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Recent experiments by Larson et al. �Phys. Rev. Lett. 99, 026401 �2007�� demonstrate the feasibility of
measuring local d–d excitations using nonresonant inelastic x-ray scattering �IXS�. We establish a general
framework for the interpretation where the d–d transitions created in the scattering process are expressed in
effective one-particle operators that follow a simple selection rule. The different operators can be selectively
probed by employing their different dependence on the direction and magnitude of the transferred momentum.
We use the operators to explain the presence of nodal directions and the nonresonant IXS in specific directions
and planes. We demonstrate how nonresonant IXS can be used to extract valuable ground state information for
orbiton excitations in manganite.
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I. INTRODUCTION

Transition-metal compounds display a wide variety of ex-
citing phenomena such as high-Tc superconductivity, colos-
sal magnetoresistance, and metal-insulator transitions result-
ing from the strong interplay between the charge, spin, and
orbital degrees of freedom. Knowledge of the electronic and
magnetic structure can be obtained by a variety of spectro-
scopic techniques such as optical spectroscopy, photoemis-
sion, x-ray absorption. A general understanding of spectros-
copy and its uses has always been a crucial aspect in the
advancement of condensed-matter physics. Recently, inelas-
tic x-ray scattering �IXS�, both on and off resonance, has
attracted considerable attention. Resonant inelastic x-ray
scattering �RIXS� �Ref. 1� is a second-order process domi-
nated by p ·A, where p is the momentum and A the vector
potential. The incoming x ray excites an electron from a
deep-lying core state into the valence shell, and one mea-
sures the radiative decay of the core hole. For RIXS at the
transition-metal L and M edges, the dipole transitions create
d–d excitations that include spin-flips due to the strong
intermediate-state spin-orbit coupling.2,3 The transitions can
be described with an effective operator approach3 in the fast-
collision approximation. RIXS at the K edge, where excita-
tions are predominantly shake-up processes by the strong 1s
core potential,4 can be related in certain limits to the dynamic
structure factor Sq��� �Ref. 5�.

Nonresonant IXS, on the other hand, involves the interac-
tion

e2

2m
A2 =

e2

2m
e� · eeiq·r, �1�

with q=k−k� where e /e� and k /k� are the polarization and
wave vectors of the incoming/outgoing x rays, respectively.
The interaction due to the A2 term is in principle weak. How-
ever, the successful experiments by Larson et al.6 demon-
strated the feasibility of measuring local d–d excitations, and
comparison of the radial matrix elements indicate that these
transitions can in principle also be observed in other

transition-metal and rare-earth compounds. The appealing
feature of nonresonant IXS is that the cross section is pro-
portional to the dynamic structure factor: d2� /d�d�
�Sq���, which through the fluctuation-dissipation theorem
is connected to the imaginary part of the density response
function,

�q��� = �g��q
1

� + Eg − H + i0+�−q�g� , �2�

with Eg the ground state energy and where the Hamiltonian
H, for transition-metal compounds, includes strong many-
body interactions; �q is the density operator

�q = 	
knn��

��k+q,n���eiq·r��kn��ck+q,n��
† ckn�, �3�

where ckn�
† creates an electron in a state �kn� where n is the

band index and �= ↑ ,↓. Without matrix elements �q be-
comes equivalent to the charge density operator �q
=	k�ck+q,�

† ck�. However, matrix elements play a crucial role
in the understanding of the inelastic scattering. Using Wan-
nier functions, we can rewrite the matrix element in terms of
scattering from an atom at site R0 to a site R,

��k+q,n���eiq·r��kn�� = 	
R

eiq·R��R����eiq·r��R0��� , �4�

where �R�� is a localized Wannier orbital of type � at site R.
The operator �q can create charge-transfer transitions �with
R�R0�, plasmon excitations,7–9 and dipolar and higher-
order transitions from core to valence states �where
R=R0�.10–13 Recently, it was demonstrated6 that it is also
possible to measure dipolar forbidden d–d transitions. By
tuning the transferred momentum,6,14 one is able to maxi-
mize the intensity for local transitions �Ri=R j� within the 3d
shell, for which the matrix element is

��k+q,n��e
iq·r��kn� 
 ��3d,���e

iq·r��3d,�� , �5�

where � denotes the different 3d orbitals. This approxima-
tion assumes reasonably well “localized” Warnier orbitals.
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These sharp dipole-forbidden transitions were first observed
by Larson et al.6 for large q in NiO and CoO. The use of
large wave vectors would allow a resolution of 30 meV or
less, making nonresonant IXS a promising tool to study local
crystal field and orbiton excitations. It could be used, for
example, to study the Jahn–Teller distortions in manganites
and the nature of the small crystal field distortions in early
transition-metal oxides. Although the angular dependence in
NiO and CoO has been analyzed with density-functional
theory6 and small-cluster calculations,14 the detailed nature
of the angular dependence and how to use it is not well
understood. In this paper, we express �q as an effective op-
erator, derive the selection rules governing the local d–d
transitions, and give explicit angular dependencies. We pro-
vide an explanation for the remarkable intensity variations in
certain directions. The derivation for the angular distribution
of the intensities is partially based on symmetry rules and
should therefore be very generally valid. We show how IXS
can be used to extract detailed ground-state information by
treating the IXS from orbitons �excitonic orbital excitations
not involving the Hubbard U� in manganites.

II. EFFECTIVE OPERATORS AND SELECTION RULES

For local d–d transitions, it is convenient to express the
3d Wannier functions �R0m=R3d�r�Zm

�2��r̂�, with r= �r� and r̂
=r /r, in terms of a radial function R3d�r� and a real angular
part

Zm
�l��r̂� = Nm� 4	

2l + 1
�Y−m̄

�l� �r̂� + smYm̄
�l��r̂�� , �6�

where m̄= �m�, Nm=1, 1
�2

i�1−sgn m�/2, and sm=0,�−1�msgn�m� for
m=0 and m̄
0, respectively; Ym

�l��r̂� is a spherical harmonic.
The functions Zm

�l��r̂� are known as tesseral harmonics and
convenient when dealing with transition-metal compounds
since the values m=−2,−1,0 ,1 ,2 correspond to the 3d or-
bitals dxy ,dyz ,d3z2−r2 ,dxz ,dx2−y2, respectively �see Table I�.
We can expand the exponent in Eq. �1� in terms of Bessel
functions and tesseral harmonics,

eiq·r = 	
LM

�2L + 1�iLjL�qr�ZM
�L��q̂�ZM

�L��r̂� , �7�

where M =−L ,−L+1, ¯ ,L, and jL is a Bessel function of
order L. Spherical-tensor algebra gives an effective transition
operator

�q = 	
L

AL�q�	
M

ZM
�L��q̂�wM

L , �8�

consisting of a one-particle transition operator wM
L probed by

q through a reduced matrix element AL�q� and an angular
dependence ZM

�L��q̂�. Of the summation over L only the values
0 �monopolar�, 2 �quadrupolar�, and 4 �hexadecapolar� re-
main. The factor

AL�q� = iL�2L + 1�C20,L0
20 C22,L0

22 PL, �9�

where Cl1m1,l2m2

l3m3 are Clebsch–Gordan coefficients, and
PL�q�=�drr2R3d�r�jL�qr�R3d�r� is the reduced matrix ele-

ment of the Bessel function. For brevity, we implicitly as-
sume the dependence on q and q̂ in the remainder. AL

= P0 , 10
7 P2 , 3

7 P4, for L=0, 2, and 4, respectively. In second
quantization, the transition operator is

wM
L = 	

m�
	

m�=m�

m−�m+

amm�
LM dm��

† dm�, �10�

where dm�
† creates an electron with spin �= ↑ ,↓ in the 3d

orbital with index m. The transition probability is

amm�

LM = �m�,sgn�mM��m̄�M̄�

Nm�

� NmNMPmM
�

C20,l0
20 C

2m̄,l,�M̄

2,m̄�M̄

with PmM
− =2sM ,2sm for m̄�M̄ 
0 and m̄�M̄ �0, respec-

tively, and PmM
+ =2−�m,0�M,0.

For the monopole term �L=0�, the scattering is elastic and
isotropic, since

w0
0 = ne = 	

m�

dm�
† dm�, �11�

and Z0
�0��q̂�=1.

For inelastic scattering in transition-metal systems, the co-
efficient contains the simple selection rule

m� = sgn�mM��m � M� , �12�

under the conditions that �m���2 and sgn�mM�=1 for m�
=0. This selection rule helps us to obtain an understanding of
nonresonant IXS. As an example, let us consider a Cu2+ ion
in D4h symmetry for quadrupolar �L=2� scattering. The
ground state is �d� x2−y2� �m=2�, where the underline indicates
holes. When measuring along the �001� direction, the only
nonzero angular term is Z0

�2�= 3
2 ẑ2− 1

2 �m=0�, where we use
q̂= �x̂ , ŷ , ẑ�= �sin � cos � , sin � sin � , cos �� in conventional
spherical coordinates � and �. There is no inelastic scattering
since the relevant transition operator w0

2 only contributes to
the elastic intensity �m=2→2�. When measuring with q in

TABLE I. The angular dependence Umm��q̂�= �m���q�m� of the
scattering between orbitals m and m�. The real 3d orbitals are Zm

�2�

=�3x̂ŷ, �3ŷẑ, 3
2 ẑ2− 1

2 , �3x̂ẑ, and 1
2
�3�x̂2− ŷ2� for m=−2,−1,0 ,1 ,2;

q̂= �x̂ , ŷ , ẑ�= �sin � cos � , sin � sin � , cos ��, in conventional spheri-
cal coordinates � and �. For off-diagonal matrix elements �m
�m�� for t2g �m= �1,−2� orbitals, m� denotes the t2g orbital for
which m��m ,m�. The coordinate r̂m= ŷ , x̂ , ẑ for m=1,−1, �2.

m m� Umm��q̂�

m�=m:

0 A2�− 3
2 ẑ2+ 1

2 �+ 3
4A4�35ẑ4−30ẑ2+3�

�0 A2� 3
2 r̂m

2 − 1
2 �+A4�5r̂m

2 −4+ 35
3 �Zm

�2��2�
m��m:

�1,−2 �1,−2 �−
�3
2 A2+ 5

3
�3A4�7r̂m�

2 −1��Zm�
�2�

�1 0 �− 1
2A2+ 5

2A4�7ẑ2−3��Z�1
�2�

�1 2 ��
�3
2 A2+ 5

6
�3A4
7�x̂2− ŷ2��2��Z�1

�2�

�2 0 �A2+ 5
2A4�7ẑ2−1��Z�2

�2�

2 −2 35
2 A4x̂ŷ�x̂2− ŷ2�
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the xy plane, ZM
�L� is zero for odd M. For even M, w0

2 gives
elastic scattering; w−2

2 does not contribute since transitions to
m�=−0,−4 are forbidden since sgn�mM�=1 is not satisfied
for m�=0 and �m���2 for 3d electrons. The only inelastic
scattering is due to w2

2, giving d� x2−y2→d�3z2−r2 �or m=2→0�
with a Z2

�2�=
�3
2 �x̂2− ŷ2� angular dependence. In addition, we

can easily see that transitions d� x2−y2→d� xy �m=2→−2� are
possible for operators with symmetry −0 and −4 using the
inverse relationship M =sgn�mm���m�m��. However, −0
does not satisfy the condition that sgn�mm��=1 for M =0 and
is therefore not allowed. The transition d� x2−y2→d� xy is there-
fore hexadecapolar �L=4, M =−4�.

Although all the off-diagonal terms for the quadrupolar
scattering are determined by a single M, often two different
M values interfere. It is therefore convenient to define a total
angular dependence between two 3d orbitals by Umm��q̂�
= �m���q�m�, which are given in Table I. We now demonstrate
how the selection rules and symmetry can help in extracting
valuable ground-state information.

III. IXS IN HIGH-SYMMETRY DIRECTIONS

One of the striking features of nonresonant inelastic x-ray
scattering in NiO is the presence of a �001� nodal direction
absent in CoO. Larson et al.6 ascribed this to a “q-selection
rule” associated with the nearly cubic point group symmetry
of NiO. The absence of inelastic scattering, �f ��q�g�=0, im-
plies �q�g�=const�g�. This occurs when H and �q commute,
�H ,�q�=0. In general, this rarely happens, but �q can com-
mute with parts of the Hamiltonian, which then might give
rise to nodal directions for all excited states if �q�g�
=const�g� and otherwise gives a nodal direction for the ex-
cited states for which �f ��q= �f �const. Below we will first
discuss the commutation relations between �q and the
crystal-field operator, and then those with the Coulomb in-
teraction. For q=qẑ, the only nonzero angular dependence
Z0

�L� selects the operators w0
L. This gives a density operator

diagonal in m,

�qẑ = 	
m�

Qmdm�
† dm� �13�

with

Qm = A2�1

2
m2 − 1� + A4�35

12
m4 −

155

12
m2 + 6� . �14�

In several common crystal-fields, such as Oh and D4h, m is a
good quantum number and therefore �q�ẑ� commutes with
the crystal-field operator. Along �100�, �qx̂ is no longer diag-
onal but, since it is a unitary transformation over 90° of �qẑ,
it still only contains e→e and t2→ t2, but no e→ t2 scatter-
ing. Eigenstates of the octahedral crystal field therefore scat-
ter among themselves. Thus, for a system with a Oh or D4h
symmetry a nodal direction can occur when q �C4, where C4
is a fourfold symmetry axis. Since in general �q does not
commute with the Coulomb interaction, the eigenstate of the
crystal field should also be an eigenstate of the Coulomb
interaction. This occurs for high-spin 3dn configurations, ex-
cept 3d2 and 3d7. For example, the ground state for a Ni2+

ion �in the absence of spin-orbit coupling� is d�3z2−r2↑d� x2−y2↑.
This is an eigenstate of the crystal field, the Coulomb inter-
action, and �qẑ. Therefore, no inelastic scattering occurs
along all six C4 axes. On the other hand, for Co2+, the ground
state is given by �g�=��d� t2↑d� e↑

2 �4T1��+��d� t2↑
2 d� e↑�

4T1��, where
the mixing occurs due the Coulomb interaction. This is not
an eigenstate of the octahedral crystal field and the operators
�qẑ, and inelastic scattering in the �001� direction therefore
occurs into the excited multiplet

�f� = ��d� t2↑d� e↑
2 �4T1�� − ��d� t2↑

2 d� e↑�
4T1�� , �15�

which is about 2.4 eV higher in energy.14 Also, deviations
from a t2e2 ground state due to band effects and a lowering
of the crystal field1 give rise to inelastic scattering. Spin-orbit
coupling can also remove a nodal direction, but its effect is
small except when the spin-orbit coupling lifts a degeneracy.
Finally, the conditions for nodal directions above are gener-
ally not satisfied for low- and intermediate-spin ground
states.

IV. ORBITON EXCITATIONS IN MANGANITES

Orbital physics plays an important role in manganites,
which have been extensively studied for their magnetoresis-
tive behavior.15 LaMnO3 is known to have an alternating
d3x2−r2 /d3y2−r2 orbital ordering, and half-filled systems often
display the CE type structure with charge and orbital order
occurring in an unconventional zigzag magnetic structure.
However, others have contested this ionic picture stating that
the ground state is more complex. For example, for
La0.5Sr1.5MnO4, it was claimed, based on x-ray magnetic lin-
ear dichroism experiments,16 that a significant out-of-plane
character was mixed in, giving an orbital ordering close to
dx2−z2 /dy2−z2. We demonstrate the extreme sensitivity of the
angular dependence of nonresonant IXS on the detailed na-
ture of the ground state. The ground state for Mn3+ is given
by a dt2↑

3 de↑ configuration. Degenerate e orbitals d3z2−r2 �m
=0� and dx2−y2 �m=2� are sensitive to distortions leading to
lowest states given by �e��= ���2�+��0�, with �2+�2=1.
The phases account for the different orientations of the or-
bitals due to orbital ordering often found in manganites. With
nonresonant IXS, one can make excitations into the empty
state �e�

� �=��0����2� by exciting an electron from the e
�dt2↑

3 de�↑→dt2↑
3 de

�
� ↑� or t2 states �dt2↑

3 de�↑→dt2↑
2 de�↑de

�
� ↑�.

For the former, the inelastic intensity summed over both e�

orientations is

	
p=�

��ep
���q�ep��2 = 2�2�2�U00 − U22�2 + 2��2 − �2�2U20

2

�see also Table I�. Figure 1 shows the angular dependencies
for different ground-state orbitals given by �2, see Fig. 1�a�.
Let us first look at the quadrupolar region �A2=1, A4=0�, see
Fig. 1�b�. The angular dependence can be rewritten as
8�2�2� 3

2 ẑ2− 1
2 �2+2��2−�2�2 3

4 �x̂2− ŷ2�2 and can be straight-
forwardly used to extract the value of �. A typical experi-
ment is comparable to those of Larson et al.6 One fixes the
magnitude of the transferred momentum and changes its
angle. For example, the intensity when rotating the angle
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from the �001� to the �100� direction depends strikingly on �.
For �=1, which corresponds to an electron in the x2−y2

orbital, the IXS intensity is predominantly along the x and y
directions. For �= 1

�2
, the angular intensity is predominantly

along the z direction. However, when the hexadecapolar con-
tribution increases, such an interpretation is less straightfor-
ward �see Fig. 1�c� and 1�d��. However, simplifications occur
when looking in specific directions or planes. First, note that
the �001� direction is only nodal when �e+�= �2� or �0�, which
are good eigenfunctions of �qẑ. However, more quantitative
information can be obtained by comparing the intensities
along �001� and �100� or �010�. The e→e scattering along
�001� depends on the parameters Q0=−A2+6A4 and Q2=A2
+A4 �see Eqs. �13� and �14��. However, for inelastic scatter-
ing, we can remove one of those parameters by rewriting the
scattering operator as �qẑ=Q0ne+	m�0,��Qm−Q0�dm�

† dm�.
The number operator ne only gives elastic scattering, so ef-
fectively the e→e scattering only depends on Q20=Q2−Q0
=2A2−5A4. Along �100�, �qx̂ only contains e→e and t2
→ t2, but no e→ t2 scattering. The e→e scattering again only
depends on Q20. A straightforward calculation gives for the

ratio of the nonresonant scattering intensities in the �001� and
�100� direction

I�001�/I�100� = 16�2�2/�3 − 8�2�2� . �16�

Note that, since �2=1−�2, this ratio is independent of the
reduced matrix elements and can be used to extract directly
the nature of the Jahn–Teller distorted state. From the factor
Q20=2A2−5A4, one also sees a destructive interference inde-
pendent of � between quadrupolar and hexadecapolar terms
in the x, y, and z directions, which is clearly visible in Fig.
1�c�, where the intensity in those directions are almost zero.
A clear feature that displays the change in ground state as a
function of �2 is the direction of the dominant lobes in the xy
plane �see insets in Fig. 1�b�–1�d��. Again, this can be used
to obtain information on ground-state properties. The inten-
sity in the x or y direction 1

8Q20
2 �3–8�2�2� decreases with

increased mixing of the x2−y2 and 3z2−r2 orbitals, whereas
along the �110� directions, the intensity 2�2�2�A2+ 25

4 A4�2

increases.
The measurement of the e→e� orbiton excitation has the

great advantage that the energy loss can be directly related to
the energy for an orbiton excitation. Since this energy is of
the order of 0.3–1.5 eV, this feature might in practice be
difficult to distinguish from the elastic line. However, valu-
able information can still be obtained from the study of the
t2→e� excitation, where an electron from the t2g

3 spin is ex-
cited into the empty e� orbital. This excitation is at higher
energy loss due to the crystal-field splitting between e and t2,

FIG. 1. �Color online� Inelastic scattering from e→e� in the
manganites. �a� The top part shows the lowest e orbitals for �e+�
=��2�+��0� for �2=1, 0.9, 0.75, and 0.5. Excitations are made into
the orbital �e+

��=��0�−��2�. The angular dependence for �2

=0,0.1,0.25,0.5 is the same as those for 1−�2. The inversion of
the relative energy positions of the orbitals does not affect the non-
resonant IXS, which is proportional to ��e�

� ��q�e���2. �b� The angu-
lar distribution of the nonresonant IXS intensity in the quadrupolar
region �A2=1 and A4=1−A2=0�. The intensity in a certain direction
is proportional to the distance to the origin. The insets show the
intensity in the xy plane. The intensities give the sum over both
orientations of the e� orbitals; �c� same as �b� for A2=0.67; �d�
idem for A2=0.

FIG. 2. �Color online� Nonresonant inelastic scattering for the
manganites with an electron in the �e� states as in Fig. 1�a�, but now
for scattering t2→e� for �2=1, 0.9, 0.75, 0.5, 0.25, 0.1, and 0. Note
that now �2 and 1−�2 are inequivalent. �a� Nonresonant IXS in the
quadrupolar region �A2=1 and A4=0�; �b� idem in the hexadecapo-
lar region �A2=0 and A4=1�. The insets show the scattering inten-
sity in the xy plane.
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which is of the order of 2–2.5 eV. The angular dependencies
are shown in Fig. 2. First, note that the spectra for �2 and
1−�2 are no longer equivalent. Second, the x, y, and z direc-
tions are all nodal since no t2→e scattering occurs. Simpli-
fications also occur in the xy plane. Scattering from �0�
→ ��1�, �−2� requires M = �1,−2 and �2�→ ��1�, �−2� re-
quires M = �1��3� and �−4�, respectively �M values in pa-
rentheses give pure hexadecapolar terms�. All the odd M are
zero in the xy plane, and only �0�→ �−2� �M =−2� and �2�
→ �−2� �M =−4� remain, giving an angular distribution in the
xy plane 2�2�U0,−2�2+2�2�U2,−2�2. The relative strengths of
U0,−2�x̂ , ŷ ,0�=

�3
2 Q20x̂ŷ and U2,−2�x̂ , ŷ ,0�= 35

2 A4x̂ŷ�x̂2− ŷ2� re-
flect the amount of 3z2−r2 and x2−y2 character in the ground
state, respectively. Note that in the quadrupolar region, we
have a simple scaling of the x̂ŷ dependence �see Fig. 2�a��.
The advantage of using hexadecapolar excitations �see Fig.
2�b��, is the clear change in angular dependence from a four-
lobed to an eight-lobed shape as a function of �.

V. SUMMARY

The nonresonant inelastic x-ray scattering for local d–d
transitions has been analyzed. The strong sensitivity of the

angular dependence on the detailed nature of the ground state
in combination with the experimental degrees of freedom
�scattering angle, incoming energy� and the possible high
resolution make nonresonant IXS a powerful tool to study
crystal-field and orbital excitations. Future theoretical work
should include an analysis for the rare-earths.
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