- new discovery potential at 13TeV
- 13 TeV provides increased production cross sections: $4.7 \times$ for gg and $2.7 \times$ for gg compared to 8TeV

2015 & 2016 13TeV data samples ("ICHEP dataset"):

- ATLAS: 3.2 + 12.2 fb⁻¹
- CMS: $3.3 + 12.9 \text{ fb}^{-1}$ (2015 0.6 fb⁻¹ w/o magnet)

ATLAS Search - Reconstruction and Event Selection - [ATLAS-CONF-2016-018 & 059]

event trigger:

- 2 photons passing "loose" photon ID criteria
- $E_T > 35(25)$ GeV for leading (subleading) photon

offline photon selection:

- $|\eta| < 2.37$ excluding barrel-endcap transition regions
- "tight" photon ID: analyse shower shapes
- calo based isolation: $E_T^{iso} < 0.022 imes E_T^\gamma + 2.45$ GeV
- track based isolation: $p_T^{iso} < 0.05 imes E_T^\gamma$

spin-0 selection: isotropic decay \rightarrow more central photons

- $E_T^{\gamma}/m_{\gamma\gamma}>$ 0.4(0.3) for leading (subleading) γ
- optimized for max significance \rightarrow purity > 90%
- subset of spin-2 selection

spin-2 selection: more forward photons

- $E_T > 55$ GeV
- looser selection preserves high-mass signal acceptance

[ICHEP 2016: "Search for a high mass diphoton resonance using the ATLAS detector"] $$2\,/\!\!\!$

ATLAS Search - Sample Composition and Background Contributions background contributions:

- background is mostly irreducible, non-resoant $\gamma\gamma$
- some reducible γ -jet and dijet contamination
- isolation criteria used to study and reduce background contamination

diphoton photon purity (increases with mass)

- spin-0 \sim 93%
- spin-2 \sim 94%

ATLAS Search - Background Modelling

spin-0: background parametrized by analytic function:

- test many functions and choose the one with smallest bias on fitted signal
- "spurious signal" modelling systematic: number of signal events fitted to background only MC

$$F(x) = N\left(1 - x^{1/3}\right)^b x^{a\log(x)}, \quad x = (m_{\gamma\gamma}/\sqrt{s})$$

- $\gamma\gamma$ background: from Diphox NLO calculations
- γ -jet and dijet background: from anti-tight γ -ID control regions
- normalization from isolation distribution in at low $m_{\gamma\gamma}$

ATLAS Search - Signal Modelling

- expected model line-shape parametrized as function of mass and width
- convoluted with double sided Crystal Ball (DSCB) function to model detector resolution

ATLAS Search - Analysis & Results **2015** [ATLAS-CONF-2016-018] Statistical Methodology

- maximum likelihood fit to mass distribution $N_S(\sigma_S)f_S(m_{\gamma\gamma}) + N_Bf_B(m_{\gamma\gamma})$
- calculate local *p*-values from test statistics $q_0(m_X, \alpha) = -2 \log \frac{L(0, m_X, \alpha, \hat{\nu})}{L(\sigma_S, m_X, \alpha, \hat{\nu})}$

spin-0 selection:

spin-2 selection:

ATLAS Search - Signal Significances in the Mass-Width Plane 2015

spin-0 selection, Higgs model:

spin-2 selection, graviton model:

- broad excesses around $m_{\gamma\gamma} = 750 GeV$
- 3.8-3.9 σ local significance
- 2.1 σ global significance, "look elsewhere effect"

ATLAS Search - Results 2016 [ATLAS-CONF-2016-018]

- re-analyse 2015 data w/ improved reconstruction \rightarrow slightly smaller significance, max at 730 GeV
- spin-0 analysis with 12.2 fb⁻¹ 2016 ICHEP dataset published
- spin-2 analysis still ongoing

spin-0 analysis:

- No significant excesses in 2016 data and 2015 + 2016 combination
- compatibility between 2015 and 2016 signal cross-sections at 730 GeV: 2.7σ

ATLAS Search - Significance Narrow Width Signal 2015+2016

background only compatibility:

- \Rightarrow no excess with a global significance above 1σ
- ⇒ excess at 750GeV from 2015 vanished in 2016 (spin-0 analysis)

limit setting: limit setting on fiducial cross-section (minimize model dependence)

CMS Search - Event Selection

Simple event selection:

- Common spin-0 and spin-2 selection
- Two photons with $p_T > 75$ GeV
- Isolation criteria are imposed
- At least one γ in the barrel $|\eta| < 1.44$

CMS Search - Selection efficiency

- Events split in barrel-barrel(**EBEB**) and barrel-endcaps(**EBEE**) categories Per-photon efficiency in the barrel $\approx 90\%$ Per-photon efficiency in the endcaps $\approx 85\%$
- 0.6 fb⁻¹ recorded without magnetic field No information on track momenta → lower selection efficiency

CMS Search - Likelihood Fit

Signal modeling

- Convolution of intrinsic line-shape and detector resolution
- ullet Taken from simulation, corrections are derived from $Z o e^+ \, e^-$ data
- 3 scenarios tested:

Detector resolution dominates: $\Gamma/m = 1.4 \cdot 10^{-4}$ Comparable resolution and width: $\Gamma/m = 1.4 \cdot 10^{-2}$ Resonance width dominates: $\Gamma/m = 5.6 \cdot 10^{-2}$

Background modeling

- Dominant contribution: non-resonant $\gamma\gamma$
- $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b\log(m_{\gamma\gamma})}$
- Independent shape for each category
- Possible mis-modeling studied on MC and included as bias term

CMS Search - 2015 Results

m,, (GeV)

CMS Search - 2015 Results

- Largest excess observed for $m \approx 750$ GeV
- Minor differences between spin hypotheses
- Local significance for narrow (large) width: 3.4σ (2.3σ)
- Global significance: 1.6σ

CMS Search - 2016 Results

- No significant excess around $m \approx 750$ GeV
- Largest excess now observed for $m \approx 620$ GeV
- Local significance $pprox 2.4 2.7\sigma$

CMS Search - Combined Results

Combination with 2012 and 2015 data:

• Local significance at $m \approx 750~$ GeV reduced from 3.4σ to 1.9σ

Summary - Experiment:

- ATLAS and CMS performed searches for diphoton resonances
- Excess around 750 GeV seen in 2015 not confirmed with 2016 data
- Data consistent with background-only hypothesis over the full mass range

The Spin of the Resonance

- spin 1 particle cannot decay into two photons [C.N. Yang, Phys. Rev. 77, 242 (1950)] \rightarrow resonance must have either spin 0 or spin 2
- spin 2 would be very interesting as it might be a graviton candidate
- graviton naturally couples to the energy-momentum tensor and hence universally to all matter and radiation
- makes it theoretically difficult to incorporate the observation of only a single decay channel so far

Modeling the Resonance Theoretically: Preliminaries

- concentrate on spin 0 case
- let the corresponding scalar field η be real
- two options

$$\eta \text{ is } \begin{cases} \text{ scalar } \Rightarrow \quad \eta \stackrel{\mathsf{CP}}{\to} +\eta \\ \text{pseudoscalar } \Rightarrow \quad \eta \stackrel{\mathsf{CP}}{\to} -\eta \end{cases}$$

• more natural choice: pseudoscalar \rightarrow no mixing with Higgs

Effective Field Theory

• η must somehow couple to photons (A^{μ}), pictorially

• the cross denotes unknown physics, e. g. new particles

Although ignorant of the new physics underlying this interaction we can build an interaction lagrangian describing the phenomenology at low energy \rightarrow effective field theory (EFT)

• we are looking for an interaction term of the form

$${\cal L}_{
m int} \sim \eta {\cal A}^\mu {\cal A}^
u$$

- we will impose three symmetries on the interaction lagrangian:
 - Lorentz symmetry
 - U(1) gauge symmetry (QED gauge symmetry)
 - CP symmetry

Lorentz Symmetry

- η is invariant under proper Lorentz transformations
- A^{μ} transforms as a 4-vector

Hence, possible interaction terms are $\mathcal{L}_{int} \sim$

- $\eta A^{\mu} A_{\mu}$
- $\eta \partial_{\mu} A_{\nu} \partial^{\mu} A^{\nu}$
- ...

In short: All Lorentz indices must be contracted, which is of course well known!

U(1) Gauge Symmetry

- gauge invariant quantity of QED is the field strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$
- define the dual field strength tensor by $\tilde{F}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$

Lorentz + gauge symmetry allows for $\mathcal{L}_{int} \sim$

- $\eta F^{\mu\nu} F_{\mu\nu}$
- $\eta \tilde{F}^{\mu\nu} F_{\mu\nu}$

CP Symmetry and Final Result

Under CP transformation:

- $F^{\mu\nu}F_{\mu\nu} \rightarrow +F^{\mu\nu}F_{\mu\nu}$
- $\tilde{F}^{\mu
 u}F_{\mu
 u}
 ightarrow \tilde{F}^{\mu
 u}F_{\mu
 u}$
- recall: $\eta \rightarrow -\eta$

Our final result is therefore

$$\mathcal{L}_{ ext{int}} = rac{m{c}}{m{\Lambda}} \eta ilde{m{F}}^{\mu
u} m{F}_{\mu
u}$$

- c is a coupling constant
- Λ is an energy scale which roughly corresponds to the cutoff scale of this EFT

Reminder: Electroweak Gauge Bosons

- in the SM, the U(1) gauge group of QED is a subgroup of the larger electroweak gauge group SU(2) $_L \times$ U(1) $_Y$
- $U(1)_{\mathsf{Y}}$: 1 generator ightarrow 1 vector gauge boson B^{μ}
- $SU(2)_L$: 3 generators ightarrow 3 vector gauge bosons $W^1_\mu, W^2_\mu, W^3_\mu$
- due to electroweak symmetry-breaking the gauge bosons we observe are linear combinations of these:

$$\begin{array}{l} W^+_\mu = W^+_\mu + \mathrm{i} W^2_\mu \\ W^-_\mu = W^1_\mu - \mathrm{i} W^2_\mu \\ \begin{pmatrix} A_\mu \\ Z_\mu \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} B_\mu \\ W^3_\mu \end{pmatrix}$$

• Weinberg angle $\sin^2 \theta_{\rm W} \approx 0.23$

Improved Effective Theory

- we will now generalize our old \mathcal{L}_{int} by demanding invariance under the electroweak gauge symmetry
- the gauge invariant quantities made of electroweak gauge bosons are again the corresponding field strength tensors $B_{\mu\nu}$ and $W^a_{\mu\nu}$
- both $B_{\mu\nu}$ and $W^a_{\mu\nu}$ contain the photon A_{μ} and hence potentially couple to η :

$$\mathcal{L}_{\mathrm{int}} = rac{c_{\mathrm{B}}}{\Lambda} \eta B_{\mu
u} \tilde{B}^{\mu
u} + rac{c_{\mathrm{W}}}{\Lambda} \eta W^{a}_{\mu
u} \tilde{W}^{a,\mu
u}$$

- conclusion: electroweak gauge symmetry predicts η to couple also to Z- and maybe to $W^\pm\text{-}\mathrm{bosons}$
- this can help to constrain the possible strength of the couplings and other parameters, see e. g. [1512.05328]

Production of the Resonance

- all partons of the proton are possible production candidates for the resonance
- the probability to find a certain parton in the proton varies with the energy of the process, encoded in parton distribution functions (PDF)
- due to this we have the following gain values in the cross section of the resonance going from 8 TeV in run 1 to 13 TeV in run 2 [1512.04933]:

$r_{b\bar{b}}$	$r_{c\bar{c}}$	$r_{s\overline{s}}$	$r_{\rm d\bar{d}}$	r _{uū}	r _{gg}	$r_{\gamma\gamma}$
5.4	5.1	4.3	2.7	2.5	4.7	1.9

• the cross section corresponding to the excess at 750 GeV is estimated to be [1512.04933]

$$\sigma(\mathsf{pp} \to \gamma\gamma) \approx \begin{cases} (0.5 \pm 0.6) \text{ fb} & \mathsf{CMS} & \sqrt{s} = 8 \text{ TeV} \\ (0.4 \pm 0.8) \text{ fb} & \mathsf{ATLAS} & \sqrt{s} = 8 \text{ TeV} \\ (6 \pm 3) \text{ fb} & \mathsf{CMS} & \sqrt{s} = 13 \text{ TeV} \\ (10 \pm 3) \text{ fb} & \mathsf{ATLAS} & \sqrt{s} = 13 \text{ TeV} \end{cases}$$

• need high gain value to be consistent with run 1 data \rightarrow gg-fusion is a reasonable production mechanism

Summary - Theory

- resonance can have spin 0 or 2, most probably spin 0
- electroweak gauge symmetry predicts coupling to Z boson
- possible production mechanism is via gg-fusion

A Familiar EFT: Fermi Theory

- recall β -decay: d \rightarrow u+e⁻ + $\overline{\nu}_{e}$
- Fermi proposed: $\mathcal{L}_{int} \sim G_F(\overline{u}d)(\overline{e}\nu_e) + h.c.$
- counting dimensions gives $[G_F] = -2$

- propagator of W-boson gives a factor $\frac{1}{p^2 m_W^2} = \frac{1}{E_{CM}^2 m_W^2}$
- at low energies $E_{\rm CM} \ll m_{\rm W} \approx$ 80 GeV this gives a roughly constant factor $rac{1}{m_{\rm W}^2}$
- comparing with Fermi's Lagrangian one finds $G_{\rm F}\propto rac{g^2}{m_{\odot}^2}$

 \rightarrow mass of the new particle hidden in the cross sets the energy scale of the effective theory

Outlook: Possible New Physics

Recall the Higgs detection channel at the LHC (among others):

• might be a good first guess to propose a similar mechanism for the decay of η to two photons

• in order for this to work we have to replace the top quark by new heavy fermions F