#### Numerical Minimization

Veit Scharf Kirchhoff-Institut für Physik

# Naming Scheme

- many names for a similar concept:
  - mathematical minimization / maximization
  - modern: mathematical optimization
  - old: programming
    - linear programming
    - non-linear programming



- all:
  - find extremum of a function (given some constraints)

# Applicability

- large class of problems:
  - optimize buisness decisions ( $\rightarrow$  LP)
    - minimize production cost
    - minimize travel for delivery
  - minimize X<sup>2</sup> value between theory and experiment
  - maximize the likelihood function given the data
  - minimize cost-function for multivariate classification

## Problem definition

- Given some function f find the value x for which f takes ist smallest (largest) value
- "Rules"
  - f not known analytically
  - df not known analytically



- repeatedly evaluate f until a minimum is found
- there might be constraints on x

- Best method: fewest function calls
  - no best method available

## Additional rules

- very large field
  - very hard problems

- focus on techniques / ideas
  - not particular problems
  - leave the ugly details out
- some simplifying assumptions:
  - only local extrema
  - sufficiently nice functions



#### Test function: Rosenbrock



#### Steepest Descent



#### Powells Conjugate Direction Set



Quasi-Newton



#### Test function: Goldstein-Price



#### Test function: Eggholder



## Decision guideline

- no knowledge of gradient:
  - generally BFGS
  - well-conditioned: direction-set, Simplex Nelder-Mead
- knowledge of gradient:
  - BFGS
  - conjugate gradient if evaluation is very cheap
- noisy measurement:
  - Simplex Nelder-Mead