# **Flavour Anomalies**

Anastasiia Filimonova, Sascha Leonhardt, Peter Reimitz, Thomas Rink, Sebastian Weber



# Introduction to Flavour Physics

Flavour, Universality & Tests

#### The Standard Model

• Gauge Group:  $G_{\rm SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$ 

• Lagrangian: 
$$\mathcal{L}_{\mathrm{SM}} = \mathcal{L}_{\mathrm{kin}} + \mathcal{L}_{\mathrm{Higgs}} + \mathcal{L}_{\mathrm{Yukawa}}$$

• Fermions: (in 3 generations i = 1, 2, 3)

 $Q_{Li} (3,2)_{+1/6}, \quad U_{Ri} (3,1)_{+2/3}, \quad D_{Ri} (3,1)_{-1/3}, \quad L_{Li} (1,2)_{-1/2}, \quad E_{Ri} (1,1)_{-1}$ 

with doublets  $Q_{Li} = (U_{Li}, D_{Li})$  &  $L_{Li} = (\nu_{Li}, E_{Li})$ 

• Higgs inducing SSB:  $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$  $\phi \ (1,2)_{+1/2}, \quad \phi = \frac{1}{\sqrt{2}}(0,v+H)$ 

## Flavour (Physics)

• Flavour = species of fermion

in SM: 6 quark and 6 lepton flavours:  $u, d, c, s, t, b, e, \mu, \tau, \nu_e, \nu_\mu, \nu_\tau$ 

- Kinetic terms induce couplings of flavours to gauge bosons through gauge covariant derivative
- After SSB: (focus on  $W^{\pm}$ , Z and on coupling of left-handed fermions)

$$-\mathcal{L}_{kin}^{q} \supset \frac{g}{\sqrt{2}} \bar{U}_{Li} \gamma^{\mu} \delta_{ij} D_{Lj} W^{+} + h.c. \qquad \text{flavour mixing} \\ + \frac{g}{\sqrt{2}} \bar{U}_{Li} \gamma^{\mu} \delta_{ij} U_{Lj} Z + \frac{g}{\sqrt{2}} \bar{D}_{Li} \gamma^{\mu} \delta_{ij} D_{Lj} Z \qquad \qquad \text{no generation} \\ \Rightarrow W^{\pm} \text{ can induce flavour change (no flavour changing neutral current} \\ (FCNC) \text{ via } Z \text{ or gluons or photon), same holds true for lepton kinetic term} \end{cases}$$

#### (Flavour) Universality

(Flavour) Universality = flavour-independent coupling to all gauge bosons  $\Gamma(z \sim e_{\overline{e}}) = \Gamma(z \sim \mu_{\overline{\mu}})$  $\Gamma(w^{\dagger} \sim e_{\overline{\nu}_{e}}) = \Gamma(w^{\dagger} \sim \mu_{\overline{\nu}_{u}})$  $\Rightarrow$  for  $E \gg m$  , we have

(for finite energies: mass dependence)

• We focus on  $SU(2)_L$ -sector For leptons it has been measured:  $g_e = g_\mu = g_\tau$ 

or

Compare previous form of gauge boson couplings: *looks* universal But universality is a basis independent property ⇒ Go to mass eigenbasis This is the basis we use when measuring particles

#### Quark vs Lepton Flavour Universality: Quarks

Diagonalize Yukawa interaction

 $\mathcal{L}^{q}_{\text{Yukawa}} \supset Y^{U}_{ij} \ \bar{Q}_{Li} \ \tilde{\phi} \ U_{Rj} + Y^{D}_{ij} \ \bar{Q}_{Li} \ \phi \ D_{Rj} \rightarrow \text{diagonal mass terms}$ 

Do this by *unitary* field transformation of left-handed doublet  $U_{Li} \rightarrow V_{ij}^U U_{Lj}, \ D_{Li} \rightarrow V_{ij}^D D_{Lj},$  (some transf. of right-handed quarks)

The (so far diagonal) coupling term to W,  $\bar{U}_{Li}\delta_{ij}D_{Lj}W^+$ , transforms to  $\delta_{ij} \to (V^U)^{\dagger}_{ik}\delta_{kl}(V^D)_{lj} = (V_{\rm CKM})_{ij}$ 

⇒ Non-universal due to *independent* transf. of components of  $SU(2)_L$ -doublet Note that e.g.  $\overline{U}_{Li}\delta_{ij}U_{Lj}$  Z stays diagonal/universal (→ still no FCNC)

#### Quark vs Lepton Flavour Universality: Leptons

Repeat for lepton sector...

 $\mathcal{L}_{\text{Yukawa}}^{l} \supset Y_{ij}^{l} \ \bar{L}_{Li} \phi E_{Rj} + \text{h.c.} \rightarrow \text{diagonal mass terms}$  $L_{Li} \rightarrow V_{ij}^{L} L_{Lj} , \text{ (some transf. of right-handed leptons)}$ 

Important difference: Components of doublet transformed together (there is only *one* Yukawa matrix to be diagonalized) Therefore the  $W^{\pm}$ -coupling transforms like

$$\delta_{ij} \to (V^l)_{ik}^{\dagger} \delta_{kl} (V^l)_{lj} = \delta_{ij}$$

⇒ Lepton Flavour Universality (LFU) in the SM

### Testing LFU: B to D/K

Consider B-meson decays to D- or K-mesons:



## **Testing LFU: Factorization Question**

Almost all the calculations of the branching ratios in flavour physics rely on the narrow width approximation (NWA):

Intermediate particle created on-shell with subsequent decay

Works well when:

- Mass peak is narrow:  $\Gamma_m \ll m$ .
- Propagator is separable from matrix element.
- Sub-processes are kinematically allowed:  $\sqrt{s} \gg m + m_2$ ,  $m \gg m_3 + m_4$ .
- No interference.



 $\Gamma(1 \rightarrow 234) = \Gamma(1 \rightarrow 2m) \times Br(m \rightarrow 34)$ 

#### **Testing LFU**

 $\frac{\Gamma(B \to D \, l \, \bar{\nu}_l)}{\Gamma(B \to D \, l' \, \bar{\nu}_{l'})} = \frac{Br(W \to l \, \bar{\nu}_l)}{Br(W \to l' \, \bar{\nu}_{l'})} \frac{\Gamma(b \to c \, W)}{\Gamma(b \to c \, W)} \frac{F_{\text{QCD}}}{F_{\text{QCD}}}$  $= \frac{Br(W \to l \, \bar{\nu}_l)}{Br(W \to l' \, \bar{\nu}_{l'})} \stackrel{?}{=} 1$ 

Test: Ratios of decay rates that only differ by final lepton content (e.g.  $B \rightarrow D l \bar{\nu}_l$ ) should be unity (up to lepton mass dependence).

# Experimental Signatures of Flavour Anomalies

#### Signature Part - General Idea

• Measure B decays that only differ in final lepton content (Test LFU)

$$B \to X l \nu_l \qquad \qquad B \to X l l$$

where X is meson under study

$$R_X \equiv \frac{BR(B \to X l l / l \nu)}{BR(B \to X l' l' / l' \nu')}$$

- rare loop induced b decays  $R_{K^*}(b 
  ightarrow s)$
- tree-level tauonic decays  $R_{D^*}, R_{J/\Psi}(b \rightarrow c)$

FCNC (RK) 
$$R_{K^{(*)}} \equiv \frac{BR(B \to K^{(*)} \ \mu^+ \ \mu^-)}{BR(B \to K^{(*)} \ e^+ \ e^-)}$$

- Loop process, rare in SM, good chance for new physics
- Theoretical uncertainties factor out and cancel
- In measurement: double ratio to J/Psi, first order systematic cancellation

From SM: **RK(\*) = 1 + phase space corr.** 



# **FCNC** discrepancies

- Two bins:  $\rightarrow$  low-q<sup>2</sup> 0.0045 GeV<sup>2</sup>-1.1 GeV<sup>2</sup>
  - $\rightarrow$  central-q<sup>2</sup> 1.1 GeV<sup>2</sup> 6 GeV<sup>2</sup>
  - $\rightarrow$  good theoretical description



$$\begin{split} R_{K^*} &= 0.66 \, {}^{+0.11}_{-0.07} \, \, (\text{stat}) \pm 0.03 \, \, (\text{syst}) & \text{ for } 0.045 < q^2 < 1.1 \, \, \text{GeV}^2/c^4 \\ R_{K^*} &= 0.69 \, {}^{+0.11}_{-0.07} \, \, (\text{stat}) \pm 0.05 \, \, (\text{syst}) & \text{ for } 1.1 < q^2 < 6.0 \, \, \text{GeV}^2/c^4 \end{split}$$

• SM compatibility at 2.2-2.5σ level

#### **Experimental Difficulties**



- Muons very clean
- Electrons more problematic

#### Difficulties in electron reconstruction



- Electron reconstruction difficult
- Bremsstrahlung affects resolution & efficiencies
- Can be partially corrected

Also: Higher Trigger Threshold for e-

#### CERN-THESIS-2016-237

#### Outlook for the RK(\*) anomaly



 $\rightarrow$  New experiment: Belle II

 $\rightarrow$  Improved resolution in electron channel



6000

## Angular Observable for FCNC

5 P

- angular observable P<sub>5</sub>'
   -> form factor uncertainties cancel at leading order
- significant tension of 3.4 sigma
- J/Psi: theo. prediction difficult





#### Tree Level (RD,RD\*)

 $\rightarrow$  Similar final states in numerator & denominator

#### Interlude: Advantages of Belle



 $\rightarrow$  Different p<sub>invisible</sub> for numerator (3 v) and denominator (1 v)



#### Results (RD,RD\*) anomaly



# Theory & Model-building

b → s anomalies

Found by LHCb (and perhaps hinted by Belle)

Many observables: global pattern

Neutral current

1-loop (and CKM-suppressed) in the SM

The New Physics can be heavy

Found by several experiments (LHCb, BaBar and Belle)

Two observables: R(D) and R(D\*)

Charged current

Tree-level in the SM

The New Physics must be light

[A. Vicente, Post-FPCP School 2018]

## General consideration and remarks

- angular and BR anomalies can be faked by hadronic uncertainties -> QCD effect?
- LFU ratios are "clean" (cannot be mimiced by hadronic physics) -> deviation still below 3 σ

Long list of experimental constraints:

- other flavor observables: Bs-mixing,  $B \to K^{(*)} \bar{\nu} \nu$  ,  $b \to s \gamma$
- direct LHC search:  $pp \rightarrow \mu\mu, \tau\tau$
- lepton universality test:  $Z \rightarrow ll$
- neutrino trident production
- precision EW data

[A. Vicente, Post-FPCP School 2018]



Anomalies can go away





#### EFT as model-independent approach

Assume:

- 1. Anomalies caused by New physics
- 2. new states are "heavy":  $\Lambda \gg m_b$

 $e_{\alpha}$ 

 $\nu_{\beta}$ 

 $\nu_{\alpha}$ 

W

 $e_{\beta}$ 





#### weak EFT for (b-s) anomaly:

- non-renormalisable operators O<sub>i</sub> + Wilson coefficients C<sub>i</sub>
- C<sub>i</sub> receive contributions from SM and NP
- SM reaction calculable and known with high precision
- important for anomaly:  $C_9$ ,  $C_{10}$

$$\mathcal{H}_{eff} = -\frac{4 G_F}{\sqrt{2}} \frac{e^2}{16\pi^2} \mathbf{V}_{tb} \mathbf{V}_{ts}^* \sum_i C_i O_i + \text{h.c.}$$

mh

(n)

$$O_7^{(\prime)} = \frac{m_B}{e} (\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}$$
$$O_9^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad O_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_5\ell)$$

$$O_{S}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell) \qquad \qquad O_{P}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell)$$



# Gauge-invariant EFT approach: SMEFT

- non-gauge invariant EFTs miss relations among operators
- formulate EFT in terms of gauge-invariant operators
  - up to dim-6
  - 2499 real parameters
  - full 1-loop RGEs computed

| SMEFT operator                  | Definition                                                                                                                                 | Matching              | Order  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|
| $[Q_{\ell q}^{(1)}]_{aa23}$     | $\left( \bar{\ell}_a \gamma_\mu \ell_a  ight) \left( \bar{q}_2 \gamma^\mu q_3  ight)$                                                      | $\mathcal{O}_{9,10}$  | Tree   |
| $[Q_{\ell q}^{(ar{3})}]_{aa23}$ | $\left(\bar{\ell}_a \gamma_\mu \tau^I \ell_a\right) \left(\bar{q}_2 \gamma^\mu \tau^I q_3\right)$                                          | $\mathcal{O}_{9,10}$  | Tree   |
| $[Q_{qe}]_{23aa}$               | $\left(ar{q}_2\gamma_\mu q_3 ight)\left(ar{e}_a\gamma^\mu e_a ight)$                                                                       | $\mathcal{O}_{9,10}$  | Tree   |
| $[Q_{\ell d}]_{aa23}$           | $\left(ar{\ell}_a\gamma_\mu\ell_a ight)\left(ar{d}_2\gamma^\mu d_3 ight)$                                                                  | $\mathcal{O}_{9,10}'$ | Tree   |
| $[Q_{ed}]_{aa23}$               | $(ar{e}_a\gamma_\mu e_a)\left(ar{d}_2\gamma^\mu d_3 ight)$                                                                                 | $\mathcal{O}_{9,10}'$ | Tree   |
| $[Q^{(1)}_{arphi\ell}]_{aa}$    | $\left( arphi^\dagger i \overleftrightarrow{D}_\mu arphi  ight) \left( ar{\ell}_a \gamma^\mu \ell_a  ight)$                                | $\mathcal{O}_{9,10}$  | 1-loop |
| $[Q^{(3)}_{arphi\ell}]_{aa}$    | $\left( \varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi \right) \left( \bar{\ell}_{a} \gamma^{\mu} \tau^{I} \ell_{a} \right)$ | $\mathcal{O}_{9,10}$  | 1-loop |
| $[Q_{\ell u}]_{aa33}$           | $\left( \left( \bar{\ell}_a \gamma_\mu \ell_a \right) \left( \bar{u}_3 \gamma^\mu u_3 \right) \right)$                                     | $\mathcal{O}_{9,10}$  | 1-loop |
| $[Q_{arphi e}]_{aa}$            | $\left( arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi ight) \left(ar{e}_{a}\gamma^{\mu}e_{a} ight)$                                    | $\mathcal{O}_{9,10}$  | 1-loop |
| $[Q_{eu}]_{aa33}$               | $(\bar{e}_a \gamma_\mu e_a)'(\bar{u}_3 \gamma^\mu u_3)$                                                                                    | $\mathcal{O}_{9,10}$  | 1-loop |



[A. Vicente, Post-FPCP School 2018]

#### **Global fits**

same Wilson coefficients enter several observables

use pattern of deviations to extract "best" value

 $\longrightarrow$  NP preferred over SM by more than 4-5 $\sigma$  !

C9µ seems to be crucial !

#### Inclusive

$$B \to X_s \gamma$$
 (BR) .....  $C_7^{(\prime)}$   
 $B \to X_s \ell^+ \ell^-$  (dBR/dq<sup>2</sup>) .....  $C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)}$ 

#### Exclusive leptonic

#### Exclusive radiative/semileptonic

$$\begin{split} B &\to K^* \gamma \quad (\text{BR, S, A}_{\text{I}}) \qquad \qquad C_7^{(\prime)} \\ B &\to K \ell^+ \ell^- \ (\text{dBR/dq}^2) \qquad \qquad C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)} \\ B &\to K^* \ell^+ \ell^- \ (\text{dBR/dq}^2, \text{ angular obs.}) \qquad C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)} \\ B_s &\to \phi \, \ell^+ \ell^- \ (\text{dBR/dq}^2, \text{ angular obs.}) \qquad C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)} \end{split}$$

#### [A. Vicente, Post-FPCP School 2018]

|                                                                         | All      |                       |                | LFUV               |         |          |                |                            |                                     |         |
|-------------------------------------------------------------------------|----------|-----------------------|----------------|--------------------|---------|----------|----------------|----------------------------|-------------------------------------|---------|
| 1D Hyp.                                                                 | Best fit | $1 \sigma$            | $2 \sigma$     | Pull <sub>SM</sub> | p-value | Best fit | $1 \sigma$     | $2 \sigma$                 | $\operatorname{Pull}_{\mathrm{SM}}$ | p-value |
| $\mathcal{C}_{9\mu}^{\mathrm{NP}}$                                      | -1.10    | [-1.27, -0.92]        | [-1.43, -0.74] | 5.7                | 72      | -1.76    | [-2.36, -1.23] | [-3.04, -0.76]             | 3.9                                 | 69      |
| $\mathcal{C}^{\mathrm{NP}}_{9\mu} = -\mathcal{C}^{\mathrm{NP}}_{10\mu}$ | -0.61    | [-0.73, -0.48]        | [-0.87, -0.36] | 5.2                | 61      | -0.66    | [-0.84, -0.48] | [-1.04, -0.32]             | 4.1                                 | 78      |
| ${\cal C}_{9\mu}^{ m NP}=-{\cal C}_{9\mu}^{\prime}$                     | -1.01    | [-1.18, -0.84]        | [-1.33, -0.65] | 5.4                | 66      | -1.64    | [-2.12, -1.05] | [-2.52, -0.49]             | 3.2                                 | 31      |
| $\mathcal{C}_{9\mu}^{\rm NP} = -3\mathcal{C}_{9e}^{\rm NP}$             | -1.06    | [-1.23, -0.89]        | [-1.39, -0.71] | 5.8                | 74      | -1.35    | [-1.82, -0.95] | $\left[-2.38,-0.59\right]$ | 4.0                                 | 71      |
|                                                                         |          |                       |                |                    |         |          | $\mathcal{I}$  |                            |                                     |         |
|                                                                         |          |                       | Y              |                    |         |          |                | Y                          |                                     |         |
| All observables                                                         |          | Only LFUV observables |                |                    |         |          |                |                            |                                     |         |
| [Capdevila et al, 1704.0                                                | 5340]    | "clea                 | n" + "dirty"   |                    |         |          |                | clean"                     |                                     |         |

# Model-independent fits to $\mathcal{C}_{9,10}^{(')}$

e.g. in context of  $\,R_{K^{(*)}}\,$ 



More observables needed for discrimination among different best-fit scenarios !

#### UV models: difficulties & common features

- Loop suppression of neutral currents with respect to the charged ones.
- NP: J<sub>quark</sub> × J<sub>lepton</sub> with no traces in J<sub>quark</sub> × J<sub>quark</sub> (constraints from B<sub>s</sub> mixing) and J<sub>lepton</sub> × J<sub>lepton</sub> (constraints from pure LFV/LUV decays).
- Most models involve:
  - New charged (coloured) states.
  - Mass ~TeV (to explain relatively large effects).
  - Significant coupling to the 3<sup>rd</sup>-generation SM fermions (constraints from resonances decaying to T T pairs ).

#### Typical UV complete theory contains new states that are:

- Lorentz scalars/vectors
- SU(3)<sub>c</sub>: singlet/triplet; SU(2)<sub>L</sub>: singlet/doublet/triplet.



#### Example #1: Z'

Additional U(1)<sub>x</sub> generates  $O_9$ ,  $O_{10}$ :







 $B_s$ 



[1504.07928, 1308.1501]

#### Example #2: leptoquark

New scalar field:  $SU(3)_c$ -triplet,  $SU(2)_L$ - singlet.

quark , lepton eptoguark

Can it explain both  $B \rightarrow K \& B \rightarrow D$  anomalies?

Requiring also electric charge equal to -1/3...

#### Example #2: leptoquark

 $B \rightarrow D^* \tau v$ : tree-level



But also:



(Bounds from  $B^{}_{S}$  – $B^{-}_{S}$  mixing,  $D \rightarrow \mu$  + $\mu$  -,  $\tau \rightarrow \mu \gamma)$ 

 $B \rightarrow K^*II$ : only at 1-loop level



\*According to 1608.07583, accurate calculation of the loop-induced effects makes  $R_{D}^{T/I}$  inconsistent with data.

#### Mainstream models:

#### 1. Z'

- flavor-changing coupling to LH quarks
- VL couplings to leptons
- flavor violation or non-universality in lepton sector

#### 2. Leptoquarks

- scalar or vector
- not simult. lepton non-universal and L conserving
- 3. Compositeness
  - neutral resonance, coupling to muons (part. composite)
  - lepton flavor violating couplings
  - $\circ$  constrained by LEP (Z-width) and  $B_s$ - $B_s$ -mixing



### Summary: Flavor could be around the corner!

- SM prediction: LFU!
- Several anomalies in B physics
  - b->s  $\mu\mu$  BR & P<sub>5</sub>' hadr. uncertainties, but significant  $R_{\kappa}^{(*)}$  theo. clean but not too significant  $R_{D}^{(*)}$  theo. clean and significant Ο
  - 0
- NP highly constrained, but combined NP solution for all anomalies possible!
- More data and new experiments crucial
  - LHC Run 2 0
  - **Belle-II** experiment Ο

#### Backup

#### Angular observables



 $d^4\Gamma$ 

 $\frac{d^2}{dq^2\,d\cos\theta_K\,d\cos\theta_l\,d\phi}$ 

[Figure borrowed from Javier Virto]

 $= \frac{9}{32\pi} \bigg[ J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + (J_{2s} \sin^2 \theta_K + J_{2c} \cos^2 \theta_K) \cos 2\theta_l$  $+ J_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + J_5 \sin 2\theta_K \sin \theta_l \cos \phi$  $+ (J_{6s} \sin^2 \theta_K + J_{6c} \cos^2 \theta_K) \cos \theta_l + J_7 \sin 2\theta_K \sin \theta_l \sin \phi$  $+ J_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + J_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \bigg]$ 

 $J_i$ : functions of  $q^2, C_i, FF$ 

Optimized observables [Descotes-Genon et al, 2012, 2013]

$$P_5' = \frac{J_5}{2\sqrt{-J_{2s}J_{2c}}}$$

[A. Vicente, Post-FPCP School 2018]

#### weak EFT operators

Operator set for  $b \rightarrow s$  transitions:



+ the chirality flipped counter-parts of the above operators,  $\mathcal{O}'_i$  [N. Mahmoudi, DM@LHC 2018]

 $\ell^+$ 

 $K^*$ 

b

 $B_d$ 

#### Typical EFT scales

#### All scales $\Lambda_i$ probed so far appear to be rather large:

| Order | Observable               | New-physics scale<br>for g=O(1) |  |  |
|-------|--------------------------|---------------------------------|--|--|
| D=5   | Neutrino<br>oscillations | $\Lambda \sim 10^9  {\rm TeV}$  |  |  |
| D=6   | Proton decay             | $\Lambda > 10^{12} { m TeV}$    |  |  |
| D=6   | Flavor physics           | $\Lambda > 1  10^5 \text{ TeV}$ |  |  |
| D=6   | EWPT                     | $\Lambda > 1 \text{ TeV}$       |  |  |
| D=6   | Higgs couplings          | $\Lambda > 0.5 - 1 \text{ TeV}$ |  |  |

[M. Neubert, Exotic Hadrons & Flavor Physics 2018]

# combination of measurements

- "orthogonal" systematic uncertainties
- test different regions of parameter space
- plot
- combined significance...
- future improvements and prospects
- projected uncertainty and limitations

-> final comment:LHCb+Belle -> final data samples will be sufficient to confirm discovery of anomalies or rule it out

-> hot topic that could guide us to new physics -> Theory consideration part





JHEP08(2017)055

**Electron** 

Muons



- J/Psi & Y(2s) visible as horizontal lines
- Vertical line: B-> K\*l<sup>+</sup>l<sup>-</sup>

# Challenges on both sides ...

Experimental measurements:

• tbd

• tbd

Theoretical calculations:

- "non-factorisable" hadronic effects: problematic since easily generated at tree-level

