Measuring $\left|V_{u b}\right|$ at LHCb

Svende Braun

RTG Students Lecture

January/February 2018

HTHC

Outline

(1) Lecture Today

- CKM Meachnism
- How to measure CKM matrix elements in general?
(2) Lecture: How to measure CKM matrix elements in B-decays?
- $\left|V_{c b}\right|$
- $\left|V_{u b}\right|$
(3) Lecture: Specific LHCb measurements
- $\Lambda_{b} \rightarrow p \mu \nu$
- $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$

1. Part: CKM mechanism

Mass generation of Quarks

- In the SM quarks and leptons acquire mass through the Yukawa terms in the Lagrangian:
$\mathcal{L}_{\text {Yukawa }}=-\frac{v}{\sqrt{2}}\left(\bar{d}_{L} Y_{d} d_{R}+\bar{u}_{L} Y_{u} u_{R}\right)+$ h.c.
left-handed quarks are coupled to right-handed ones
- q are the weak-eigenstates
- Y_{u}, Y_{d} are 3×3 complex Yukawa matrices
\rightarrow not diagonal in "generation space"
\rightarrow weak eigenstates \neq physical mass eigenstates

Diagonalization

- to get mass eigenstates u^{\prime}, d^{\prime} diagonalize Yukawa matrices by unitary transformations:
$q_{A}^{\prime}=V_{A, q} q_{A}$
- with $q=u, d, A=L, R$ and $V_{A, q} V_{A, q}^{\dagger}=1$
- $V_{A, q}$ are determined by:

$$
\begin{aligned}
& M_{u}=\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{c} & 0 \\
0 & 0 & m_{t}
\end{array}\right)=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right)=\frac{v}{\sqrt{2}} V_{L, u} Y_{u} V_{R, u}^{\dagger} \\
& M_{d}=\left(\begin{array}{ccc}
m_{d} & 0 & 0 \\
0 & m_{s} & 0 \\
0 & 0 & m_{b}
\end{array}\right)=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right)=\frac{v}{\sqrt{2}} V_{L, d} Y_{d} V_{R, d}^{\dagger} \\
& \Rightarrow \mathcal{L}_{\text {Yukawa }}=-\overline{d_{L}^{\prime}} M_{d} d_{R}^{\prime}+\overline{u_{L}^{\prime}} M_{u} u_{R}^{\prime}+\text { h.c. }
\end{aligned}
$$

CKM matrix

- these transformations leave all parts of SM Lagragian unchanged, except for term describing the charged current weak interaction:

$$
\begin{aligned}
& \mathcal{L}_{C C}=-\frac{g}{\sqrt{2}}\left(\bar{u}_{L} \gamma^{\mu} W_{\mu}^{+} d_{L}+\bar{d}_{L} \gamma^{\mu} W_{\mu}^{-} u_{L}\right) \\
& \rightarrow \mathcal{L}_{C C}=-\frac{g}{\sqrt{2}}(\overline{u_{L}^{\prime}} \gamma^{\mu} W_{\mu}^{+} \underbrace{V_{L, u} V_{L, d}^{\dagger}}_{V_{C K M}} d_{L}^{\prime}+\bar{d}_{L}^{\prime} \gamma^{\mu} W_{\mu}^{-} \underbrace{V_{L, d} V_{L, u}^{\dagger}}_{V_{C K M}^{\dagger}} u_{L}^{\prime})
\end{aligned}
$$

\Rightarrow The charged-current interaction gets a flavor structure which is encoded in the Cabibbo-Kobayashi-Maskawa (CKM) matrix \Rightarrow element $\left(V_{C K M}\right)_{i j}$ connects the LH u-type quark of the ith generation with the LH d-type quark of the jth generation

CKM matrix

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

- describes relation between weak eigenstates q and mass eigenstates q':

$$
\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)=V_{C K M}\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)
$$

\rightarrow weak eigenstates are a mixture of mass eigenstates

- weak interaction allows for transitions between different generations of quarks through charged current interactions

Parameters of CKM matrix

in general: NxN matrix

- n^{2} complex elements $=2 n^{2}$ real parameters
- unitarity condition: $V^{\dagger} V=\mathbb{1}$ implies n^{2} constraints
- n unitary conditions
- $n^{2}-n$ orthogonality relations
- removing quark phases: 2n-1 constraints
\rightarrow leaves $(n-1)^{2}$ free parameters
$=\frac{1}{2} n(n-1)$ rotation angles $+\frac{1}{2}(n-1)(n-2)$ phases
\Rightarrow for 3×3 matrix: 3 rotation angles +1 CP violating phase

Parametrization of CKM matrix

PDG parametrization: 3 Euler angles $\theta_{23}, \theta_{13}, \theta_{12}$ and 1 Phase δ

$$
\begin{aligned}
V_{C K M}= & \left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right) \\
& \left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right)
\end{aligned}
$$

where $c_{i j}=\cos \theta_{i j}$ and $s_{i j}=\sin \theta_{i j}$

Wolfenstein Parametrization

Reflects the hierarchical structure of the CKM matrix:

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{u} & \square & \mathbf{s} & \mathbf{b} \\
\mathrm{c} & \square & \square & \cdot \\
\mathrm{t} & \cdot & \square & \square
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

$$
\begin{aligned}
& \lambda, A, \rho, \eta \text { with } \lambda=0.22 \\
& V_{C K M}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right) \\
& \left|\mathrm{V}_{\mathrm{td}}\right| \times \mathrm{e}^{-\mathrm{i} \beta}
\end{aligned}
$$

with $\lambda=\sin \theta_{12}, A \lambda^{2}=\sin \theta_{23}$ and $\sin \theta_{23} e^{i \delta}=A \lambda^{3}(\rho+i \eta)$

Unitarity Condition

$V^{\dagger} V=V V^{\dagger}=\mathbb{1}$
$\Leftrightarrow\left(\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)\left(\begin{array}{ccc}V_{u d}^{*} & V_{c d}^{*} & V_{t d}^{*} \\ V_{u s}^{*} & V_{c s}^{*} & V_{t s}^{*} \\ V_{u b}^{*} & V_{c b}^{*} & V_{t b}^{*}\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
leads to following three unitary relations:

$$
\begin{array}{r}
V_{u d} V_{u d}^{*}+V_{u s} V_{u s}^{*}+V_{u b} V_{u b}^{*}=1 \\
V_{c d} V_{c d}^{*}+V_{c s} V_{c s}^{*}+V_{c b} V_{c b}^{*}=1 \\
V_{t d} V_{t d}^{*}+V_{t s} V_{t s}^{*}+V_{t b} V_{t b}^{*}=1
\end{array}
$$

- weak universality: squared sum of coupling strengths of u-quark to d, s and b-quarks is equal to overall charged coupling of c and t-quark
- adding up to 1 , no probability remaining to couple to 4th down-type quark

Unitarity Triangles

remaining orthogonality conditions can be described by an triangle relations in the complex plane:
\rightarrow all 6 triangles have same area $J_{C P} / 2$, called the Jarlskog invariant, measure of CP violation of the SM

Unitarity Triangle

- (db) and (ut) have both sides with similar length, terms of order λ^{3}, better to visualize
\rightarrow (db) triangle used as 'the unitarity triangle' for historic reasons (b-factories Belle \& Babar):

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

- divide each side by best-known one $V_{c d} V_{c b}^{*}$ gives:

The Unitarity Triangle

- angles of unitarity triangle:
$\alpha \equiv \arg \left[-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right], \beta \equiv \arg \left[-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}, \gamma \equiv \arg \left[-\frac{V_{u d} V_{L b}^{*}}{V_{c d} V_{c b}^{*}}\right]\right.$
- CKM matrix elements are fundamental parameters of the SM \rightarrow no theory predictions!
\Rightarrow precise determination of parameters very important
- Goal of flavour physics: overconstrain unitarity triangle by complementary measurements \& search for New Physics

2.Part: How to measure CKM matrix elements in general?

How to measure CKM matrix elements in general?

- as shown before CKM matrix elements included in charged current weak interaction Lagrangian
- magnitude can be measured from rates of respective flavour changing transitions
\rightarrow emission of W boson

- rate of that is proportional to the coupling strength $\left|V_{i j}\right|^{2}$:

$$
\frac{d \Gamma}{d q^{2}} \propto G_{F}^{2}\left|V_{i j}\right|^{2}\left|f^{+}\left(q^{2}\right)\right|
$$

\rightarrow needs as input non-perturbative Form factor $\left(f^{+}\left(q^{2}\right)\right)$ calculations from LQCD or QCD sum rules

$V_{u d}$

Experimental measurements:

- measured from nuclear β decay: $n \rightarrow \mathrm{pe}^{-} \overline{\nu_{e}}$

$$
\left|V_{u d}\right|=0.97417 \pm 0.00021
$$

- error dominated by theoretical uncertainties due to binding energy corrections in nuclei
- also from neutron lifetime
- measure $\pi^{+} \rightarrow \pi^{0} e^{+} \nu_{e}$ branching ratio (PIBETA experiment)

$V_{u s}$

- from semileptonic Kaon decays (many different experiments):
$K_{L}^{0} \rightarrow \pi \mu \nu, K^{ \pm} \rightarrow \pi^{0} e^{ \pm} \nu, K^{ \pm} \rightarrow \pi^{0} \mu^{ \pm} \nu$ and $K_{S}^{0} \rightarrow \pi e \nu$ can extract $\left|V_{u S}\right| f_{+}(0)$
\rightarrow need to know form factor (FF) $f_{+}(0)$ from Lattice calculations (LQCD)
- also from fully leptonic decays (KLOE experiment):
$\left|V_{u s} / V_{u d}\right|$ from $K \rightarrow \mu \nu(\gamma)$ and $\pi \rightarrow \mu \nu(\gamma)$ together with ratio of decay constants f_{K} / f_{π} from LQCD
average of both gives:

$$
\left|V_{u s}\right|=0.2248 \pm 0.0006
$$

- also from Hyperon decays and hadronic tau decays $\tau \rightarrow h \nu(h=\pi, K)$

$V_{c d}$

- from semileptonic charm decays (BaBar, Belle, BESIII, CLEO-c): $D \rightarrow \pi / \nu, D \rightarrow K / \nu$ together with FFs $f_{+}^{D \pi}(0)$ from LQCD
- from leptonic charm decays (BESIII, CLEO): $D^{+} \rightarrow \mu^{+} \nu$ and decay constant f_{D} from LQCD

- from neutrino scattering data (CDHS, CCFR, CHARM II): The difference of the ratio of double-muon to single-muon production by neutrino and antineutrino beams is proportional to the charm cross section off valence d quarks, and therefore to $\left|V_{c d}\right|^{2}$

gives total average of all 3 methods:

$$
\left|V_{c d}\right|=0.220 \pm 0.005
$$

- from semileptonic D decays (Belle, BABAR, CLEO-c, BESIII):
$D \rightarrow K l \nu$ together with FFs $f_{+}^{D K}(0)$ from LQCD
- from leptonic D_{s} decays (Belle, BABAR, CLEO-c):
$D_{s} \rightarrow \mu \nu, \tau \nu$ using the PDG values for mass and lifetime of the D_{s}, the masses of the leptons and $f_{D s}$ from LQCD
averaging both gives:

$$
\left|V_{c s}\right|=0.995 \pm 0.016
$$

- also from tagged on-shell $W^{+} \rightarrow c \bar{s}$ decays at LEPII

$\left|V_{t d}\right|$ and $\left|V_{t s}\right|$

- in general measurable in tree level top decays, but not precise enough
- can be measured via virtual effects:
(1) from $B-\bar{B}, B_{s}-\bar{B}_{s}$ oscillations mediated by box diagrams with top quarks and LQCD input for $f_{B_{d}}$ and $f_{B_{s}}$

$$
\begin{array}{cl}
\Delta m_{d}=(0.5064 \pm 0.0019) p s^{-1} \sim\left(V_{t d}^{*} V_{t b}\right)^{2}, & \Delta m_{s}=(17.757 \pm 0.021) p s^{-1} \sim\left(V_{t s}^{*} V_{t b}\right)^{2} \\
\left|V_{t d}\right|=(8.2 \pm 0.6) \times 10^{-3}, & \left|V_{t s}\right|=(40.0 \pm 2.7) \times 10^{-3}
\end{array}
$$

$V_{t d} \mid$ and $\left|V_{t s}\right|$

can be measured via virtual effects:
(1) from $B-\bar{B}$ oscillations mediated by box diagrams with top quarks
(2) loop-mediated rare K and B decays

- $B \rightarrow X_{s} \gamma$ penguin process $\sim\left|V_{t s}^{*} V_{t b}\right|^{2}$
- $B_{s} \rightarrow \mu \mu$ box diagram
- theoretical uncertainties in hadronic effects limit accurancy of current determinations, reduced when measuring $\left|V_{t d} / V_{t s}\right|$ instead:

$$
\left|V_{t d} / V_{t s}\right|=0.215 \pm 0.001 \pm 0.011
$$

- theoretically clean determination of $\left|V_{t s}^{*} V_{t d}\right|$ from $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$, so far only 7 events observed from E949 \& E787 Collaboration (arXiv:0903.0030), NA62 expected to improve that
- top decays at hadron colliders CDF, D0, ATLAS, CMS:

$$
\begin{aligned}
& R=\mathcal{B}(t \rightarrow W b) / \mathcal{B}(t \rightarrow W q)=\left|V_{t b}\right|^{2} /\left(\sum_{q}\left|V_{t q}\right|^{2}\right) \text { with } \mathrm{q}=\mathrm{b}, \mathrm{~s}, \mathrm{~d} \\
& \Rightarrow R=\left|V_{t b}\right|^{2} \text { assuming unitarity }
\end{aligned}
$$

- direct determination from single top-quark production cross section through Wtb vertex
combination of both:

$$
\left|V_{t b}\right|=1.009 \pm 0.031
$$

dominated by experimental systematic uncertainties

Putting it all together

$$
\begin{gathered}
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
=\left(\begin{array}{ccc}
0.97417 \pm 0.00021 & 0.2248 \pm 0.0006 & V_{u b} \\
0.220 \pm 0.005 & 0.995 \pm 0.016 & V_{c b} \\
0.0082 \pm 0.0006) & 0.04 \pm 0.0027 & 1.009 \pm 0.031
\end{array}\right)
\end{gathered}
$$

clear hierarchy visible as described in Wolfenstein parametrization:

$$
\left|V_{C K M}\right| \sim\left(\begin{array}{ccc}
1 & \lambda & V_{u b} \\
\lambda & 1 & V_{c b} \\
\lambda^{3} & \lambda^{2} & 1
\end{array}\right)
$$

with $\lambda \sim 0.22$

Take Home Message

- CKM matrix encodes the flavour structure of charged-current interaction
- weak interaction allows for transition between quark generations
- CKM matrix is unitary, complex 3×3 matrix
$\rightarrow 4$ free paramters: 3 rotation angles \& 1 CP violating phase
- CKM matrix elements are fundamental parameters of the SM \rightarrow need to be extracted from several different measurements
- from unitarity condition get the unitarity triangle
- Goal of Flavour Physics to over constrain this by complementary measurements
\rightarrow next week discussion on $V_{c b}$ and $V_{u b}$

Sources

- Physics at the Terrascale, Ian Brock, Thomas Schörner-Sadenius, 2011, Chapter Quark Flavour Physics
- Review of Particle Physics, C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update, http://pdg.|bl.gov/2017/reviews/rpp2017-rev-ckm-matrix.pdf, http://pdg.lbl.gov/2017/reviews/rpp2017-rev-vud-vus.pdf
- Quark and Lepton Flavor Physics Lectures by Ulrich Uwer https://www.physi.uni-heidelberg.de/ uwer/lectures/Flavor/notes.html
- Standard Model Lecture by Ulrich Uwer https://www.physi.uni-heidelberg.de/ uwer/lectures/StandardModel/notes.html
- The Standard Model of Particle Physics Lectures by Andre Schöning and https://www.mpi-hd.mpg.de/manitop/StandardModel/lectures/Lecture_SM_22.pdf
- Lectures on CP violation, Particle Physics II January 2015, P. Kooijman \& N. Tuning, https://www.nikhef.nl/ h71/Lectures/2015/ppll-cpviolation-29012015.pdf

Thanks for your attention!

Backup Slides

$V_{u d}$

superallowed $(\Delta I=0)$ nuclear, neutron, and pion decays
\rightarrow most precise determination from superallowed nuclear beta-decays
($0^{+} \rightarrow 0^{+}$transitions):

- with half-lives, t, and Q values (total energy released in a given nuclear decay) that give the decay rate factor, f :

$$
f t=\frac{K}{2 G_{V}^{2}(1+\Delta)}, \quad\left|V_{u d}\right|=G_{V} / G_{F}, \quad \Rightarrow\left|V_{u d}\right|^{2}=\frac{2984.48(5) s e c}{f t(1+\Delta)}
$$

- Δ denotes the electroweak radiative corrections (RC), nuclear structure, and isospin violating nuclear effects \rightarrow nucleus dependent
- most recent analysis of 14 precisely measured superallowed transitions gives a weighted average:

$$
\left|V_{u d}\right|=0.97420(10)_{\text {exp.,nucl. }}(18)_{R C}(\text { superallowed })
$$

$V_{u d}$

Neutron lifetime:

- together the ratio of axial-vector/vector couplings, $g_{A} \equiv G_{A} / G_{V}$ via neutron decay asymmetries gives:

$$
\left|V_{u d}\right|^{2}=\frac{4908.7(1.9) s e c}{\tau_{n}\left(1+3 g_{A}^{2}\right)}
$$

- error from uncertainties in the electroweak radiative corrections due to hadronic loop effects
- Using world averages for $\tau_{n}^{\text {ave }}=879.3(9) s e c$ and $g_{A}^{\text {ave }}=1.2723(23)$ gives:

$$
\left|V_{u d}\right|=0.9763(5)_{\tau_{n}}(15)_{g_{A}}(2)_{R C}
$$

- error dominated by g_{A} uncertainties
- value of $\left|V_{u d}\right|$ is high by 1.3 sigma wrt. superallowed nuclear beta-decay

pion decay:

- PIBETA experiment at PSI measured the very small $\left(\mathcal{O}\left(10^{-8}\right)\right)$ branching ratio for $\pi^{+} \rightarrow \pi^{0} e^{+} \nu_{e}$ with about $\pm 0.5 \%$ precision, gives:

$$
\left|V_{u d}\right|=0.9749(26)\left[\frac{B R\left(\pi^{+} \rightarrow e^{+} \nu_{e}(\gamma)\right.}{1.2352 \times 10^{-4}}\right]^{1 / 2}
$$

- Theoretical uncertainties in the pion β-decay determination are very small
- much higher statistics required to make this approach competitive with others
from kaon decays, hyperon decays, and tau decays

$$
\Gamma_{K / 3}=\frac{G_{F}^{2} M_{K}^{5}}{192 \pi^{3}} S_{E W}\left(1+\delta_{K}^{\prime}+\delta_{S U 2}\right) C^{2}\left|V_{u s}\right|^{2} f_{+}^{2}(0) I_{K}^{\prime}
$$

M_{K} kaon mass, $S_{E W}$ short-distance radiative correction, δ_{K}^{\prime} mode-dependent long-distance radiative correction, $f_{+}^{2}(0)$ calculated form factor at zero momentum transfer for the $I \nu$ system, I_{K}^{I} phase-space integral, $\delta_{\text {SU2 }}$ for charged kaon decays deviation from one of the ratio of $f_{+}(0)$ for the charged to neutral kaon decay, C^{2} is $1(1 / 2)$ for neutral (charged) kaon decays

- Many measurements during last decade have resulted in a significant shift in $\left|V_{u s}\right|$ due to difference in $K \rightarrow \pi e^{+} \nu$ branching fraction as a result of inadequate treatment of radiation in older experiments
- experiments: BNL E865, KTeV, KLOE, NA48, ISTRA+
- new measurements of branching fractions, of lifetimes and form factors resulted in improved precision for all of the experimental inputs, gives:

$$
f_{+}(0)\left|V_{u s}\right|=0.2165(4)
$$

- using recent FLAG averages:

$$
\begin{array}{rlrl}
\left|V_{u s}\right| & =0.2238(4)_{\exp +R C}(6)_{\text {lattice }} & & \left(N_{f}=2+1, K_{/ 3} \quad \text { decays }\right) \\
& =0.2231(4)_{\text {exp }+R C}(7)_{\text {lattice }} & \left(N_{f}=2+1+1, K_{/ 3} \quad \text { decays }\right)
\end{array}
$$

from a comparison of the radiative inclusive decay rates for $K \rightarrow \mu \nu(\gamma)$ and $\pi \rightarrow \mu \nu(\gamma)$ together with lattice calculation of $f_{K^{+}} / f_{\pi^{+}}$gives:

$$
\frac{\left|V_{u s}\right| f_{K^{+}}}{\left|V_{u d}\right| f_{\pi^{+}}}=0.23871(20)\left[\frac{\Gamma(K \rightarrow \mu \nu(\gamma))}{\Gamma(\pi \rightarrow \mu \nu(\gamma))}\right]^{1 / 2}
$$

small error coming from electroweak radiative corrections and isospin breaking effects, using experimental measurements for Γ together with FLAG averages gives:

$$
\begin{aligned}
\left|V_{u s}\right| & =0.2256(10) \quad\left(N_{f}=2+1, K_{\mu 2} \quad \text { decays }\right) \\
& =0.2253(7) \quad\left(N_{f}=2+1+1, K_{\mu 2} \quad \text { decays }\right)
\end{aligned}
$$

give similar results as from KI 3 decays

$V_{\text {us }}$

from hyperon beta decays:
$\Lambda \rightarrow p e^{-} \bar{\nu}, \Sigma^{-} \rightarrow n e^{-} \bar{\nu}, \Xi^{-} \rightarrow \Lambda e^{-} \bar{\nu}, \bar{\Xi}^{0} \rightarrow \Sigma^{+} e^{-} \bar{\nu}$ gives:

$$
\left|V_{u s}\right|=0.2250(27)
$$

which neglects $\operatorname{SU}(3)$ breaking effects

from tau decays: $\tau \rightarrow \nu K X$ averaging both inclusive and exclusive measurements, gives:

$$
\left|V_{u s}\right|=0.2202(15)
$$

differs by about 3 sigma from the kaon determination, mainly from inclusive determination

CKM Unitarity Constraints

Unitarity Requirement should be fulfilled:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

using PDG averages of $\left|V_{u s}\right|$ (using only kaon decays)

$$
\begin{aligned}
\left|V_{u s}\right| & =0.2244(6) \quad\left(N_{f}=2+1\right) \\
& =0.2243(5) \quad\left(N_{f}=2+1+1\right)
\end{aligned}
$$

and $\left|V_{u d}\right|$ (using only superallowed nuclear beta decays)

$$
\left|V_{u d}\right|=0.97420(10)_{\text {exp.,nucl. }}(18)_{R C}
$$

$\left(\left|V_{u b}\right|^{2} \simeq 1.7 \times 10^{-5}\right.$ is negligibly small, ignored here) gives:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9994(5)
$$

\Rightarrow strong confirmation of SM, better than 50σ, implies constraints on NP

$V_{c s}$

Measurements of on-shell $W^{ \pm}$decays sensitive to $\left|V_{c s}\right|$ were made by LEP-2

- W branching ratio to each lepton flavour is:

$$
1 / \mathcal{B}\left(W \rightarrow \mid \bar{\nu}_{l}\right)=3\left[1+\Sigma_{u, c, d, s, b}\left|V_{i j}\right|^{2}\left(1+\alpha_{s}\left(m_{W}\right) / \pi\right)+\ldots\right]
$$

- Assuming lepton universality, the measurement $\mathcal{B}\left(W \rightarrow I_{\nu}\right)=(10.83 \pm 0.07 \pm 0.07) \%$ implies $\Sigma_{u, c, d, s, b}\left|V_{i j}\right|^{2}=2.002 \pm 0.027$
- only flavour-tagged W-decays determine $\left|V_{c s}\right|$ directly, DELPHI's tagged $W^{+} \rightarrow c \bar{s}$ analysis, yielding

$$
\left|V_{c s}\right|=0.94_{-0.26}^{+0.32} \pm 0.13
$$

