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Abstract

This is a series of three short lectures for the Heidelberg RTG “Particle Physics
beyond the Standard Model”. After introducing the basic idea of effective field
theories in general, they focus on the dimension-6 operators of linear Higgs effective
field theory and their role at the LHC experiments.
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1 Overview

Effective field theory (EFT) is a very general tool that plays a role in many, if not all,
areas of physics. Whenever phenomena are spread out over different energy or length
scales, an effective description can be valuable, either to simplify calculations, or to
actually allow model-independent statements that would be impossible without such a
framework.
This introduction is divided into two parts. In Sec. 2 we will go through the basic

ideas behind effective field theories in rather general terms. We will mostly follow the
classic example of Fermi theory throughout this section, but we will also explain the
colour of the sky with EFT techniques. Most of the material in the first half is strongly
influenced by Refs. [1, 2].
In Sec. 3 we will apply these general ideas to electroweak and Higgs physics at the

TeV scale, currently probed by the ATLAS and CMS experiments. The effective model
of interest is called Higgs effective field theory and has received a lot of attention
lately. We will go through its building blocks, look at its phenomenology, and link it to
a few example scenarios of physics beyond the Standard Model (SM). Finally we will
discuss current constraints on dimension-6 operators and discuss if using this language
makes sense at the LHC.
Throughout the lectures, we will focus on words and pictures rather than mathematical

precision and technical details. This unfortunately means that some things will appear
from nowhere, and some details will be entirely omitted. Several important examples of
EFTs will never be mentioned, including χPT or dark matter EFTs. For a well-written,
slightly more rigorous, and much more extensive introduction to EFTs, see for instance
Refs. [1, 2].

2 Effective field theory essentials

2.1 Different physics at different scales

A hierarchy of scales

Our world behaves very differently depending on which energy and length scales we
look at. At extremely high energies (or short distances), Nature might be described
by a quantum theory of gravity. At energies of a few hundred GeV, the Standard
Model of particle physics is (disappointingly) in agreement with everything. Going to
lower energies (or larger distances), we do not have to worry about Higgs or W bosons
anymore: there are electromagnetic interactions described by QED, weak interactions
described by Fermi theory, and the strong physics of QCD. Below a GeV, quarks and
gluons are replaced by pions and nucleons as the relevant degrees of freedom. Then by
nuclei, atoms, molecules. At this point most physicists give up and let chemists (and
ultimately biologists and sociologists) analyse the systems.
The important thing here is that the observables at one scale are not directly sensitive

to the physics at significantly different scales. This is nothing new: for molecules to stick
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together, the details of the Higgs sector are not relevant; and we can calculate how an
apple falls from a tree without knowing about quantum gravity. To do physics at one
scale, we do not have to (and often cannot) take into account the physics from all other
scales. Instead, we isolate only those features that play a role at the scale of interest.
An effective field theory is a physics model that includes all effects relevant at a given

scale, but not those that only play a role at significantly different scales. In particular,
EFTs ignore spatial substructures much smaller than the lengths of interest, or effects
at much higher energies than the energy scale of interest.
We will mostly work on examples with one full or underlying theory and one effective

theory. For simplicity, we pretend that the full theory describes physics correctly at all
scales. The EFT is a simpler model than the full theory and neglects some phenomena
(such as heavy particles) at energy scale Λ. However, it correctly describes the physics
as long as the observables probe energy scales

E � Λ , (1)

within some finite precision. This scale hierarchy between the energy of interest and
the scale of high-energy physics not included in the EFT is the basic requirement for the
EFT idea. A validity range (1) is a fundamental property of each EFT.

Fermi theory

The textbook example for an EFT is Fermi theory. It describes the charged current
interactions between quarks (or hadrons), leptons and neutrinos at low energies (we will
write down the theory in detail in the next section). The underlying model here is the
SM, in which this weak interaction is mediated by the exchange of virtual W bosons
with mass mW and coupling constant g:

Mfull ∼
p

W

f2

f1

f4

f3

g g ∼ g2

p2 −m2
W

(2)

In the effective model, there are no W bosons, just a direct interaction between four
fermions with coupling constant GF ∝ g2/m2

W :

MEFT ∼

f2

f1

f4

f3

GF ∼ GF ∝ −
g2

m2
W

(3)

The EFT turns the W propagator into a contact interaction between the fermions,
shrinking the distance bridged by the virtual W to zero. Clearly, the two amplitudes
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agree as long as the momentum transfer through the vertex is small, E2 = p2 � Λ2 =
m2
W :

g2

p2 −m2
W

= − g2

m2
W

(
1 + p2

m2
W

+O
(
p4/m4

W

))
≈ − g2

m2
W

. (4)

One process described by this interaction is muon decay. Its typical energy scale
E ≈ mµ is well separated from Λ = mW . Fermi theory will describe the process quite
accurately. The relative EFT error, i. e. the mistake we make when calculating an
observable with the EFT rather than with the full model, should be of order

∆EFT = σEFT
σfull

∼ E2/Λ2 ∼ m2
µ/m

2
W ≈ 10−6 . (5)

In proton collisions at the LHC the same interaction takes place, but at potentially
much larger momentum transfer E < 13 TeV. The EFT error increases with E. For E &
mW , the full model allows on-shell W production, a feature entirely missing in the EFT.
Here the two descriptions diverge and Fermi theory is no longer a valid approximation
of the weak interaction.

Down and up the theory ladder

In reality there are of course more than two theories, and the notion of underlying and
effective model becomes relative. Take the example given above. On the one hand, we
treated the Standard Model as the full theory. But the SM itself is not valid up to arbit-
rary large energies: it does not explain dark matter, the matter-antimatter asymmetry,
inflation, or gravity. It is probably also internally inconsistent since at some very large
energy the quartic coupling λ and the coupling constant g′ seem to hit Landau poles,
i. e. become infinite. So the SM is an effective theory with validity range E � Λ ≤MPl

and has to be replaced by some other description at larger energies. On the other hand,
going to energies lower than a few GeV, the relevant physics changes again and we can
(but do not have to) adapt a new effective theory. In this way, all theories can be thought
of as a series of EFTs, where the model valid at one scale is the underlying model for
the effective theory at the next lower scale.
If you think you know a theory that describes our world at sufficiently large energies,

then in principle there is no need to use effective theories: you can calculate every single
observable in your full model.1 This will however make hard calculations necessary even
for the simplest low-energy processes. One can save a lot of computational effort and
focus on the relevant physics by dividing the phase space into regions with different
appropriate effective descriptions.
Starting from a high energy scale where the parameters of the fundamental theory are

defined, these parameters are run to lower energies until the physics changes substan-
tially. At this matching scale an effective theory is constructed from the full model,

1This may not be true if the full model becomes non-perturbative at some energy, such as QCD at
E ∼ ΛQCD. Then you will have to use an effective theory valid at E � ΛQCD.
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and its coefficients are determined from, or matched to, the underlying model. Then
the coefficients of this EFT are run down to the next matching scale, where a new EFT
is defined and its parameters are calculated, and so on. This is the top-down view of
EFTs. For instance, we can start from the SM and construct Fermi theory as a simpler
model valid at low energies. While we can certainly use the SM to calculate the muon
lifetime, it is not necessary, and a calculation in Fermi theory is quite accurate and
simpler.
But often we do not know the underlying theory. As mentioned above, there has to be

physics beyond the SM, and there is still hope it will appear around a few TeV. If we want
to parametrize the effects of such new physics on electroweak-scale observables, we do not
know how the full model looks like. But even without knowing the underlying model, we
can still construct an effective field theory based on a few very general assumptions. We
will go through these ingredients in the next section. For this bottom-up approach, an
effective theory is not only useful, but actually the only way we can discuss new physics
without choosing a particular model of BSM physics.
High-energy physics can be seen as the field of working ourselves up a chain of EFTs

to ever higher energies. But how does this chain end? Does it end at all? Even if we
one day find a consistent theory that can explain all observations to date, how would
we check if it indeed describes Nature up to arbitrarily high energies? Understanding
all theories as effective, these questions do not matter! The EFT framework provides us
with the tools to do physics without having to worry about the far ultraviolet.

2.2 Effective operators
Reminder: operators and power counting

EFTs are especially useful in the framework of quantum field theory (QFT). Before going
into details, let us recapitulate how QFTs are organized. We will stick to local theories
in d = 4 flat space-time dimensions.
The basic object describing such a QFT is the action

S =
∫

d4x L(x) . (6)

The Lagrangian L(x) is a sum of couplings times operators, where the operators are
combinations of fields and derivatives evaluated at one point x. These are either kin-
ematic terms, mass terms or represent interactions between three or more fields. For
instance, the Lagragian

L = iψ̄iγµ∂µψi −
1
4VµνV

µν −miψ̄iψi +m2
V VµV

µ − gψ̄iγµψiV µ (7)

with implicit sum over i describes fermions ψi, a massive vector boson Vµ, and an
interaction between them with coupling g.
A key property of each coupling or operator is its mass dimension. In simple terms

this can be formulated as the following question: if you assign a value to a quantity,
which power of a mass unit such as GeV would this value carry? Since we work in units
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with ~ = c = 1, length and distance dimensions are just the inverse of mass dimensions.
We will denote the mass dimension of any object with squared brackets, where [O] = D
means that O is of dimension massD, or mass dimension D.
In QFT, the action can appear in exponentials such as eiS , so it must be dimensionless:

[S] = 0. The space-time integral in Eq. (6) then implies [L] = d = 4, so every term in
the Lagrangian has to be of mass dimension 4. Applying this to the kinetic terms, we
can calculate the mass dimension of all fields. This then allows us to calculate the mass
dimension of operators and couplings in the theory.
In the example in Eq. (7), the kinetic term for the fermions contains one space-time

derivative, [∂] = 1. To get [ψ̄∂ψ] = 4, the fermion fields must have dimension [ψi] = 3/2.
Similarly, the field strength Vµν contains a derivative, so we end up with [Vµ] = 1.
With these numbers we can check the other operators. In addition to the expected
[m] = [mV ] = 1, we find [ψ̄ψV µ] = 4 or [g] = 0.
The mass dimension of an operator has two important consequences. First, the renor-

malization group flow of a theory, i. e. the running of the couplings between different
energy scales, largely depends on the mass dimensions of the operators. Operators with
mass dimension D < d (“relevant” operators) receive large quantum corrections when
going from large energies to low energies. This is the argument behind several finetuning
problems such as the hierarchy problem or the cosmologocial constant problem. On the
other hand, operators with D > d (“irrelevant” ones) are typically suppressed when
going to lower energies. Operators with D = d are called “marginal”.
The second consequence of the mass dimension affects the renormalizability of a theory.

Theories with operators with D > d are non-renormalizable:2 particles in loops with
energies E →∞ will lead to infinities in observables, and they are too many to be hidden
in a renormalization of the parameters.

Building blocks

From now on we will only consider EFTs realized as a local QFT in 4 space-time dimen-
sions, an approach that has proven very succesful in high-energy physics so far.
EFTs are then defined as a sum of operators Oi, each with a specific mass dimension

Di. We can split the coupling in front of each operator into a dimensionless constant,
the Wilson coefficient ci, and some powers of a mass scale, for which we use the scale
of heavy physics Λ:

L = (kinetic and mass terms) +
∑
i

ci
ΛDi−d Oi . (8)

Why do we force Λ to appear in front of the operators like this? If we do not know
anything about the underlying model at scale Λ, our best guess is that it consists of
dimensionless couplings ∼ O (1) and masses ∼ O (Λ). Indirect effects mediated by this
high-energy physics should therefore be proportional to a combination of these factors,

2The opposite is not true, by the way. Some theories contain only operators with D ≤ d, but are still
not renormalizable.
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as given in Eq. (8) with couplings ci ∼ O (1). This is certainly true in Fermi theory,
where the effective coupling GF is suppressed by Λ2 = m2

W .
How the operators Oi look like might be clear in a top-down situation where we know

the underlying theory. In a bottom-up approach, however, we need a recipe to construct
a list of operators in a model-independent way. It turns out that this is surprisingly
straightforward, and the list of operators we need to include in the EFT is defined by
three ingredients: the particle content, the symmetries, and a counting scheme that
decides which operators are relevant at the scale of interest. We will go through them
one by one.

1. Particle content: one has to define the fields that are the dynamical degrees of
freedoms in the EFT, i. e. that can form either external legs or internal propagators
in Feynman diagrams. At least all particles with massesm� Λ should be included.
The operators are then combinations of these fields and derivatives.

2. Symmetries: some symmetry properties of the world have been measured with
high precision, and we can expect that a violation of these symmetries has to be
extremely small or happens at very high energies. These can be gauge symmet-
ries (such as the SU(3) × SU(2) × U(1) of the SM), spacetime symmetries (such
as Lorentz symmetry), or other global symmetries (such as flavour symmetries).
Requiring that the effective operators do not violate these symmetries is well mo-
tivated and can reduce the complexity of the theory significantly.

3. Counting scheme: with a set of particles and some symmetry requirements we
can construct an infinite tower of different operators. We therefore need some rule
to decide which of the operators we can neglect. Here the dimensionality of the
operators becomes important. As argued above, we expect an operator with mass
dimension D > d to be suppressed by a factor of roughly 1/ΛD−d. Operators of
higher mass dimension are therefore more strongly suppressed. Setting a maximal
operator dimension is thus a way of limiting the EFT to a finite number of operators
that should include the leading effects at energies E � Λ.

One property that is often required of theories is missing in this list: an EFT (with its
intrinsic UV cutoff Λ) does not have to be renormalizable. In fact, most EFTs include
operators with mass dimension D > d and are thus non-renormalizable.

An EFT of weak interactions

As an example, let us pretend to not know anything about the SM, and construct an
EFT of the weak interaction around or below a few GeV.

1. Above ΛQCD, the particle content is given by the leptons and quarks, excluding the
top. For a general EFT at these energy scales we would have to include photons
and gluons as well, but for simplicity we will leave them out here. For energies
below ΛQCD we should in principle write down a different EFT based on baryons
and mesons, but this does not really change the result.

7



2. The low-energy symmetries observed at these energies are Lorentz invariance as
well as the conservation of electromagnetic charge, lepton number, and baryon
number. Since we already leave out the gluons, we will pretend colour charges do
not exist. 3

3. Finally, let us only keep the operators with the lowest mass dimension (not counting
kinetic and mass terms).

The kinetic and mass terms for the fermions read

L ⊃ iψ̄iγµ∂µψi −miψ̄iψi . (9)

As before, we can calculate the mass dimension of all objects and find

[ψ] = 3
2 and [∂] = 1 . (10)

Adding operators composed of two fermion fields will only give us more kinetic and mass
terms and not change anything. Operators with three fermion fields violate both fermion
number conservation and Lorentz invariance. So the lowest-dimensional operators that
we can write down include four fermion fields and no derivatives:

L ⊃ c1 ijkl
Λ2

(
ψ̄iψj

) (
ψ̄kψl

)
+ c2 ijkl

Λ2

(
ψ̄iγ5ψj

) (
ψ̄kψl

)
+ c3 ijkl

Λ2

(
ψ̄iγ5ψj

) (
ψ̄kγ5ψl

)
+ c4 ijkl

Λ2

(
ψ̄iγµψj

) (
ψ̄kγ

µψl
)

+ c5 ijkl
Λ2

(
ψ̄iγ5γµψj

) (
ψ̄kγ

µψl
)

+ c6 ijkl
Λ2

(
ψ̄iγ5γµψj

) (
ψ̄kγ5γ

µψl
)

+ c7 ijkl
Λ2

(
ψ̄iγµγνψj

) (
ψ̄kγ

µγνψl
)
, (11)

Here some entries of the Wilson coefficient matrices c1 to c7 have to be zero to conserve
lepton and baryon number. We will drop these flavour indices from now on.
In this bottom-up approach, all remaining coefficients are free parameters and have to

be determined by experiment. With the measurement of the muon lifetime, beta decay,
and parity violation it turns out that the c5 and c6 coefficients are equal and of opposite
sign, while the others are zero (ignoring Z and H interactions):

L = iψ̄iγµ∂µψi −miψ̄iψi + c

Λ2

(
ψ̄i(1− γ5)γµψj

) (
ψ̄k(1− γ5)γµψl

)
. (12)

This is exactly Fermi theory, with GF =
√

2c/Λ2 = 1.16 · 10−5 GeV−2.
The dimension-6 operators in this theory are not renormalizable, so Fermi theory

cannot be valid at arbitrary large energies. But even knowing the Wilson coefficients,
one cannot determine the scale Λ where the EFT breaks down. By postulating that the
underlying theory is perturbative, c . 4π, one can set an upper limit Λ .

√
4π/GF ≈

1040 GeV, much larger than the observed Λ = mW = 80 GeV.
3Based on the experience with electromagnetism, and without taking into account the measurement of

P and C violation, one might be tempted to also prescribe P and C invariance, which would lead to
the wrong EFT.
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Why is the sky blue?

Finally, here is one last simple example for how the EFT framework lets us estimate
physics effects even when we do not know the full theory. It is taken from Ref. [2].
Why does the sky appear blue to us? In other words, why is blue light coming from

the sun scattered more strongly by particles in the atmosphere than red light? A full de-
rivation of this takes some time and requires knowledge of the underlying electrodynamic
interactions.
Let us instead try to answer this question by writing down an effective field theory for

this process, Rayleigh scattering. The only thing we have to know are the basic scales
of the process: photons with energy Eγ scatter off basically static nuclei characterized
by an excitation energy ∆E, mass M and radius a0. Looking at these numbers, we see
that these scales are clearly separated:

Eγ � ∆E, a−1
0 �M . (13)

This is good news, since such a scale hierarchy is the basic requirement for an EFT. We
are interested in elastic scattering, so we set the cutoff of the EFT as4

Λ ∼ ∆E, a−1
0 . (14)

With this we can put together the building blocks for our EFT as discussed in Sec. 2.2:

1. As fields we will need photons and atoms, where we can approximate the latter as
infinitely heavy.

2. The relevant symmetries are the U(1)em and Lorentz invariance. At these energies
we will also not be able to create or destroy atoms, which you can see as another
symmetry requirement on the effective Lagrangian.

3. We will include the lowest-dimensional operators that describe photon-atom scat-
tering.

The kinetic part of such an EFT reads

Lkin = φ†vivα∂αφv −
1
4FµνF

µν , (15)

where φv is the field operator representing an infinitely heavy atom at constant velocity
v, and Fµν is the photon field strength tensor. Boosting into the atom’s rest frame,
v = (1, 0, 0, 0) and the first term becomes the Lagrangian of the Schrödinger equation.
The usual power counting based on [L] = 4 gives the mass dimensions

[∂] = 1 , [v] = 0 , [φ] = 3
2 and [Fµν ] = 2 . (16)

4In reality there are two orders of magnitude between ∆E and a−1
0 , but this does not affect the line of

argument at all and we choose to ignore this fact.
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The interaction operators must be Lorentz-invariant combinations of φ†φ, Fµν , vµ,
and ∂µ. Note that operators directly involving Aµ instead of Fµν are forbidden by
gauge invariance, and single instances of φ correspond to the creation or annihilation of
atoms which is not possible at these energies. The first such operators appear at mass
dimension 7,

Lint = c1
Λ3φ

†
vφvFµνF

µν + c2
Λ3φ

†
vφvv

αFαµvβF
βµ +O

(
1/Λ4

)
, (17)

and we expect them to contain the dominant effects of Rayleigh scattering at energies
Eγ � Λ.
The scattering amplitude of light off the atmospheric atoms should therefore scale as
M ∼ 1/Λ3, which means that the cross section scales with σ ∼ 1/Λ6. Since the cross
section has the dimension of an area,

[σ] = −2 , (18)

and the only other mass scale in this low-energy process is the photon energy Eγ , we
know that the effective cross section must be proportional to

σ ∝
E4
γ

Λ6 (1 +O (Eγ/Λ)) . (19)

In other words, blue light is much more strongly scattered than red light. Our effective
theory, built just from a few simple assumptions, explains the colour of the sky!
Finally, we should check the validity range of our EFT. We expect it to work as long

as

Eγ � Λ ∼ ∆E ∼ O (eV) (20)

which is equivalent to wavelengths above O (100 nm). Our approximation is probably
safe for visible light! But already in the near ultraviolet we expect deviations from the
E4
γ proportionality.

2.3 Matching
Full and effective descriptions of physics

Let us go back to the simple picture of one full and one effective theory and summarize
the typical differences between the two setups.

• The full model contains heavy particles with mass & Λ that are not part of
the EFT. In the effective model their effects are mapped onto additional higher-
dimensional operators involving only the light fields.

• We pretend that the full model is valid at all energies (even though no such theory
exists so far). The EFT, in any case, is only valid at E � Λ. Only in this
low-energy region the two descriptions agree.
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• The full model is renormalizable, while the EFT is not.

• An interaction mediated by heavy fields in the full model is described by the higher-
dimensional operators in the EFT, see for instance Eqs. (2) and (3). This means
that the non-local interaction in the full model is approximated as a local contact
interaction in the EFT.

Matching full and effective theory

The final missing puzzle piece is now the link between a full model and its EFT: if we
know an underlying model, how do we map it to the Wilson coefficients of an EFT? This
procedure is known as matching and plays an important role in a top-down approach
to EFTs. Note that it cannot be reversed into a bottom-up matching—one cannot
uniquely reconstruct a full theory only based on the EFT.
The core idea of the matching procedure that at a matching scale the predictions of

the underlying model and the EFT agree up to corrections suppressed by some power
of 1/Λ.
We will now sketch a straightfoward recipe based on Feynman diagrams. For a deriv-

ation and detailed discussion, see the QFT textbook of your choice or Ref. [3].

1. Start with the particle content of the full model. Choose Λ and divide the particles
of the full model into light and heavy fields. Light fields, which should include at
least those with masses below Λ, will make up the particle content of the effective
theory. Heavy fields will be integrated out, that is, removed as dynamical degrees
of freedom in the EFT.

2. Based on the particles and interactions of the full model, draw all connected Feyn-
man diagrams in which
• all external legs are light fields, and
• all internal lines are heavy fields.

Using the Feynman rules of the full model, calculate the expressions for these
diagrams. Do not treat the external legs as incoming or outgoing particles, but
keep the field operator expressions.

3. Express quantities of the full model in terms of Λ. Truncate this infinite series of
diagrams at some order in 1/Λ, depending on the dimension of the operators that
you want to keep. Together with kinetic and mass terms for the light fields, these
form the Lagrangian of the EFT.

Fermi theory again

Let us apply this top-down procedure to our standard example of Fermi theory. For
simplicity, we do not take the full SM, but just the interactions between massive W
bosons and fermions as the underlying theory. The Lagrangian of these interactions is
similar to that given in Eq. (7).
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1. Our full model consists of the quarks and leptons and the W boson. We want to
analyse weak interactions below theW mass, so we set Λ = mW . So all quarks and
leptons except for the top are the light particles of the EFT, while the W boson
and the top quark are heavy and have to be integrated out.

2. The only diagram with the requested features that has only one heavy propagator
has the form

p

W

ψ̄i

ψj

ψ̄k

ψl

(21)

Double lines denote a heavy field. There are additional diagrams with W self-
interactions orW loops, but they involve at least twoW propagators, which means
that all contributions from them will be of order O

(
1/Λ4), which we will neglect.

This diagram evaluates to(
ψ̄i

ig√
2

1− γ5
2 γµψj

) −gµν
p2 −m2

W

(
ψ̄k

ig√
2

1− γ5
2 γνψl

)

=
g2
(
ψ̄i(1− γ5)γµψj

) (
ψ̄k(1− γ5)γµψl

)
8(p2 −m2

W )
(22)

3. The only dimensionful parameter is mW = Λ, and for the EFT to be valid we
assume p2 � Λ2. We can then expand this expression as

g2

8m2
W

(
ψ̄i(1− γ5)γµψj

) (
ψ̄k(1− γ5)γµψl

)
+O

(
1/Λ4

)
. (23)

With this, we again rediscover the dimension-6 EFT matched to the weak interac-
tions of the SM:

L = iψ̄iγµ∂µψi −miψ̄iψi + c

Λ2

(
ψ̄i(1− γ5)γµψj

) (
ψ̄k(1− γ5)γµψl

)
. (24)

with heavy scale Λ = mW and Wilson coefficient c = g2/8. Replacing c/Λ2 by
GF /
√

2 = g2/(8m2
W ) restores the historic form of Fermi theory.

A few words on operator mixing

So far we have neglected that like all parameters in a QFT, the Wilson coefficients of an
EFT depend on the energy scale. Running the model from one energy to a different one,
operators will generally mix: loop effects from one operator will affect the coefficients of
other operators. If the Wilson coefficients are given at the matching scale Λ (we use this
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symbol since the matching scale is usually chosen only slightly below the EFT cutoff),
at the scale of interest E they will take on values of the form

ci(E) ∼ ci(Λ)±
∑
j

g2

16π2 log Λ2

E2 cj(Λ) , (25)

where g are the typical couplings in the loops.
If the matching scale is not too far away from the energy scale of interest and if all

Wilson coefficients are already sizable at the matching scale, this is often negligible.
There is an important consequence, though: even if an operator is zero at the matching
scale, operator mixing will give it a small but non-zero value at lower energies. So
regardless of what the underlying model is, it can be expected that eventually all effective
operators allowed by the symmetries will receive contributions from it.

3 Higgs effective field theory at the LHC
3.1 Relevance
Let us leave historic and toy examples behind and focus on a more exciting area of
physics: that explored at the electroweak scale of a few hundred GeV. So far the LHC
experiments overwhelmingly show agreement with the SM. Still, there are a few reasons
to expect new physics at TeV energies, such as the hierarchy problem or the WIMP
“miracle” of dark matter. Unfortunately these (purely aesthetic) arguments do not tell us
how exactly such physics should look like. There are many more or less motivated models,
including supersymmetric ones, extended gauge groups, extra dimensions, composite
Higgses, and the list goes on and on.
This leaves us with a question highly relevant for upcoming ATLAS and CMS analyses:

what is the best language to discuss indirect signs of new physics at the electroweak scale,
in particular in the Higgs sector?
Directly interpreting measurements in complete models of new physics is impractical:

for o � 1 observables and m � 1 models this requires om limits to be derived. Also,
the paramater space of such models (think of the relatively simple MSSM) can be huge,
and many of the features of these models do not matter at the electroweak scale at all.
It makes more sense to define an intermediate framework that can be linked both to
measurements and to full theories, so only o sets of limits plus m translation rules from
complete theories to the intermediate language have to be calculated. Such a framework
should include all necessary physics, but no phenomena irrelevant at this scale. . . sounds
familiar?
One such possibility is to dress the SM Lagrangian with form factors, as done for

instance in the κ (or ∆) framework of Higgs physics. Such an approach is well suited
to parametrize shifts in total rates, but unable to account for new structures that are
not present in the SM, visible as changes in distributions. For better or worse, this
framework is also agnostic about correlations between different couplings: there is no
clear way how to combine the results from triple gauge vertices and Higgs properties,
for instance.
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Of course in this lecture the answer instead has to be an effective field theory. We will
construct this Higgs EFT (or SM EFT) in the next section. In Sec. 3.3 we will analyse
the phenomenology of its effective operators, and it will turn out that they can indeed
parametrize changes in distributions as well as allow us to combine different observables
in a global fit. It seems that we have found the perfect language for our problem—until
we remember in Sec. 3.5 that for effective field theories one always has to check the
validity. . .

3.2 Dimension-6 operators
Building blocks

Since we do not know what physics lays beyond the SM, we have to construct Higgs
EFT from a bottom-up perspective. As discussed in Sec. 2.2, this means we have to
write down all operators based on a set of particles that are compatible with certain
symmetries and are important according to some counting scheme. Let us go through
these one by one:

1. Our EFT will contain all SM fields. There is one subtlety: in the SM, the physical
Higgs particle h and the Goldstone bosons wi that become part of the W and Z
bosons during electroweak symmetry breaking are combined in a SU(2)L doublet

φ = 1√
2

(
w1 + iw2
v + h+ iw3

)
, (26)

where v = 246 GeV is the vacuum expectation value (VEV) of φ in its potential. We
choose to use φ as the fundamental building block of our EFT, which is motivated
by the fact that the SM is in great agreement with all observations so far. This is
often called the linear Higgs EFT.5

2. All operators have to be invariant under Lorentz transformations and under the
SM gauge group SU(3)C×SU(2)L×U(1)Y . They also should conserve lepton and
baryon number.

3. We again assume that higher-dimensional operators will be suppressed by more
powers of the cutoff scale Λ. We will keep those up to mass dimension 6.

Simple dimensional analysis of the kinetic terms of the SM fields tells us the mass
dimensions of all building blocks:

[f ] = 3
2 , [Vµ] = 1 , [Vµν ] = 2 , [φ] = 1 , [∂µ] = 1 and [Dµ] = 1 . (27)

Here f refers to the lepton and quark fields; Vµ to the gauge bosons Giµ, W i
µ, and Bµ;

Vµν to the corresponding field strength tensors; and Dµ to the covariant derivative that
combines a partial derivative with couplings to gauge bosons.

5As an alternative, it is also possible to use h as the fundamental building block and to not assume the
SM doublet structure of Eq. (26). This is called the non-linear Higgs EFT. The terms “linear” and
“non-linear” by the way refer to the behaviour under custodial transformations.
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Operators and bases

There are no dimension-5 operators,6 so our EFT will have the form

LEFT = LSM +
∑
i

fi
Λ2Oi (28)

with unknown cutoff scale Λ and Wilson coefficients fi.
On the one hand, note that the object φ†φ is a scalar gauge singlet. We can simply

attach it to any dimension-4 operator of the SM to get a dimension-6 operator of our
EFT:7

Oφ3 = 1
3(φ†φ)3 , (29)

Oφ4 = (φ†φ) (Dµφ)†(Dµφ) , (30)
OGG = (φ†φ)Gaµν Gµν a , (31)

OBB = −g
′2

4 (φ†φ)Bµν Bµν , (32)

OWW = −g
2

4 (φ†φ)W k
µνW

µν k , (33)

Of = (φ†φ) F̄LφfR + h. c. . (34)

Other operators have more complicated structures, often involving derivatives:

Oφ1 = (Dµφ)†φ φ†(Dµφ) , (35)

Oφ2 = 1
2 ∂

µ(φ†φ) ∂µ(φ†φ) , (36)

OBW = −g g
′

4 (φ†σkφ)BµνWµν k , (37)

OB = ig2 (Dµφ†)(Dνφ)Bµν , (38)

OW = ig2 (Dµφ)†σk(Dνφ)W k
µν . (39)

There are many more operators one can write down, and we will not list all of them.
The first complete set of 80 operators (not counting flavour structure and Hermitian
conjugation) was published in 1985 [4]. It was soon noticed that not all of these operators
are actually independent: they can be linked through equations of motions of the SM
fields, integration by parts, or field redefinitions. Taking these effects into account, a
(complete and not redundant) basis for dimension-6 operators consists of 59 operators
(again up to flavour and Hermitian conjugation). It took until 2010 for someone to write
down such a basis [5]. Three different conventions have become popular: in addition to

6After adding right-handed neutrinos to the SM, one can construct the dimension-5 “Weinberg oper-
ator”. It generates a Majorana mass term for the neutrinos, but is entirely irrelevant for the physics
we will discuss.

7Of looks slightly different for up-type quarks, just as in the SM Yukawa couplings.
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the “Warsaw” basis [5], there is the SILH convention [6] and the HISZ basis [7]. Here
we stick to the latter.
If we count all possible flavour structures for three fermion generations, there are 2499

operators in the dimension-6 basis, so in practice we will always assume flavour-diagonal
or even flavour-universal Wilson coefficients. And just in case you are wondering why we
are stopping at dimension 6: using the counting that gave 59 independent dimension-6
operators, there are O (1000) ones at dimension 8 and O (10 000) dimension-10 operators.

3.3 Operator phenomenology
As discussed above, we need to think about Higgs EFT from two perspectives, linking
it to observables and complete theories of new physics. Let us start with the first con-
nection and discuss the phenomenology of two example operators. For a more complete
treatment, see e. g. Ref. [8].

Oφ2: rescaled Higgs couplings

Ignoring the Goldstones,

φ†φ = v2 + 2vh̃+ h̃2

2 (40)

where we use a tilde on the Higgs boson field for reasons that will become clear soon.
The operator Oφ2 then becomes

LEFT ⊃
fφ2
2Λ2 ∂

µ(φ†φ) ∂µ(φ†φ)

= fφ2
2Λ2

(2v∂µh̃+ 2h̃∂µh̃)2

4

= fφ2v
2

2Λ2 ∂µh̃∂
µh̃+O

(
h3
)
. (41)

The h3 (and higher) interactions are only important for Higgs pair production. The
first term, on the other hand, presents a rescaling of the kinetic term of the Higgs boson:

LEFT ⊃
(

1 + fφ2v
2

Λ2

)
1
2 ∂µh̃∂

µh̃ . (42)

The usual Feynman rules (and all Monte-Carlo software) assume a canonical normaliz-
ation of this term, so we have to renormalize h̃ as

h =

√
1 + fφ2v2

Λ2 h̃ . (43)

This restores the canonical form of the kinetic term, but also rescales all other instances
of the Higgs field in the Lagrangian, for instance the Higgs couplings to all other particles
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ghxx = 1√
1 + fφ2v2

Λ2

gSM
hxx =

(
1− fφ2v

2

2Λ2

)
gSM
hxx +O

(
v4/Λ4

)
. (44)

A non-zero Wilson coefficients fφ2 will thus universally rescale all couplings of the
Higgs boson and lead to some more complicated effects in the Higgs self-coupling. The
first effect would lead to shifts in the measured signal strengths in all Higgs meas-
urements, while the distributions stay the same as in the SM (neglecting interference
effects). The latter will be visible in Higgs pair production, both in the total rate and
in distributions.

OW : new Lorentz structures

As a second example, consider OW . The covariant derivative acting on the Higgs doublet
is defined as

Dµφ = ∂µφ− igσ
k

2 W k
µφ− ig

′

2 Bµφ , (45)

and the field strength tensor reads

W k
µν = ∂µW

k
ν − ∂νW k

µ + gεkmnWm
µ W

n
ν . (46)

Expanding OW and only keeping the pieces that will affect the hWW coupling, we find

LEFT ⊃
fW
Λ2 ig2 (Dµφ)†σk(Dνφ)W k

µν

= fW
Λ2 ig2

(
∂µφ† + ig2W

mµφ†σm + ig
′

2 B
µφ†

)
σk

·
(
∂νφ− igσ

n

2 Wn νφ− ig
′

2 B
νφ

)
W k
µν

⊃ fW
Λ2 ig2

{
∂µh√

2

[
σkσn

]
22

−ig
2 Wn ν v√

2
+ ig

2 Wmν v√
2

[
σmσk

]
22

∂µh√
2

}
W k
µν

= fW
Λ2

g2v

8
[
σk, σn

]
22

(∂µh)Wn νW k
µν

= fW
Λ2

g2v

8 2iεknm σm22 (∂µh)Wn νW k
µν

= fW
Λ2

ig2v

4 εnk3 (∂µh)Wn νW k
µν . (47)

With

mW = gv

2 (48)

and

W±µ = 1√
2

(W 1
µ ∓ iW 2

µ) , (49)
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this finally gives

LEFT ⊃
fW
Λ2

igmW

2 (∂µh)
(
W+ νW−µν +W− νW+

µν

)
. (50)

This is another contribution to the hWW vertex. But unlike the SM-like coupling

LSM ⊃ gmW hW+µW−µ , (51)

the OW term includes derivatives. This means that the interaction gains a momentum
dependence:

H

W−ν

W+
µ

= igmW

[
gµν + fW

2Λ2 p
2
H gµν + fW

2Λ2

(
pHµ p

+
ν + p−µ p

H
ν

)]
, (52)

where p±µ and pHµ are the incoming momenta of the W± and the H, respectively.
Two features of the EFT approach stand out. First, OW does not only affect the hWW

vertex, but also hZZ interactions and triple-gauge couplings such asWWZ. This means
that the dimension-6 operator language allows us to combine different measurements in
a global fit.
Second, OW changes the shape of distributions. One example is the Higgs-strahlung

process at the LHC,

pp→ Zh . (53)

Here a Z boson is produced off-shell and radiates off a Higgs. The intermediate Z can
carry arbitrary large energy and momentum, which we can measure for instance as the
invariant mass of the final Zh system. From Eq. (52) we expect that the effects from
OW will grow with mZh.
In Fig. 1 we demonstrate this by comparing the distribution of mZh based on only the

SM couplings, on the dimension-6 operator OW only, and on the interference between
the two components. Indeed we see that OW contributes mostly in the high-energy tail
of the distribution. This and a few other operators thus allow us to describe new physics
effects in distributions, not only in total rates. Or from the opposite perspective, we will
have to analyse kinematic distributions to disentangle different operators.
On a side note, the interference terms contribute at orderO

(
1/Λ2) to the cross section,

while the squared operators only contribute atO
(
1/Λ4). So the latter appear at the same

order as the leading (neglected) dimension-8 operator effects. Some people argue that for
this reason one should not include the square of dimension-6 operators in calculations.
But the interference between the SM amplitudes and the dimension-6 operators can be
destructive, as shown in the right panel of Fig. 1, and push the differential cross section
to negative values when the squared operators are neglected.
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Figure 1: Distribution of the Zh invariant mass in the Higgs-strahlung process pp→ Zh
at LHC conditions. The contribution from the dimension-6 operator OW is
enhanced at larger momentum transfer compared to the SM amplitudes. The
interference between them can be constructive (left) or destructive (right).
Note that this plot is based on a different operator basis, which is why the
operator OW used in this plot is closely related, but not identical to that
defined in Eq. (39).

3.4 From new physics models to Higgs EFT

A proper discussion of the other perspective to Higgs EFT, the matching of complete
models of new physics to the dimension-6 operators, is beyond the scope of lecture. One
rather handwaving example will have to suffice. For more details see for instance [3, 9].

Maybe the simplest model of new physics is the extension of the SM by one real scalar
singlet, also known as a “Higgs portal”. This new field s only couples to the Higgs
doublet φ proportional to its mass ms times a coupling λs. Identifying Λ = ms and
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Figure 2: Current 68% CL limits on the dimension-6 Wilson coefficients. The blue lines
take into account kinematic distributions in Higgs-strahlung and Higgs pro-
duction in weak boson fusion. Figure taken from Ref. [10]. Note that a few of
these operators have a different normalization from that in Eqs. (29) to (39).

integrating out the singlet gives rise to the diagram

p

s

φ

φ†

φ

φ†

∼ (φ†φ) m2
sλ

2
s

p2 −m2
s

(φ†φ)

∼ λ2
s(φ†φ)

(
1 + p2

Λ2 +O
(
1/Λ4

))
(φ†φ)

∼ λ2
s(φ†φ)

(
1− ∂2

Λ2 +O
(
1/m4

s

))
(φ†φ) (54)

∼ λ2
s(φ†φ)2 + λ2

s

Λ2 ∂µ(φ†φ)∂µ(φ†φ) . (55)

The first term is an unobservable renormalisation of an SM operator, but the second
one is just Oφ2 with Wilson coefficient fφ2 = 2λ2

s. At tree level, this is the only operator
generated by this model.

3.5 Higgs EFT at its limits
Results from the LHC, LEP, and other experiments constrain the Wilson coefficients
of Higgs EFT. So far the experimental collaborations have not published such limits
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themselves, but a number of phenomenologists are working on it. Fig. 2 shows results
from a fit of dimension-6 operators to LHC run I data [10]. In addition to total rates,
this study takes into account distributions in the Higgs-strahlung and weak boson fusion
channels.8
It turns out that analyzing kinematic distributions indeed tightens the constraints

on some operators. This constraining power comes in particular from the high-energy
bins (remember the discussion around Fig. 1). Overall, no significant deviation from the
SM (all dimension-6 coefficients zero) has been found. The upper limits on the Wilson
coefficients are roughly around

|f |
Λ2 . 5 TeV−2 . (56)

Wait. . . what?
This number should set alarm bells ringing. Inverting it yields

Λ &
√
|f | · 400 GeV . (57)

For a strongly coupled underlying system, we expect large Wilson coefficients f , and Λ
must at least be around a few TeV. But if physics beyond the SM is weakly coupled,
we expect Wilson coefficients |f | . O (1), and Λ can be as low as a few hundred GeV.
Compare this to the typical energy scale of the processes we describe. Total Higgs
production rates at the LHC probe a typical energy of E ∼ mh. More importantly, we
just argued that fits rely on the high-energy bins of distributions, which contain events
with a typical momentum transfer of up to

E ∼ 500 GeV . (58)

If the underlying model is weakly coupled, LHC measurements are currently only
sensitive to scenarios with Λ ∼ E. The lack of a separation between E and Λ means that
the EFT will not necessarily provide a good approximation to full models of new physics!
The EFT validity is only guaranteed for more strongly coupled scenarios. Designed to
be as model-independent as possible, the EFT description of Higgs physics only seems
justified for certain classes of models.9
Still, as we argued above Higgs EFT has many desirable features, and there is no

obvious alternative for a model-independent parametrization of electroweak physics. If
and how the dimension-6 Lagrangian is useful for Higgs physics at the LHC is quite a hot
topic right now. In Refs. [9, 11] we have tackled this question by explicitly comparing the
Higgs phenomenology of complete models of new physics and the corresponding EFT.
We find that the dimension-6 Lagrangian is surprisingly powerful: its operators can

describe nearly all effects expected in Higgs physics from typical weakly interacting SM
8Regrettably, ATLAS and CMS have published only a few of the distributions of interest.
9The dark matter community has been discussing a similar problem. In that field EFTs work very
well to describe direct detection experiments, in which the momentum transfer is very low, and
annihilation in the early universe. But dark matter production at the LHC probes much higher
energy scales, and it turns out that the usual effective theories are not valid anymore.

21



 [f
b/

bi
n]

σ

20

40

60

80

v-improved EFT

EFT

full
SM

 [GeV]Vhm
250 300 350 400

fu
ll

σ
fu

ll
σ

 -
 

E
F

T
σ

0.5−

0

0.5

v-improved EFT error

EFT error

 [f
b/

bi
n]

σ

10

20

30

v-improved EFT

EFT

full

SM

 [GeV]
T,j1

p
50 100 150 200 250

fu
ll

σ
fu

ll
σ

 -
 

E
F

T
σ

0.5−

0

0.5

v-improved EFT error

EFT error

Figure 3: Effects from an additional heavy vector boson on Higgs production. Left: dis-
tribution of the invariant mass in Higgs-strahlung. Right: transverse momenta
of the tagging jets in weak boson fusion. The predictions of the full model are
compared to those of two different EFT constructions. The “v-improved” EFT
includes effects from the nonzero Higgs vacuum expectation value that formally
correspond to a dimension-8 operator. Figure taken from Ref. [9].

extensions. Resonances from new light particles are an obvious exception. Higgs pair
production is problematic because intricate cancellations between amplitudes are not
well reproduced by the EFT. Total rates and distributions in single Higgs production,
however, are well described by the dimension-6 Lagrangian. Here the lack of a scale hier-
archy between E and Λ leads to one complication in the matching procedure: subleading
terms suppressed by powers of v2/Λ2 can be important even though they correspond to
dimension-8 operator effects. Including these terms in the dimension-6 Wilson coeffi-
cients, a procedure dubbed “v-improvement”, is then necessary to guarantee that Higgs
EFT captures the new physics effects. This subtlety is no problem for a fit of dimension-
6 operators to experimental data, it only plays a role when translating limits on Wilson
coefficients to parameters of complete models.

Let us illustrate this with one example. As new physics scenario, consider a heavy
vector boson added to the SM. Through mixing with the W and Z, it affects the Higgs-
gauge interactions, changing kinematic distribution in addition to total rates. In the
EFT this is mapped onto (among others) the operator OW , which was discussed in
Sec. 3.3. Fig. 3 shows how this scenario affects distributions in two of the main Higgs
production modes, Higgs-strahlung and weak boson fusion. The predictions of the full
model are reasonably well approximated by the EFT based on v-improved matching,
while the naive matching leads to gross errors and is ultimately useless.
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4 Summary
There is nothing strange or complicated about effective field theories. They simply
provide an organized way of doing what we always do in physics: neglecting effects that
do not matter for a given question. EFTs in the form of quantum field theories consist
of a set of (typically non-renormalizable) operators. You have seen how this framework
allows us to start with a full theory and constructive an effective approximation from the
top down, and how it even allows us to construct an approximate description of physics
even if we do not know the underlying theory.
At TeV energies find ourselves in the latter bottom-up situation. There has to be

physics beyond the standard model, and it better be accessible by the LHC experiments,
but we do not know what it is. Higgs effective field theory is designed as a model-
independent language that captures the effects of such new physics on electroweak-
scale observables. Its minimal version consists of 59 dimension-6 operators, some of
which parametrize changes in kinematic structures in the interactions of Higgs and gauge
bosons. A global fit to these operators works fine, especially if distributions are included.
Concerns about the validity of this effective theory have to be taken seriously, but so
far it seems that this language is the way to go as long as no new light particles are
discovered.
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