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Abstract:

We calculate the energy radiated coherently by a system of N charged
non relativistic particles. It disagrees with the energy loss which is ob-
tained if one employs the Lorentz Abraham Dirac (LAD) equation for each
particle, and sums up the contributions. This fact was already clearly
stated in the classical literature long ago. The reason for the discrepancy
is the omission of the mixing terms in the Poynting vector. For some
simple systems we present a generalized equation for the radiation reac-
tion force which cures this defect. The counter examples show that the
LAD equation cannot be generally valid and that all “proofs” must fail
somewhere. We demonstrate this failure for some popular examples in
the literature.

1 Introduction

It is known for more than hundred years now, that an accelerated charge
radiates, and that the energy for this radiation should be provided by a
radiation reaction force f# which acts like a friction to the motion of the

particle. The earliest and most popular form of this reaction force is the
Lorentz-Abraham-Dirac (LAD) force [1][2][3],

= S+ i), ()

with u* the four velocity, and the dot denoting differentiation with respect
to the proper time 7. Due to strange properties like the possible appear-
ance of runaway solutions one often modifies this equation by introducing
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the zero order solution of the equation of motion into the rhs, arriving at
the equation, usually called the Landau-Lifschitz (LL) equation [4]:
pr= 25 (Lt (i 2)
3m dr ’
with F* the external force. See also [9][6][7]. Some of these authors
consider this equation as the fundamental one and even claim it as being
“exact” or providing the “correct” equation.
The non relativistic limit of equations (1), (2) is

f=2e2~ "0 (3)

There is still a lively discussion about these equations. In particular there
are various papers which claim to have provided a general proof. This is
astonishing, because already Abraham [2], (& 15, p. 119) clearly states
that the equation cannot be always correct! As an example he mentions
a number of equally distributed electrons which move along a circle with
equal velocities. Each electron radiates less than predicted by (1). In
the limit of many electrons the motion of the electrons corresponds to a
stationary current; there is no radiation at all.

The effect has nothing to do with the subtle differences between equa-
tions (1) and (2). The problem arises already for weak fields where these
equations are equivalent, and where the non relativistic limit (3) is appli-
cable. No complicated mathematics or subtle physics is involved in the
arguments, just old fashioned textbook electrodynamics.

The relevant point is simple. The energy density as well as the Poynt-
ing vector are quadratic in the fields. Therefore it does not make sense to
add up the energy of the radiation fields created by various particles. One
has first to superimpose the fields, and subsequently calculate energy den-
sities and momentum flows. This introduces non diagonal mixing terms
which can change the standard arguments considerably. This simple fact,
already emphasized by Abraham, is well known and discussed in books
on accelerator physics [§]. But it is usually not even mentioned at all
in reviews on radiation reaction [9][10][I1][12]. One can only find a brief
remark in a different context in [10], p. 382. To our knowledge the prob-
lematics appears to be completely unknown, forgotten, or ignored by the
authors who try to proof the LAD- or the LL equation, apparently being



unaware that they try to proof an equation which fails already for simple
counter examples. All general “proofs” must be incorrect.

In the present paper we point out all this in some detail. In sect. 2 we
calculate the radiation of N non relativistic particles and show that the
application of the LAD equation for each of the particles would violate
energy conservation. In sect. 3, restricting to simple situations, we present
a modified equation for the reaction force f; which acts on particle 7. It
gives the correct energy balance. Our equation necessarily depends not
only on the motion of the particle ¢+ under consideration, but also on
the motion of all the other particles. In sect. 4 we present some simple
examples. Sect. 5 analyzes some of the “proofs” in the literature and
shows where they break down. In sect. 6 we investigate under which
circumstances the standard LAD equation could be correct. Sect. 7 gives
a summary.

2 Coherent radiation of N particles

Consider N particles with masses m; and charges e;, moving with non
relativistic velocities v; < ¢. We assume that for early times ¢ < ¢, and
late times t > t; the particles are far apart, such that any interaction and
acceleration is negligible. During the intermediate time between ¢, and
tp the charges can approach each other, are accelerated, and can radiate.
For large negative times t < t, there shall be no fields except the fields
of the freely moving charges. This implies that one has to use retarded
fields in the following. The energy which is radiated during the interval
t, <t <t can be calculated by slightly generalizing the usual procedure.
Choose a sphere with a large radius r, with the particles roughly in the
center of the sphere. The non relativistic limit of the retarded radiation
fields created by particle 7 is given by the well known expressions

R; X [Ré; az(tz)]’ Bi(r,t) = % x Ei(r,t).  (4)

Here R; = r — x;(t}) is the difference between the point r on the sphere

Ei(I‘, t) = €;

where the fields are considered, and the position x;(¢;) of particle i at
the retarded time ¢/, defined implicitly by the relation R; =t — t;. The
acceleration a;(t;) = dv;(t;)/dt; of particle i enters at the retarded time
ti. If r > t, — t,, the radiation arrives at the surface of the sphere at a
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late time > t;, where the charges are essentially free and do no longer emit
radiation. Furthermore choose r large compared to the maximal distance
Apaz of |%i(t}) — x;(t;)] in the interval t, < t,#; < t,. Then one has
R, =r+0O(Au) foralli=1,--- N. One may replace R; by r, and the
relative error can be made as small as one likes, if r is taken large enough.
The total radiation fields E(r,t) = ¥, E;(r,t) and B(r, t) = ©¥, By(r, t)
become

N !

B(r, 1) = L X %j;l @)l B ; < E(r,1). (5
The retarded times ¢, in (5) are all different, but for non relativistic mo-
tions the differences of the accelerations at different times are of order
v. Therefore one can replace all retarded times ¢, by some common av-
erage retarded time ¢. Indeed this argument needs a more careful in-
vestigation which we postpone to sect. 4. But for the cases where the
argumentation is valid one may replace t; — t'. Eq. (5) then has the
same form as the radiation field of a single particle, with the replace-
ment ea(t') — YN, e;a;(t'). Therefore one can simply repeat the stan-
dard derivation of the Larmor formula and ends up with the following
expression for the energy which was radiated off during the time interval
ty <t <ty

t 2 N

Erog = /t g(g e;a;(1))2dt. (6)

One could have guessed this formula immediately, but we took care to
derive it explicitly. Indeed such a straightforward generalization is only
possible for simple systems. For more complicated N-particle systems as
well as for relativistic motions the differences between the accelerations at
different times t; become relevant. In this case the derivation of a closed
expression like (6) appears hopeless.

3 Radiation reaction force

Recall the procedure in the case of a single particle. The integral over
the work performed by the radiation reaction force f on the particle is
identified with the radiated energy, subsequently one performs a partial
integration:
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The last term vanishes if the acceleration vanishes at the endpoints. By
identifying the integrands one obtains the well known non relativistic ver-
sion (3) of the LAD equation, f(t) = Ze a( ). Clearly this formula fails in

our case. If one simply would put f;(¢) = Ze?a(t) for the radiation reaction

force acting on particle ¢, one would only reproduce the diagonal terms
~ e?a? in the energy expression (6), but miss all the non diagonal terms
~ eje;a;aj for ¢ # j. This shows already clearly that the LAD equation
cannot be always valid.

To obtain a consistent expression for f;, we can proceed analogous to
the one particle case. There is, however, more freedom now, because the
mixed terms ~ e;e; in (6) can be compensated by a reaction force acting
either on particle ¢ or j, or some combination.

Due to the symmetry in 7 and j one can write (6) in the form

o N
B = '3 % eyt (8)
3
with \;; = const for simplicity, satisfying A\;; + A;; = 2. In particular this
implies, of course, \;; (no sum) = 1. The energy expression (8) is obviously
independent of the choice of the A;;, but the manifest symmetry in 7, j will
be broken, after we perform the partial integration.
Consider the energy equation analogous to (7), and perform the partial
integration by integrating a;(¢) and differentiating a;(¢):

/:b g:lw(t)fi(t)dt = — /ttb 2 % eiejhija;(t)a;(t)dt

a 3 7] 1
tb2 N 2 N tb
=, 5 X cediviladt = 3 3 eediviha (0 (9)
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Again the last term can be made arbitrarily small if the times %,,t, are

chosen appropriately, and a possible solution for the reaction forces which
fulfills (9) is
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fi(t) = gei glej&jé\j(t% (10)

The term in the sum with 7 = ¢ is identical with the usual non relativistic
form of the LAD force. But there are necessarily also the additional terms
which involve the accelerations of the other particles.

We mention that Eliezer [9], (30) - (32), gives an equation of motion for
a system of many electrons. It is not identical with that obtained from our
eq. (10), because it only contains the Lorentz forces arising from the other
charges, but not the a;(¢) for j # i, thus violating energy conservation.

4 Examples

Consider first a system of two particles. Here one can rigorously justify
the replacements t; — t' in (5) without any further assumptions. The
difference of the retarded times is at most as large as the distance x be-
tween the charges, |t} — t5| < z. It is irrelevant whether one uses the
distance at equal times or at the respective retarded times, they differ at
most by a factor (1+v). In leading order the force is the Coulomb force.
Shorthand, suppressing irrelevant vector notation or factors of order 1,
one has for any of the accelerations ma ~ €?/x?, ma ~ (e2/x)v i.e.
a/a ~ v/x. From the mean value theorem one then gets In(a(t))/a(t')) =
In(a(t))/ag) — In(a(t’)/ag) = (t, — t')a(t)/a(t) ~ v, with ¢ some time be-
tween t; and t'. Therefore a(t)/a(t’) ~ (1 + v), and it is legitimate to
replace a;(t}) by a;(t').

If we specialize to particles with identical masses, m; = ms, and with
charges either identical or opposite, e; = +ey, symmetry considerations
can fix the \;;. Symmetry between the particles in the first case, and
charge conjugation symmetry in the second case, now implies A\;; = 1. The
center of mass moves with constant velocity, the sum of the accelerations
vanishes, >, a; = 0.

For the case of identical charges, eq. (6) then implies that there is no
radiation at all. Consequently there is also no radiation reaction force, in
spite of the fact that the particles are accelerated!



Opposite charges provide an example of the other extreme. Each par-
ticle experiences a reaction force which is twice the LAD force (3).

The two particle case is the only one where one can immediately justify
the performed approximations without further assumptions. The reason is
that the time difference, the distance of the particles, and the acceleration
are directly connected. If the acceleration and its derivative is large, the
time difference is small. Vice versa, if the time difference is large, the
acceleration is small.

For a multi particle system this is not necessarily the case. Consider,
e.g. a four particle system where (1,2) as well as (3,4) are close together,
while (1,2) are far apart from (3,4). All accelerations and their derivatives,
but also the time differences ¢} , 3 , are large. The relative error from the
replacements a;(t;) — a(t’) is still of order v, but the factor in front may
become inadmissible large. It needs a special investigation whether one
can do the replacement. Essentially the approximation should be valid if
all particles have similar distances.

The expressions (5) for the fields stay valid for all (non relativistic) multi
particle systems, but already the calculation of the radiated energy would
become clumsy if one keeps the different times ;. It appears unlikely that
a closed formula for the reaction forces can be derived.

In all cases one has to be aware that there are always mixing terms,
even between charges which are rather far apart. One should understand
how the mixing terms decrease if the separation increases. Consider two
particles ¢, 7 which both essentially radiate only between ¢, and t¢,. The
distance x;; may be very large, even larger than ¢, — ¢,. On most points
of the sphere with the large radius r there is no interference, because the
radiation from the two charges cannot arrive at the same time. Only in
directions which are essentially orthogonal to x;; one has t; ~ t}, there
will be always interference. If x;; increases these regions become smaller,
so finally the fields from the two charges decouple.

A remark concerning causality appears appropriate. The mutual influ-
ence of the various charges does not violate causality. It even would not
violate it in a relativistic treatment. The use of retarded potentials poses
initial conditions at ¢ = —oo, therefore the whole time evolution is fixed,
in particular also all the accelerations a;(t) are completely determined
from the initial conditions. No chance to send signals from 5 to 7.



5 Where “proofs” fail

The simple counter example already mentioned by Abraham, together
with the examples just presented more explicitly in sect. 4, clearly and
irrefutably demonstrate that the LAD form of the radiation reaction force
cannot be universally valid. A strong but unavoidable consequence is that
all general “proofs” of this formula must be incorrect. In view of this it
appears appropriate to point out where proofs fail. It is, of course, im-
possible to cover the vast literature here, and it is as well impossible to
analyze proofs which are unintelligible, at least for the present author. We
concentrate on some classical literature and on some more recent papers
which claim a proof for the LAD force. We emphasize that it is not our
intention to criticize the authors of these often rather ingenious consid-
erations. But given the undeniable fact that there are situations where
the LAD equation definitely fails, it appears necessary to show why these
considerations cannot be generally correct. We will sometimes modify the
original notation to our conventions.

The first type of approaches identifies the work done by the radiation
reaction force with the energy radiated off from the particle by the Larmor
formula. From this one extracts the reaction force. There are two prob-
lems in this approach. The counter examples presented above show the
first of these problems. Neither the radiated energy nor the reaction force
can be treated separately for each particle. They are collective phenomena
and necessarily involve other particles as well.

The second problem is that energy can be stored and released in the
electromagnetic field. Although we know, of course, the expressions for
energy and momentum density of an electromagnetic field, this does not
help to calculate the total energy, because there are the non integrable
singularities at the position of the point particle. Unless one is willing
to introduce extended particles, an alternative which we discuss below,
apparently the only way to avoid this problem is to restrict the discussion
of energy to times where the particle is far away from the “external” field,
or from the fields of other particles. In these regions the particle moves
with constant velocity, and the divergent field of the particle poses no
problem. The whole four momentum of the system consisting of particle
plus its own field is simply given by P* = mu*. Thus one can only
derive necessary conditions which make statements on the energy balance
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between times ¢, and t;, where the particle under consideration is outside
of all other fields. Therefore, notwithstanding the previous difficulty, one
only obtains an integrated relation. One cannot derive relations for a
definite time ¢ where the particle moves within the field. We therefore
also cannot maintain all the statements in our previous paper [15]. But
we definitely reemphasize the point made there, that the reaction force
depends not only on the motion of the particle of interest, but also on the
way how the acceleration is achieved.

A more direct approach tries to derive the equation of motion for an
electron by taking into account both an external as well as its own ra-
diation field. This procedure is again plagued by the singularity of the
electromagnetic field at the position of the particle. There are two strate-
gies in order to attack this problematics.

The first method, first employed by Lorentz [1] and Abraham [2] and
still advocated for by some modern authors [13][14], is to treat the electron
as an extended particle. The original idea of Lorentz, that the mass
of the electron should be of purely electromagnetic origin, was already
criticized by Abraham. One needs in addition some other forces in order
to hold the whole structure together. Since a rigid charge distribution is
incompatible with special relativity, the determination of this distribution
would become part of the dynamical problem and depend on all the forces
present in the system. We don’t know of any detailed model of this kind.
The problems connected with an extended particle appear to be at least
as serious as those arising from the singular field around a point particle.

In a more recent paper Gralla, Harte, and Wald [16] claim “A rigorous
derivation ...”. They argue that a point like limit of a particle with fixed
mass and charge is physically impossible. Therefore they consider an
extended particle where in the point like limit mass and charge go to zero,
hardly a candidate for a physical electron. We are not able to comment
on their arguments.

If one wants to avoid a model with an extended particle one needs some
other limiting procedure. Let us take a look on the classical derivation of
Dirac [3]. He uses the singularity free and time symmetric combination
frr = (F! + F!;)/2, but this is not the relevant point here. Dirac
derives the equation Le?e '/ — eu, f* = B", where € is the small radius
of a tube surrounding the electron. Obviously one must have uB = 0.



This B* cannot be calculated, therefore Dirac makes use of the most
simple ansatz B* = ku!, discarding more complicated expressions like
e.g. B* = K'[u*ut + 4(0ii)u”]. In fact, there are more general possibilities
as given by Eliezer [9]. The result for the force is ambiguous.

An interesting procedure was suggested by Barut [17]. To avoid the
divergences of the electromagnetic field at the position z#(t) of the particle
he starts with the Lorentz force at a slightly displaced position, with the
field taken at y* = x#(t+e€) = xt(t) + i (t) + 2i1(t) /24 € Z" (t) )6+ - -.
A possible singular term ~ 1/¢? in the force vanishes, the next singular
term ~ 1/e is absorbed into a mass renormalization, while the term ~ €’
gives the LAD reaction force. All the higher terms vanish in the limit
e — 0.

This approach appears elegant and convincing, but one has to realize
that it uses quite a special choice for the limiting procedure. Even if one
is willing to approach the point z* along the trajectory, one could use a
more general limiting procedure of the form y* = 2" + ex{, + 62:7[;’(2) /2 +
e?’xé) /6 + ---. In order to remove the singularity ~ 1/€? one has to put
x(y) = "(t) as before. The next order ~ 1/e is again absorbed by mass

renormalization. But one is completely free to choose the function xé) as

one likes. Instead of (1) one then ends up with f# = %eQ(xé) — (ux3))u’).

In general one may say that all “derivations” use some special ansatz
and tacitly assume that the reaction force depends on the motion of the
considered particle only, and on nothing else. We have seen that this is

in general not true.

6 When can the LAD force be correct?

A hasty and naive comment on the counter examples given above could
consist in postulating that the various derivations in the literature should
(of course!) be only applicable in the case of an external field. Whatever
the arguments for such a restriction could be, it would require a clear
definition of an external field. This is more tricky than one might expect.

A first try for a definition could be: An external field is a field which is
not changed by the presence of the test particle. This would be the case
in the limit that the charge e of the test particle goes to zero, keeping
everything else fixed. Our examples clearly show that this would not help.
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To the contrary, the mixing terms ~ ee; would now become dominant
compared to the diagonal term ~ e2.

The examples also show that it would not help to define an external
field as being a field which is created by many other particles.

A definition, though somewhat academic, which might work, is to create
the field by one or more charged particles with a very large mass compared
to the mass of the test particle. Of course, no further light particles should
be around. To make this more explicit consider a two particle system with
my < my. Using mia; + moay = 0 one can write the reaction forces (10)

as

2 ma

fi = 5(63% — )\12ﬁ26162)31,
2 m )
f2 = g(@% — )\le—ieleg)ag. (11)

If one had A\;; = 1, the formula for the light particle would approach
the LAD form, while that for the heavy particle would contain a large
factor compared to LAD. If, on the other hand, one would have, e.g.
Aij = 2mj5/(m; +m3), both forces would approach the LAD form in the
limit ml/mg — 0.

Whenever one talks about an external field (which breaks, by the way,
momentum conservation, and, if time dependent, also energy conserva-
tion) one should specify how this field is realized and analyze the whole
system of particle plus “external” field.

A realistic chance of really measuring the radiation reaction force can
probably only come from the use of intense laser beams. There has been
some discussion on this recently [I8]. At present we are unable to discuss
the consequences of our considerations for this case. The motion of the
electron is necessarily relativistic, besides the electron of interest there is
a huge number of other electrons, part of which producing the coherent
laser radiation, a process which apparently requires the consideration of
quantum mechanics. The situation is complex, we don’t try to formulate
a guess here.
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7 Summary and conclusions

We called attention to some facts which are almost trivial, but have,
to our knowledge, never been carefully exploited with respect to their
consequences. Radiation reaction cannot be treated as a phenomenon
which only concerns a particle and an external field. Energy density and
Poynting vector are quadratic in the fields, therefore they are not simply
obtained by summing up the contributions of all particles involved. There
are mixing terms. This implies that the energy loss through the friction of
the Lorentz Abraham Dirac force is usually not identical with the radiated
energy. All general “proofs®“ of the LAD force are thus bound to fail.
In (10) we suggested a form of the reaction force which respects energy
conservation, but such a closed expression can be derived only for simple
non relativistic systems. The question how to treat realistic situations like
an electron in a strong laser field remains open.

Acknowledgement: I thank E. Thommes for valuable discussions
and a careful reading of the manuscript.
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