Measuring | Vub | at LHCb

Svende Braun

RTG Students Lecture

January/February 2018

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Outline

Lecture

- CKM Mechanism
- · How to measure CKM matrix elements in general?
- 2 Lecture Today: How to measure CKM matrix elements in B-decays?
 - · Differences between B-factories and Hadron colliders
 - |*V*_{cb}|
 - |*V*_{ub}|
- 3 Lecture: Specific LHCb measurements
 - $\Lambda_b \rightarrow p \mu \nu$
 - $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$

Differences between B-factories and Hadron colliders

B-factories

- **b-production:** $B\overline{B}$ events from $\Upsilon(4S)$ decays without additional background tracks $\Upsilon(4S) \rightarrow B^0 \overline{B^0} 50\%$ and $\Upsilon(4S) \rightarrow B^+ B^- 50\%$, cross section is 1.1nb
- known kinematics and beam energy: $e^+e^- o \Upsilon(4S)$ at 10.58 GeV/c
- **asymmetric beam energies** to get boost $\beta \gamma \sim 0.4$ for B meson to get better spatial separation of the two b-meson decay vertices \rightarrow for time-dependent measurements
- fully hermetic detector: full reconstruction of all particles except neutrino, also other B for flavour tagging: tagging power $\sim 30\%$
- able to perform inclusive measurements B → Xlν:
 X not explicitly reconstructed, sum over all possible resonant and non-resonant hadronic final states

B-factories

- Neutrino reconstruction:
 - · from missing energy and momentum in event

$$P_{\nu} = (E_{\nu}, \vec{p}_{\nu}) = (E_{miss}, \vec{p}_{miss}) = (E_{\Upsilon(4S)}, \vec{p}_{\Upsilon(4S)}) - \left(\sum_{i} E_{i}, \sum_{i} \vec{p}_{i}\right)$$

 $M_{miss}^2=P_
u^2\sim 0$ because of experimental resolution has long tails

- better resolution achieved if second B meson in event is fully reconstructed → B-tagging:
 - in general: all charged particles are assigned to one of two B candidates & small remaining energy required

$$P_B = P_{\Upsilon(4S)} - P_{B_{tag}}, \quad P_{
u} = P_B - P_I - P_X$$

resulting in narrow peak around zero for correctly reconstructed signal decays

S. Braun (Heidelberg University)

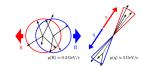
B-factories

Background suppression & experimental techniques

- e^+e^- cross section at $\Upsilon(4S)$ high contribution from non- $B\bar{B}$ events
- main background for B-decays:
 - Continuum bkg: $e^+e^- \rightarrow q\bar{q} (q = u, d, s, c)$, $e^+e^- \rightarrow l^+l^- (l = e, \mu, \tau)$, estimated from off-resonance data
 - · fewer tracks then signal decay
 - more directional: use event shape variables
 - Combinatorial bkg: BB events where one/more particles wrongly assigned to signal B decay (from other B)
 - suppressed by testing kinematic concistency with B meson:

 $\Delta E = E_B - E_{beam}, \quad M_{bc} = \sqrt{E_{beam}^2 - p_B^2}$ beam constrained mass, Babar m_{ES}

$e^+e^- \rightarrow q\bar{q}$	Cross section (nb)
bĥ	1.05
cē 15 dd 10	1.30
13	0.35
dð	0.35
uŭ	1.39
r+r-	0.94
$\mu^{+}\mu^{-}$	1.16
e+e-	~-40



6/38

Hadron colliders

Advantages

- large production cross section of beauty quarks: $\sigma(pp \rightarrow b\bar{b}X) = 284 \pm 20 \pm 49 \mu b$ at 7 TeV
- Millions of B candidates available, all b-hadrons produced: B⁰, B⁺, B_s, B_c, Λ_b,...
- Excellent vertex separation, tracking and PID systems

Disadvantages

- but **dirty environment**: many other particles produced in pp collisions \rightarrow No possibility to use beam energy constraints
- No kinematic constraints from other (tagging) B, also b-hadron production fractions poorly known
- unknown initial state which makes reconstruction of neutrino challenging
- must trigger on **specific exclusive decay modes** and typically charged hadrons in final state \rightarrow no inclusive measurements possible, hard to reconstruct neutrals

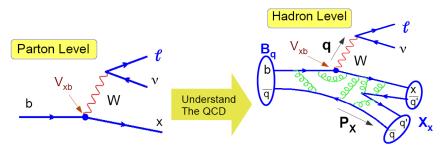
- make use of fact that m_b is large compared to hadronic scale Λ_{QCD} \rightarrow heavy quark methods used in B-physics
- expansions in powers of Λ_{QCD}/m_Q : Operator Production Expansion

leading term corresponds to infinite mass limit (static heavy quark)

 \rightarrow QCD exhibits new, additional symmetry:

heavy quark symmetry (HQS): heavy quarks (b- and c-quarks) moving with same velocity

Measuring $|V_{xb}|$



- |V_{xb}| measured using semileptonic decays
- 2 different strategies:
 - exclusive decays: $ar{B}^0 o \pi^+ l^- ar{
 u}$ or $ar{B}^0 o D^{(*)+} l^- ar{
 u}$
 - inclusive decays: $B \to X_c l^- \bar{\nu}$ or $B \to X_u l^- \bar{\nu}$

Why semileptonic decays?

advantages:

- 1 very large event yields: \sim 10% of all B-decays
- **2** theoretically clean:
 - · much simpler to calculate then fully hadronic processes
 - leptons don't interact strongly \rightarrow factorize strong (hadronic) and weak (leptonic) parts
 - hadronic matrix element parametrized by scalar functions of q² (momentum transfer to leptons) → so-called Form factors → absorb all non-pertubative effects into FF

disadvantages:

experimentally challenging since neutrino can't be directly reconstructed \rightarrow partial reconstruction techniques needed

1. Part: |*V*_{cb}|

Exclusive $|V_{cb}|$

Theory Input

- · QCD correction parametrized in the Form Factors:
- · use velocities instead of momenta:

•
$$v_B = \frac{p_B}{m_B}, v_D^{(*)} = \frac{p_D^{(*)}}{m_D^{(*)}}, w = v_B v_D^{(*)}$$

• w=1 corresponds to maximum momentum transfer to leptons $q_{max}^2 = (m_B - m_D^{(*)})^2 \rightarrow Lattice-QCD$

- w_{max} corresponds to $q^2 = 0
 ightarrow \mathsf{LCSR}$
- interpolation between both regions needed to extract $|V_{cb}|$
- 2 FF parametrizations available using analyticity and unitarity bounds: BGL & CLN

Exclusive $|V_{cb}|$

Experimentally: $\bar{B} \rightarrow D l \bar{\nu}$

$$\frac{d\Gamma(\bar{B}\to D l\bar{\nu})}{dw} = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (w^2 - 1)^{3/2} |\eta_{EW} \mathcal{G}(w)|^2$$

- analysis performed by Belle & Babar with hadronic B-tagging:
 - reconstruct second B meson through hadronic decay
 - \rightarrow improve kinematic resolution and reduce combinatorial backgrounds
- use both $B \to D^0 I \nu$ and $B \to D^+ I \nu$ decays
- signal extracted from fits to M_{miss}^2 in 10 bins of w, to measure the w dependence of the form factor $\mathcal{G}(w)$
- fit FF parametrization to $d\Gamma/dw$ to extract $|V_{cb}|$
- Largest background from $B
 ightarrow D^* I
 u$

Exclusive $|V_{cb}|$ - B ightarrow DI u

Babar (PRL 104,011802 (2010))

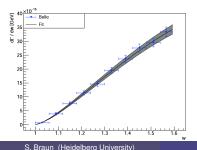
- Babar used 460M BB
- Fit \sim 3200 signal events

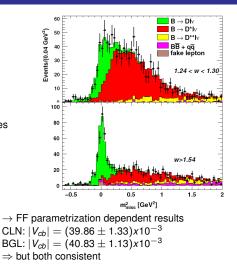
Belle (Phys. Rev. D 93, 032006 (2016)))

- used 771M BB
- Improved Hadronic B Tag based on NeuroBayes

 $|V_{\mu b}|$

• Fit \sim 17000 signal events





$$\frac{d\Gamma(B \to D^* l\nu)}{dw} = \frac{G_F^2 m_B^5}{48\pi^3} |V_{cb}|^2 (w^2 - 1)^{1/2} P(w) |\eta_{EW} \mathcal{F}(w)|^2$$

Babar (Phys.Rev.D77:032002,2008)

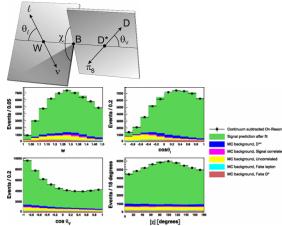
- based on 79*fb*⁻¹
- Fit 52.8K signal events

Belle (Phys.Rev.D82,112007(2010)))

- based on 711*fb*⁻¹
- Fit 120K signal events

both based on CLN parametrization perform 4-D fit to w, $\cos \theta_I$, $\cos \theta_V$, χ

$$|V_{cb}| = (38.71 \pm 0.47_{exp} \pm 0.59_{th})x10^{-3}$$



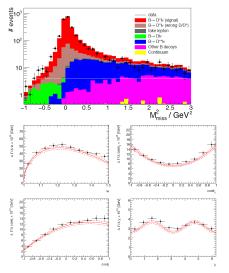
 $|V_{ub}|$

Exclusive $|V_{cb}| - B \rightarrow D^* I \nu$

New Belle analysis (ArXiv:1702.01521v2)

- use hadronic tag
- Signal extracted from unbinned maximum likelihood fit to missing mass $\rightarrow \sim 2400$ signal events
- Yields extracted in 4x10 bins of w and 3 angular variables
- gives $|V_{cb}|_{CLN} = (37.4 \pm 1.3) \times 10^{-3}$ consistent with world average of $|V_{cb}|_{WA} = (39.2 \pm 0.7) \times 10^{-3}$
- also published unfolded 4-D projections and full correlation matrix

 \rightarrow can be fitted with different FF parametrizations: BGL



 $|V_{ub}|$

Exclusive $|V_{cb}|$

Final discussion:

• $|V_{cb}|$ averages from $B \rightarrow D^* l\nu$ and $B \rightarrow D l\nu$ decays are consistent using the CLN parametrisation:

$$\begin{split} \eta_{EW} \mathcal{G}(1) |V_{cb}| &= (41.57 \pm 1.00) x 10^{-3} \quad (B \to D l \nu, LQCD, CLN) \\ \eta_{EW} \mathcal{F}(1) |V_{cb}| &= (35.61 \pm 0.43) x 10^{-3} \quad (B \to D^* l \nu, LQCD, CLN) \end{split}$$

with $\mathcal{F}(1)=0.906\pm0.013$ and $\mathcal{G}(1)=1.054\pm0.004\pm0.008$

• BGL parametrization more general:

 $\eta_{EW} \mathcal{F}(1) |V_{cb}| = (38.2^{+1.7}_{-1.6}) x 10^{-3} \quad (B \to D^* I \nu, LQCD, BGL)$

10% shift to higher $|V_{cb}|$ value, well beyond experimental precision \Rightarrow large discussion ongoing at the moment

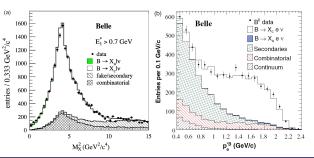
Inclusive $|V_{cb}|$

- Measurement of total semileptonic branching decay rate in inclusive semileptonic $b \rightarrow c$ transitions \Rightarrow extract inclusive $|V_{cb}|$
- Theoretical foundation for calculation of the total semileptonic rate is the Operator Product Expansion (OPE) which yields the Heavy Quark Expansion (HQE)
- shapes of kinematic distributions, such as charged lepton energy hadronic invariant mass spectra and hadronic energy, of $B \rightarrow X_c l \nu$ decays are sensitive to the HQE parameters
- since rates and spectra depend strongly on *m_b*, fit is done using different mass definitions: kinetic or 1S scheme
- simultaneous fit to kinematic distributions is performed to determine $|V_{cb}|$ together with parameters of the HQE and quark masses

Inclusive $|V_{cb}|$

$$\begin{split} \langle E_\ell^n \rangle &= \frac{1}{\Gamma_{E_\ell > E_{\rm cut}}} \int_{E_\ell > E_{\rm cut}} E_\ell^n \; \frac{d\Gamma}{dE_\ell} \; dE_\ell \; , \\ \langle m_X^{2n} \rangle &= \frac{1}{\Gamma_{E_\ell > E_{\rm cut}}} \int_{E_\ell > E_{\rm cut}} m_X^{2n} \; \frac{d\Gamma}{dm_X^2} \; dm_X^2 \end{split}$$

• several measurements of lepton energy $\langle E_l^n \rangle$ and hadronic mass $\langle m_x^{2n} \rangle$ performed by Belle, Babar, CLEO and DELPHI

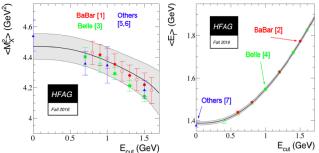


Phys. Rev. D 75, 032005 Phys. Rev. D 75, 032001

S. Braun (Heidelberg University)

Inclusive $|V_{cb}|$

 most precise results are obtained from gloabl fits that include the moments from all experiments



 \rightarrow latest HFLAV average gives $|V_{cb}|_{incl.} = (42.19 \pm 0.78) x 10^{-3}$ together with $\mathcal{B}(B \rightarrow X_c l \nu) = 10.65 \pm 0.16\%$ and $m_b^{kin} = 4.554 \pm 0.018$ GeV

Comparison Inclusive vs. Exclusive $|V_{cb}|$

- inclusive $|V_{cb}| = (42.19 \pm 0.78) x 10^{-3}$
- exclusive $|V_{cb}|_{W\!A} = (39.2 \pm 0.7) x 10^{-3}$

 \rightarrow gives $\sim 3\sigma$ tension between inclusive and exclusive determination of $|\textit{V}_{\textit{cb}}|$

 \rightarrow long standing discrepancy

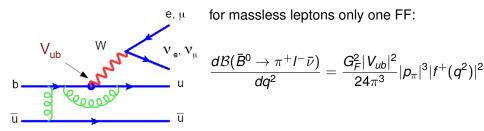
BUT: exclusive $|V_{cb}|$ depends on FF parametrization, using more general BGL parametrization from $B \rightarrow D^* l \nu$ gives:

 $|V_{cb}|_{excl.} = (41.9^{+2.0}_{-1.9})x10^{-3}$

- \rightarrow moves much closer to inclusive value
- \rightarrow tension resolved by that???
- \rightarrow large discussions ongoing

2. Part: |*V*_{*ub*}|

Exclusive $|V_{ub}|$

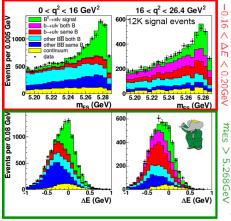


Theory Input

- Lattice QCD (UKQCD, FNAL, HPQCD, ...)
 - Works at high q2
 - Unquenched calculations (2+1, 2+1+1)
 - Other mesons (ρ, ω,...) difficult on lattice
- Light Cone Sum Rules
 - Reliable at low q2
 - · Works for both pseudo-scalars and vector decays

Exclusive $|V_{ub}|$ - Untagged $\bar{B}^0 \rightarrow \pi^+ I^- \bar{\nu}$ decays

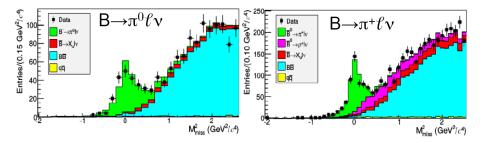
- performed by CLEO, Belle & Babar
- higher bkg (S/B<1)) and more restrictive kinematic cuts wrt. tagged analysis, but better precision on q² dependence on FF
- perform fit to m_{ES} and ΔE in bins of q^2 to extract signal



12.5K signal events (Phys.Rev.D86(2012) 092004)

Exclusive $|V_{ub}|$ - Tagged $\bar{B}^0 \to \pi I \bar{ u}$ decays

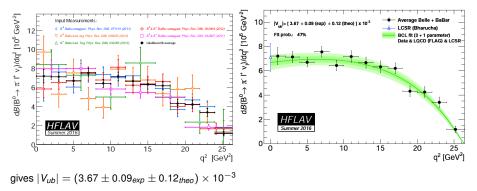
- second B is fully reconstructed in either hadronic or semileptonic mode
- · have high and uniform acceptance, S/B~10 but low statistical power
- Belle measurement using 711 *fb*⁻¹ (Phys.Rev.D88,032005) using hadronic tag gives ~200 $\bar{B} \rightarrow \pi^0 l \bar{\nu}$ and ~500 $\bar{B}^0 \rightarrow \pi^+ l^- \bar{\nu}$ events



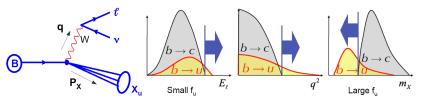
Exclusive $|V_{ub}|$ - HFLAV average

- $|V_{ub}|$ can be extracted from the average $\bar{B}^0 \to \pi l \bar{\nu}$ branching fraction together with the measured q^2 spectrum
- most sensitive method to do simultaneous fit to measured experimental partial rates and theory predictions versus q^2 to determine $|V_{ub}|$ and the first few coefficients of the BCL FF

parametrization: $f + (q^2, \vec{b}) = \frac{1}{1 - q^2/m_B^2} \sum_{k=0}^{K} b_k(t_0) z(q^2)^k$



Inclusive $|V_{ub}|$



Theory Input

- inclusive $\bar{B} \to X_u l^- \bar{\nu}$ decays described with Heavy Quark Expansion
- hard to measure due to large bkg from CKM-favoured $\bar{B} \rightarrow X_c l^- \bar{\nu}$ transitions \rightarrow need to go to phase space where those are kinematically suppressed, apply cut f_u
- there OPE breaks down \rightarrow requires introduction of non-pertubative distribution function: 'shape function', in general unknown
- becomes important near the endpoint of $\overline{B} \to X_u l^- \overline{\nu}$ lepton spectrum
 - \rightarrow different kinematic regions give different sensitivity to them

Inclusive $|V_{ub}|$

shape functions

- at leading order single shape function which is universal for all heavy-to-light transitions, measured in $\bar{B} \rightarrow X_s \gamma$ decays
- at subleading order in $1/m_b$, several shape functions appear
- · relations between shape functions and HQE parameters:

$$f(w) = \delta(w) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(w) - \frac{\rho_D^3}{18m_b^3}\delta'''(w) + \dots$$

 \rightarrow measurements of HQE parameters from global fits to $\bar{B} \rightarrow X_c l^- \bar{\nu}$ and $\bar{B} \rightarrow X_s \gamma$ moments can be used to constrain the SF moments

• HFLAV performs fits on the basis of several approaches, with varying degrees of model dependence and expansion orders in $1/m_b$ and α_s : BLNP, GGOU, DGE

Inclusive $|V_{ub}|$ - Measurements

Inclusive electron momentum:

(Phys. Rev. Lett. 88, 231803 (2002), Phys. Lett. B621, 28 (2005), Phys. Rev. D73, 012006 (2006))

- reconstruct a single electron to determine $\bar{B} \rightarrow X_u e^- \bar{\nu}$ near the kinematic endpoint
- · large selection efficiency but also large bkgs
- decay rate can be extracted for E_{e} > 2.3GeV, cuts deep in the SF region, where theoretical uncertainties are large
- 2 untagged "neutrino reconstruction":(Phys. Rev. Lett. 97, 019903 (2006))
 - · uses combination of a high-energy electron with missing momentum vector
 - large S/B \sim 0.7 for E_e > 2.0GeV with small selection efficiency, but smaller accepted phase space and uncertainties associated with the determination of the missing momentum
- 3 tagged B, other decaying semileptonically:

(Phys. Rev. D86, 032004 (2012), Phys. Rev. Lett. 95, 241801 (2005), Phys. Rev. Lett. 104, 021801 (2010), Phys. Rev. D95,

072001 (2017), Phys. Rev. Lett. 96, 221801 (2006))

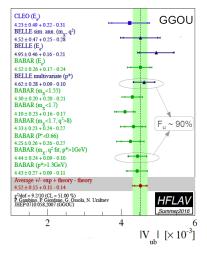
- fully reconstruct a "tag" B candidate in about 0.5% (0.3%) of B^+B^- ($B^0\bar{B^0}$) events
- electron or muon with momentum above 1.0 GeV required
- full set of kinematic properties $(E_l, m_X, q^2, \text{ etc.})$ are available
- high selection efficiency ~90%, but $\bar{B} \to X_c l^- \bar{\nu}$ remain important source of uncertainty

Inclusive $|V_{ub}|$ - Measurements

- Consistency between difference acceptance regions
- measured partial $\bar{B} \to X_u l^- \bar{\nu}$ rates and theoretical calculations from BLNP, GGOU and DGE are used to determine $|V_{ub}|^{\frac{|V_{ub}|^2}{|V_{ub}|^2}}$
- All calculations yield compatible $|V_{ub}|$ values and similar error estimates
- HFLAV average:

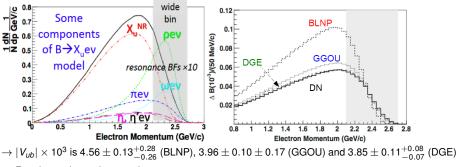
 $|V_{ub}| = (4.52 \pm 0.15_{exp} {}^{+0.11}_{-0.14theo}) \times 10^{-3}$

• BUT: |*V*_{ub}| is calculated from partial rates measured with *only one signal model*



New Inclusive $|V_{ub}|$ Measurement

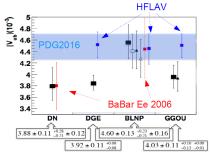
- recently new BABAR measurement based on inclusive electron spectrum for Ee > 0.8GeV Phys.Rev.D 95,072001 (2017)
- Highest sensitivity to $\bar{B}
 ightarrow X_u e^- \bar{\nu}$ in the wide bin 2.1-2.7 GeV
- Models make different predictions for the fractional rate in this bin



 \rightarrow Results are lower than previous measurement

Comparison Inclusive vs. Exclusive $|V_{ub}|$

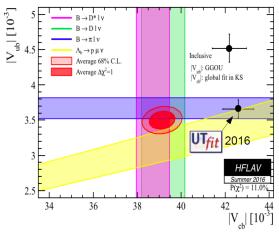
- exclusive $|V_{ub}|=(3.67\pm0.09_{exp}\pm0.12_{theo}) imes10^{-3}$
- inclusive $|V_{ub}| = (4.52 \pm 0.15_{exp-0.14theo}^{+0.11}) \times 10^{-3}$
 - \rightarrow gives $\sim 3.5\sigma$ tension between inclusive and exclusive determination of $|\textit{V}_{\textit{ub}}|$
 - \rightarrow long standing puzzle



inclusive $|V_{ub}|$ depends on signal model, crucial to consider this and use same model for both signal extraction and $|V_{ub}|$

Putting it all together

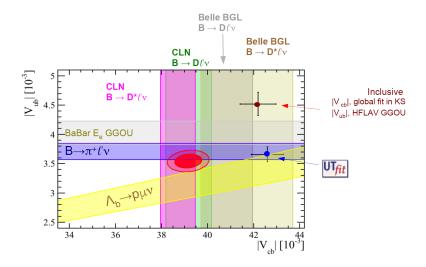
Total uncertainties better than 2% for $|V_{cb}|$ and at about 5-6 % for $|V_{ub}|$



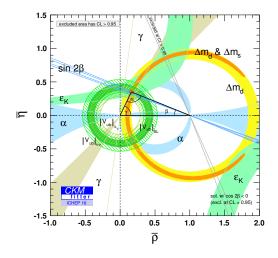
Indirect determinations from CKM fits prefer inclusive $|V_{cb}|$ and exclusive $|V_{ub}|$

S. Braun (Heidelberg University)

New Global Picture?



Unitarity Triangle



$$|V_{CKM}| \sim \left(egin{array}{cc} 1 & \lambda & \lambda^3 \ \lambda & 1 & \lambda^2 \ \lambda^3 & \lambda^2 & 1 \end{array}
ight)$$

with $\lambda \sim$ 0.22

Conclusions

- Exclusive $|V_{cb}|$: General agreement to move to model independent FF parametrizations
- Inclusive |V_{cb}|: Everything consistent here
- Exclusive $|V_{ub}|$: so far all measurements very consistent
- Inclusive $|V_{ub}|$: internally consistent but above CKM fit and exclusive determination

 \rightarrow very dependent on model predictions, Theory/parameters uncertainties dominate

- Inclusive Exclusive puzzle cannot be considered solved in $|V_{cb}|$ (~ 3 σ tension) nor $|V_{ub}|$ (~ 3.5 σ tension)
- in general $|V_{ub}|$ tension is seen as more striking \rightarrow need further independent measurements to check it
 - ightarrow exclusive $|V_{ub}|$ can be also measured in LHCb
 - \rightarrow covered in next lecture

Sources

- Neckarzimmern B-Physics Workshop 2016 Looking for Semileptonic b-hadron decays at LHCb, C. Bozzi Semi-Leptonic Theory, T.Mannel & 2017 From hadron colliders to e+e-, flavour physics at Belle II, T. Kuhr
- Quark and Lepton Flavor Physics Lectures by Ulrich Uwer https://www.physi.uni-heidelberg.de/ uwer/lectures/Flavor/notes.html
- Review of Particle Physics, C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update, http://pdg.lbl.gov/2017/reviews/rpp2017-rev-vcb-vub.pdf
- Leptonic and semileptonic decays of B mesons, Jochen Dingfelder and Thomas Mannel, Rev. Mod. Phys. 88, 035008 – Published 21 September 2016
- Mini review on |V_{ub}|, |V_{cb}| @LHCb and B-factories, Marcello Rotondo, https://cds.cern.ch/record/2301174/files/rotondo_sldecays.pdf
- Heavy Flavor Averaging Group (HFLAV), Eur. Phys. J. C (2017) 77:895
- CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184]

Thanks for your attention!

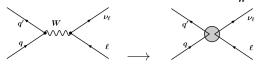
In general: weak decays of hadrons

- theoretically quarks are fundamental particles participating in Interaction
- experimentally one probes hadrons as asymptotic states \rightarrow introduce parametrization to treat the problem
- factorization: physics at different scale decouples \rightarrow factorize different physical effects in the transition amplitude
- form factors: describe shape corrections to the approximation that the scattering object is not point-like (e.g. non-relativistic Rutherford scattering) → encodes all non-pertubative QCD effects
- decay constant: absorbs the non-pertubative properties of meson decays

Approximations

Effective 4-fermion interaction:

• Since W is much heavier than the b quark, once can integrate out the W boson: $\langle 0 | T[W_{\mu}(x)W_{\nu}^{*}(0)] | 0 \rangle \sim \frac{1}{M_{W}^{2}} \delta^{4}(x)$



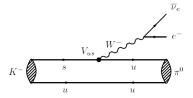
• semi-leptonic effective Hamiltonian:

$$\mathcal{H}_{eff}^{sl} = rac{4G_F}{\sqrt{2}} (ar{u}_L \gamma_\mu V_{CKM} d_L) (ar{e}_L \gamma_\mu ar{
u}_{e,L} + ar{\mu}_L \gamma_\mu ar{
u}_{\mu,L} + ar{ au}_L \gamma_\mu ar{
u}_{ au,L}) + h.c.$$

with
$$G_F = rac{g^2}{4\sqrt{2}M_W^2}$$
 correct up to order m_b^2/M_W^2

Factorization

consider decay $K^-
ightarrow \pi^0 e^- \nu$



$$A = \langle \pi^{0} e^{-\nu} | \mathcal{O} | K^{+} \rangle$$

= $\underbrace{\langle e^{-\nu} | \mathcal{O} | 0 \rangle}_{\text{leptonic part}} \frac{1}{M_{W}^{2}} \underbrace{\langle \pi^{0} | \mathcal{O} | K^{+} \rangle}_{\text{hadronic part}}$

hadronic part includes QCD binding of quarks, quite difficult to calculate \rightarrow in general parametrized by scalar functions of $q^2 = (p_K - p_\pi^0) \Rightarrow FF$

Form Factor- exclusive Vub

exclusive semi-leptonic decays

for pseudoscalar final state $P(p_P)$:

$$egin{aligned} &\langle P(p_P) | \, ar{q} \gamma^\mu b \, | B(p_B)
angle = & f_+(q^2) \left(p_B^\mu + p_P^\mu - rac{m_B^2 - m_P^2}{q^2} q^\mu
ight) \ &+ f_0(q^2) rac{m_B^2 - m_P^2}{q^2} q^\mu \end{aligned}$$

$$\langle P(p_P) | \, \bar{q} \gamma^{\mu} \gamma_5 b \, | B(p_B)
angle = 0$$

 $f_+(q^2)$ and $f_0(q^2)$ are form factors:

- Lattice QCD: at high $q^2 \sim (M B m_P)^2$
- QCD Sum rules: at low $q^2 \sim m_l^2$
- interpolation between both regions
- use FF bounds from analyticity and unitarity

Form Factor Parametrization - exclusive Vcb

need to extrapolate FF to zero-recoil point to extract CKM matrix element

- \rightarrow Parametrization use analyticity and unitarity constraints
 - **1** BGL expansion:

expressed in terms of variable: $z = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2})$

$$F(z) = \frac{1}{P_F(z)\phi_F(z)}\sum_{n=0}^{\infty}a_nz^n$$

2 CLN parametrization:

$$F(w) = F(1) - \rho^2(w-1) + c(w-1)^2 + \dots$$

with ρ is the slope of the FF, based on heavy quark limit

• LQCD FF calculations use HQS, unquenched: using realistic sea-quarks with 2+1 flavours, gives total uncertainty of 1-2%, main error from chiral extrapolation to realistic u,d quark masses and discretisation errors: $F(1) = 0.906 \pm 0.013$, sum rules give lower

Exclusive
$$|V_{cb}|$$

 $\bar{B} \rightarrow D l \bar{\nu}$ and $B \rightarrow D^* l \nu$ provide clean way to extract $|V_{cb}|$

$$rac{d\Gamma(ar{B} o D l ar{
u})}{dw} = rac{G_F^2}{48 \pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (w^2 - 1)^{3/2} |\eta_{EW} \mathcal{G}(w)|^2$$

Form Factor: $\mathcal{G}(w) = h_+(w) - \frac{m_B - m_D}{m_B + m_D} h_-(w)$ η_{EW} represents electroweak corrections

- using HQS: G is normalized at w=1, $h_+(1) = 1$ and $h_-(1) = 0$
- fit FF parametrization to $d\Gamma/dw$ to extract $|V_{cb}|$

Inclusive |V_{cb}|- Theory Input

Heavy Quark Expansion (HQE)

• use optical theorem to relate decay rate to forward matrix element of a scattering amplitude

$$\Gamma = Im \int d^4x \langle B(p_b) | T[H_{eff}(x)H_{eff}(0)] | B(p_B)
angle$$

• time-ordered product can be written as an operator product expansion (OPE):

$$\int d^4x T[H_{eff}(x)H_{eff}(0)] = \sum_{n,i} \frac{1}{m_Q^n} \underbrace{C_{n,i}}_{\text{Wilson coeff. operators of dimension n+3}} \underbrace{\mathcal{O}_{n+3,i}}_{\text{Wilson coeff. operators of dimension n+3}}$$

 $C_{n,i}$ are pertubatively calculable coefficients, $\mathcal{O}_{n+3,i}$ non-pertubative operators

• dimension of operators can be related to hadronic quantities: n=0, dim. 3: no unknown hadronic matrix element= partonic rate n=2, dim. 5: $2m_B\mu_{\pi}^2 = -\langle B(p_B) | \bar{b}_{\nu}(iD)^2 b_{\nu} | B(p_B) \rangle$, $2m_B\mu_G^2 = -\langle B(p_B) | \bar{b}_{\nu}\sigma_{\mu\nu}(iD^{\mu})(iD^{\nu})b_{\nu} | B(p_B) \rangle$ n=3, dim. 6: $2m_B\rho_D^3 = -\langle B(p_B) | \bar{b}_{\nu}(iD_{\mu})(i\nu D)(iD^{\mu})b_{\nu} | B(p_B) \rangle$, $2m_B\rho_{L,S}^3 = -\langle B(p_B) | \bar{b}_{\nu}\sigma_{\mu\nu}(iD^{\mu})(i\nu D)(iD^{\nu})b_{\nu} | B(p_B) \rangle$

Inclusive $|V_{cb}|$

$$\begin{split} & \Gamma = & |V_{cb}|^2 \frac{G_F^2 m_b^5(\mu)}{192\pi^3} (1 + A_{ew}) \times \\ & \left[z_0^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_0^{(1)}(r) + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 z_0^{(2)}(r) + \cdots \right. \\ & + \frac{\mu_\pi^2}{m_b^2} \left(z_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_2^{(1)}(r) + \cdots \right) \\ & + \frac{\mu_G^2}{m_b^2} \left(y_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_2^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_{\rm D}^3}{m_b^3} \left(z_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_3^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_{\rm LS}^3}{m_b^3} \left(y_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_3^{(1)}(r) + \cdots \right) + \ldots \right] \end{split}$$

- $\mu_{\pi}^2, \mu_G^2, \rho_D^3, \rho_{L,S}^3$ non-perturbative input into the heavy quark expansion
- in the same way HQE can be set up for the moments of distributions of charged-lepton energy, hadronic invariant mass and hadronic energy, e.g.:

$$\langle E_{e}^{n} \rangle_{E_{e} > E_{cut}} = \int_{E_{cut}}^{E_{max}} \frac{d\Gamma}{dE_{e}} E_{e}^{n} dE_{e} / \int_{E_{cut}}^{E_{max}} \frac{d\Gamma}{dE_{e}} dE_{e}$$

 $|V_{ub}|$

Inclusive $|V_{cb}|$

- shapes of kinematic distributions, such as charged lepton energy hadronic invariant mass spectra and hadronic energy , of $B \rightarrow X_c l \nu$ decays are sensitive to the HQE parameters \rightarrow HQE parameters are determined by fitting the HQE to these moments
- moments of the distribution of an observable *E_e*:

$$\langle E_e^n \rangle_{E_e > E_{cut}} = \int_{E_{cut}}^{E_{max}} \frac{d\Gamma}{dE_e} E_e^n dE_e \Big/ \int_{E_{cut}}^{E_{max}} \frac{d\Gamma}{dE_e} dE_e$$

• moments are measured as a function of the minimum lepton energy, as their dependence on E_{cut} contains information on the HQE parameters and thus provides additional sensitivity for their determination