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Power spectrum: 
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(normalized amplitude)

Test your favourite model!
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Also classical production possible!

If large and coherent

Non-pertrubative 
processes

Time-dependent 
inhomogeneities in 
the energy-density.

Non-trivial quadrupole 
moments.
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Why interesting?

Model-independent evidence of inflation!



A small motivation for indirect detection

arXiv:0707.3319 [gr-qc]

https://arxiv.org/abs/0707.3319


The CMB - A Screenshot of Primordial Gravitational Waves

esa.int / Planck Collab
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● GWs generate anisotropies in the matter distribution 
● at the time of decoupling this results in anisotropies of CMB 
● indistinguishable from (more dominant) scalar quantum fluctuations 
● however: B-mode polarization of CMB is unique to GWs! 
● power of B-polarized CMB waves (in inflationary low frequency band) gives tensor-to-
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● at the time of decoupling this results in anisotropies of CMB 
● indistinguishable from (more dominant) scalar quantum fluctuations 
● however: B-mode polarization of CMB is unique to GWs! 
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scalar ratio r

Detection of B-modes proves existence of primordial GWs!
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● Just like             , 
we decompose 
 
 
                    ( + symmetrization - trace ),  
where           is “the gradient” and           is “the curl”
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Anisotropies in CMB induce two types of polarization: 
gradient E- and curl B-modes arXiv:1510.06042
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CMB with a monochromatic scalar perturbation
arXiv:1510.06042



CMB with a monochromatic GW
arXiv:1510.06042
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● consider x-polarized GW: 
 
 
 
read off: amplitude        is odd under parity! 

● GWs are odd and can therefore source B-modes!
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● any anisotropy in spatial photon power density      creates polarization:  
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● density (scalar) quadrupole rotationally symmetric about plane wave axis  
GW (tensor) quadrupole not rotationally symmetric 

● LHS of (1) contains E and B, RHS of (1) contains sources such as GWs; 
find: B-modes only sourced by GWs

● any anisotropy in spatial photon power density      creates polarization:  

          
      (1) 

● can be decomposed into E- and B-modes after plugging into  
and into spherical harmonics 

Why are B-Modes only generated by GWs?

● difficulty: B-mode creation after decoupling via gravitational lensing

(quantitatively)
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What we learn about GWs

● spectrum of GWs extracted from B-modes test theories of primoridal GWs, 
this not only includes GWs from fluctuations during inflation, 
but also phase transitions* (eternal inflation, EW phase transition) 

● correlations larger than horizon at the time of decoupling are a test of inflation

What we learn about our Universe today

*see Thomas’ talk

● we also learn about where and how much dust is in the universe, 
see BICEP2
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Phase transitions in the early Universe

Electroweak phase transition: T~O(100) GeV 

● Higgs mechanism: 

● eff. scalar potential Veff(v) 
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Recap: Phase transitions (PT) in toy models

● continuous in the order parameter 

● thermal equilibrium 

● no bubbles for T<Tc

Second order PT: 
● real scalar field in Mexican hat 

● ground state (T=0):  

● @ high T: symmetry restoration 

[T.Prokopec, Lecture notes for cosmology, 2008]
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● ground state (averaged fluctuations):  

● thermal contribution: 

● effective potential:

Recap: Phase transitions (PT) in toy models

● T<Tc: maxima develop       barriers 
● T<Tn: barriers become smaller, 

tunnelling probability increases  
● bubble formation in background of false 

vacuum

First order PT: 
● scalar QED: 

● field decomposition(wlog): 

[T.Prokopec, Lecture notes for cosmology, 2008]



Generic picture: GW from cosmological first order PT 
1. bubble nucleation into low-T phase 

  tunnelling or thermal fluctuations 

1. bubble expansion & bubble collision:  
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[D.J.Weir, Phil.Trans.Roy.Soc.Lond. A376, 2018]
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Bubble 
formation & 
collision

Youtube: https://www.youtube.com/watch?
v=Ggs2fQL0ICU0

http://www.youtube.com/watch?v=Ggs2fQL0ICU


Bubble collision and origin of gravitational waves
GW production through 1OPT can be devided into three stages: 

1. initial collision of scalar field shells (generally subdominant) 

1. wave of kinetic energy within plasma 

1. shocks & turbulence  (typical time- and length-scales?)
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Bubble collision and origin of gravitational waves
GW production through 1OPT can be devided into three stages: 

1. initial collision of scalar field shells (generally subdominant) 

1. wave of kinetic energy within plasma 

1. shocks & turbulence  (typical time- and length-scales?)

[D.J.Weir, Phil.Trans.Roy.Soc.Lond. A376, 2018]



Key parameter of GW spectrum

[C.Grojean & G.Servant, Phys.Rev. D75, 2007]



● free energy of critical bubble: 

● bounce solution:
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● two contributions to latent heat: 

2) Latent heat to energy density ratio 

● free energy of critical bubble: 

● bounce solution:

Key parameter of GW spectrum
1) Change of bubble nucleation rate:

GW are insensitive to:  

● internal bubble structure 
● small scale field configuration in the 

collision region
[C.Grojean & G.Servant, Phys.Rev. D75, 2007]



Detection possibilities of future experiments

[C.Grojean & G.Servant, Phys.Rev. D75, 2007]

● LISA sensitive to 10 TeV 

● LIGOIII, LISA & BBO will probe T~100-107 

GeV 
● GW from PTs around 10-100 TeV could 

entirely screen signals from inflation! 

[http://web.mit.edu/klmitch/classes/8.224/project/lisa.html]



Phase transitions & BSM physics

Search: GW from first order PT 

1. Modification of electroweak PT 
● electroweak baryogenesis 
● Higgs portals 

1. First order PT in new (yet hidden) sectors 
● new scalars  
● new forces & symmetry breaking

 Hidden sector 
 

[W.Buchmüller, Acta Phys.Polon. B43, 2012)]



Conclusion:

● If inflation took place, GWs produced during that time, would actually survive 
untill CMB and can be even observed. 

● Primordial GWs would be a model-independent evidence of the concept of 
inflation. 

● GWs leave a unique imprint on the CMB in the form of polarization 
● The extracted spectrum can give hints to their origins 

(e.g. low frequencies for inflationary GWs) 
● GW from particle physics PT directly related to associated scalar potential 
● “new”/old tool for future particle phenomenology! 



Thank you!



http://www.youtube.com/watch?v=degD69wnZcY

