
Quantum Field Theory II
Notes of lecture course by A. Hebecker

Our primary reference will continute to be the book by Peskin and Schröder [1].
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1 The path integral or functional integral

1.1 Quantum mechanics preliminaries

The very powerful method of path integrals has been developed by Feynman, based on
early ideas of Dirac. We explain it using the simplest example, a particle in one dimension
with (using ~ = 1)

Ĥ =
p̂2

2m
+ V (q̂) and [q̂, p̂] = i . (1.1)

As is commonly done, we represent the p̂, q̂-algebra or Heisenberg algebra by operators
on the Hilbert space of square integrable functions,

ψ : q 7→ ψ(q) . (1.2)

We will also denote the function ψ, viewed as an element of the Hilbert space, by |ψ〉.
The Heisenberg algebra acts as

p̂ : ψ(q) 7→ −iψ′(q) (1.3)

q̂ : ψ(q) 7→ q ψ(q) , (1.4)

where ‘7→’ symbolizes a map of functions and the first line is nothing but the familiar
rule p̂ ≡ −i∂/(∂q).

Now, let |p〉 and |q〉 be the eigenstates of p̂ and q̂ with eigenvalues p and q,

p̂ |p〉 = p |p〉 and q̂ |q〉 = q |q〉 . (1.5)

They explicitly read

|p〉 =
(
q′ 7→ eipq

′)
(1.6)

|q〉 =
(
q′ 7→ δ(q′ − q)

)
. (1.7)

It is easy to check that

〈q|q′〉 = δ(q − q′) , 〈p|p′〉 = 2πδ(p− p′) , 〈p|q〉 = e−ipq , (1.8)
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as well as

1 =

∫
dq |q〉〈q| =

∫
dp

2π
|p〉〈p| . (1.9)

While this should all be very familiar (nevertheless, check all of it!), we will now do
a simple calculation in this context in a slightly novel way:

1.2 Path integral for amplitudes

We are interested in the transition amplitude from

|qa〉 at ta = 0 to |qb〉 at tb = t , (1.10)

which by definition reads (with Ĥ → H for brevity)

〈qb|e−iHt|qa〉 = 〈qb|e−iH∆e−iH∆ · · · e−iH∆|qa〉 . (1.11)

Here, on the r.h. side, we split the time evolution into n time steps with ∆ ≡ t/n. Next,
we insert n− 1 identity operators,

〈qb|e−iHt|qa〉 =
n−1∏
i=1

(∫
dqi

)
〈qb|e−iH∆|qn−1〉〈qn−1|e−iH∆|qn−2〉 · · · 〈q1|e−iH∆|qa〉 . (1.12)

Now, we rewrite each of the bra-ket factors on the r.h. side as

〈qi+1|e−iH∆|qi〉 =

∫
dp

2π
〈qi+1|p〉 〈p|e−iH∆|qi〉 (1.13)

and use
〈qi+1|p〉 = eipqi+1 and e−iH∆ = 1− iH∆ +O(∆2) . (1.14)

Since ∆ = t/n and we will be interested in the limit n → ∞, a sum of n terms O(∆)
will contribute, but higher orders in ∆ are irrelevant. Next, we apply the relations

〈p|1|q〉 = 〈p|q〉 = e−ipq (1.15)

and

〈p|H|q〉 = 〈p|
(
p̂2

2m
+ V (q̂)

)
|q〉 =

(
p2

2m
+ V (q)

)
〈p|q〉 =

(
p2

2m
+ V (q)

)
e−ipq .

(1.16)
Collecting all terms we find

〈qi+1|e−iH∆|qi〉 '
∫

dp

2π
eip(qi+1−qi)

[
1− i

(
p2

2m
+ V (qi)

)
∆

]
(1.17)

'
∫

dp

2π
exp i

[
p(qi+1 − qi)−

(
p2

2m
+ V (qi)

)
∆

]
. (1.18)
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Figure 1: Pictorial representation of the integral over all trajectories.

Changing integration variables according to p→ p−(qi+1−qi)m/∆ and using the familiar
formula ∫ ∞

−∞
dx e−ax

2

=

√
π

a
, (1.19)

we finally arrive at

〈qi+1|e−iH∆|qi〉 '
1√

2πi∆/m
exp i

[
m

2

(
qi+1 − qi

∆

)2

− V (qi)

]
∆ ' 1

C(∆)
eiL(q,q̇)∆.

(1.20)
Crucially, in the last step we have ‘discretized’ the lagrangian L by interpreting qi and
qi+1 as the values of a trajectory q(t) at t = ∆ · i and t = ∆ · (i + 1) respectively.
C(∆) ≡

√
2π∆/m is an abbreviation.

We now recall that we have been working on just one of the factors in (1.12). Col-
lecting all such factors gives

〈qb|e−iHt|qa〉 = lim
∆→0

1

C(∆)

n−1∏
i=1

(∫
dqi
C(∆)

)
exp i

i=n−1∑
i=0

[
m

2

(
qi+1 − qi

∆

)2

− V (qi)

]
∆ ,

(1.21)
where we identified qa ≡ q0 and qb = qn. Here the sum in the exponent is a discretized
version of the action,

S[q] =

∫ tb

ta

dt L(q(t), q̇(t)) . (1.22)

The total of all qi-integrations can be viewed as the integral over all trajectories (all
paths) starting at qa and ending at qb, see Fig. 1. Naturally, the object to be integrated
in such a ‘functional integral’ is a functional, in our case exp(iS). Thus, a less precise
but more intuitive version of our last formula is

〈qb|e−iHt|qa〉 =

∫
Dq eiS[q] . (1.23)

Here Dq (sometimes also written as [Dq]) symbolizes the integral over all smooth (in
an appropriate definition not to be discussed here) functions q : [ta, tb] 7→ R with fixed
boundary values q(ta) = qa and q(tb) = qb.
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Equation (1.23) is (the simplest version of) the famous path integral formula for
amplitudes in quantum mechanics. It is clear on dimensional grounds and easy to check
explicitly that S has to be replaced by S/~ if we do not set ~ = 1. The classical limit of
quantum mechanics becomes very intuitve in this approach: The contribution of trajec-
tories whose action differs from the classical (extremal) action Sext. by more than O(~)
is suppressed due to fast oscillations of eiS/~. Hence, the classical trajectory dominates
in systems with a large characteristic action (change).

In fact, the path integral is frequently taken to define a quantum system, given an
action S. Hence one also speaks of ‘path integral quantization’.

1.3 Path integral for correlation functions

Let us rewrite our result in the Heisenberg picture,

〈qb|e−iH(tb−ta)|qa〉 = 〈qb|e−iHtb eiHta|qa〉 ≡ 〈qb, tb|qa, ta〉 =

∫
Dq eiS[q] , (1.24)

where as before the boundary conditions q(ta/b) = qa/b are implicit in the Dq integral.1

An obvious generalization of the next-to-last expression is

〈qb, tb|q̂tm · · · q̂t1|qa, ta〉 . (1.25)

This is called a correlation function (between Heisenberg operators q̂t at different
times t) and is analogous to the Greens functions or correlation functions of fields
〈0|φ̂(xm) · · · φ̂(x1)|0〉 needed in QFT.

To save writing, let m = 1 and return to the Schrödinger picture:

〈qb, tb|q̂t|qa, ta〉 = 〈qb|e−iH(tb−t)q̂e−iH(t−ta)|qa〉 . (1.26)

Furthermore, rewrite

q̂ = q̂ · 1 = q̂

∫
dq |q〉〈q| =

∫
dq |q〉q〈q| , (1.27)

which gives

〈qb, tb|q̂t|qa, ta〉 =

∫
dq〈qb, tb|q, t〉 q 〈q, t|qa, ta〉 . (1.28)

Under the assumption tb > t > ta, we can now apply twice our path integral formula for
amplitudes (in the discrete form with intermediate qi-integrations). With n1 = (tb−t)/∆
and n2 = (t− ta)/∆, we have the two products

n1−1∏
i=1

∫
dqi and

n2−1∏
i=1

∫
dqi , (1.29)

1Recall that the (by definition time-independent) state |qa, ta〉 characterizes a particle which, at time
ta, is perfectly localized at the position qa. It is simply the state |qa〉 evolved in time from ta to t = 0.
Hence the argument ta is not time in the sense of dynamical evolution but simply, together with qa, a
parameter characterizing the state.
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together with the extra dq-integral explicitly appearing in (1.28). After relabelling these
n1 + n2 − 1 integrations can be combined in a single path integral, the only difference
to the formula for amplitudes being the extra factor of q at definite intermediate time t
appearing in the integrand:

〈qb, tb|q̂t|qa, ta〉 =

∫
Dq q(t) eiS[q] . (1.30)

For tb > tm > · · · > t1 > ta this generalizes to

〈qb, tb|q̂tm · · · q̂t1|qa, ta〉 =

∫
Dq q(tm) · · · q(t1) eiS[q] . (1.31)

This is nice, but what we really need are vacuum correlation functions

〈0, t =∞|q̂tm · · · q̂t1|0, t = −∞〉 = 〈0|q̂tm · · · q̂t1|0〉 , (1.32)

where we used the fact that the vacuum is by definition an eigenstate of H. To calculate
those we consider (letting again m = 1 to save writing)

〈q, T |q̂t|q,−T 〉 = 〈q|e−iH(T−t)q̂ e−iH(t−(−T ))|q〉 , (1.33)

with T > t > −T . Let’s also look at the analogous expression in a QM system where H
has been replaced according to

H → H ′ ≡ (1− iε)H . (1.34)

Here we do not worry about unitarity violation since we will take the limit ε→ 0 at the
end. We also assume that |q〉 has some overlap with the vacuum, |q〉 = α|0〉+ · · · , where
the ellipsis stands for higher energy eigenstates. Now, since in

e−εTH |q〉 = e−εTH(α|0〉+ · · · ) = (αe−εTE0|0〉+ · · · ) (1.35)

the vacuum is the least-suppressed term on the r.h. side, we have

〈q|e−iH′(T−t)q̂ e−iH′(t+T )|q〉 ∼ 〈0|e−iH′(T−t)q̂ e−iH′(t+T )|0〉 , (1.36)

at large T . Note that we are unable to keep track of the normalization since we don’t
know α. We now replace the l.h. side by our familiar path integral expression, finding∫

Dq q(t) eiS
′[q] ∼ 〈0|q̂t|0〉′ . (1.37)

The prime indicates that everything is defined using our modified Hamiltonian H ′. Fur-
thermore, the boundary conditions on the l.h. side are defined by demanding q(−T ) =
q(T ) = q, with the limit T → ∞ taken at the end. We take this to mean that there
are no boundary conditions, i.e. the integral is over all functions. That is also consistent
with the fact that the q-dependence has dropped out on the r.h. side.
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Finally, we generalize to m > 1 and take the limit ε→ 0:

〈0|T q̂tm · · · q̂t1|0〉 ∼ lim
ε→0

∫
Dq q(t1) · · · q(tm) eiS

′[q] . (1.38)

Here the time-ordering symbol T on the l.h. side replaces our previous assumption that
tm > · · · > t2 > t1. Note that the ‘natural’ (from the path-integral point-of-view) expres-
sion on the r.h. side automatically gives the time-ordered correlation function which, as
we have seen in QFT I, is so central in applications.

Note that one might think that (1.37) is meaningless since it does not depend on
t by time-translation invariance and thus it appears to contain no information beyond
the (unknown!) normalization. The point is that our derivation of (1.37) was just a
shorthand for the analogous derivation of (1.38), with its non-trivial content encoded in
the (relative) time dependence.

Before closing this section, we still need to understand how S ′ differs from the action
S used before. This is easy if we recall that H originally always appeared in exponential
factors exp(−iH∆). Thus, replacing H by (1− iε)H is equivalent to the replacement

∆→ (1− iε)∆ or t→ (1− iε)t , (1.39)

after returning to continuum notation. Hence

exp(iS ′) = exp i

∫
dt(1− iε)

[
m

2

(
dq

dt

)2(
1

1− iε

)2

− V (q)

]
(1.40)

' exp i

∫
dt

[
m

2

(
dq

dt

)2

(1 + iε)− V (q)(1− iε)

]
. (1.41)

We see that both large values of q̇ and of V (q) are exponentially suppressed. This turns
the fast oscillations of eiS for quickly changing S into exponential suppression. The
‘iε’ hence has the intuigtive meaning of a convergence factor, which in particular
suppresses all non-vacuum contributions at very early and late times.

In fact, for V (q) = (k/2)q2 + · · · , it is sufficient to keep only the iε multiplying the
force constant k to achive this convergence effect. Jumping ahead, we note that this
(k/2)q2-term corresponds to (m2

qft/2)φ2 in the analogy of a harmonic-oscillator-system
with a scalar field theory.2 Hence, we record for the future that S ′ simply means for us
that we will always use

m2
qft → m2

qft − iε (1.42)

whenever this small imaginary part affects the result. In other words, the convergence
factor iε which we introduced above can be identified with the one from the iε-prescription
generating the Feynman propagator in QFT.

It is clear from our discussion that one can also characterize the iε-effect by saying
that the time integration contour is rotated according to Fig. 2. In fact, this logic can

2Do not confuse mqft with the QM particle mass m.
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Figure 2: Time integration contour rotated by (1 − iε).

be developed by letting the rotation angle grow to 90◦. This is called Wick rotation.
The result is a so-called euclidean theory with (euclidean) time evolution defined by
the operator

exp(−Hτ) (1.43)

and the path integral defined with an exponential factor involving the euclidean action
SE,

eiS → e−SE with SE ≡
∫
dτ

[
m

2

(
dq

dτ

)2

+ V (q)

]
. (1.44)

The derivation of the path integral formula for amplitudes and correlation functions
proceeds exactly as in this and the previous section, just with ∆ → −i∆ and all corre-
sponding modifications which follow from this.

We close this section by giving a version of the path integral formula where the
normalization issues associated with the unknown constant α and with the 1/C(∆)
prefactors drop out:

〈0|T q̂t1 · · · q̂tm|0〉
〈0|0〉

=

∫
Dq q(t1) · · · q(tm) eiS[q]∫

Dq eiS[q]
. (1.45)

Here and below we write S instead of S ′, with the iε and the limiting procedure ε → 0
implicit.

Many modern QM textbooks (e.g. those by Sakurai [2] and Münster [3]) have chapters
on the path integral approach. For an in-depth treatment cf. Schulman’s book [4] (see
also [5–7]).

1.4 Functional integral for the scalar field

Recall that

S =

∫
dt L with L =

∫
d3x

(
1

2
∂µϕ∂

µϕ− V (ϕ)

)
. (1.46)

We write L explicitly in ‘T − V ’ form,

L =

∫
d3x

(
1

2
ϕ̇2 − 1

2
(~∇ϕ)2 − V (ϕ)

)
, (1.47)
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and legendre-transform to obtain

H =

∫
d3x

(
1

2
π2 +

1

2
(~∇ϕ)2 + V (ϕ)

)
, (1.48)

where π = ϕ̇. This can be put on a spatial lattice with lattice spacing ∆, i.e., we replace
the continuous variable ~x by ~x = ~n ·∆ with ~n ∈ Z3. Now we have

H =
∑
~x

(
1

2
π2
~x +

1

2
(~∇ϕ)2

~x + V (ϕ(~x))

)
, (1.49)

where (~∇ϕ)~x is a 3-vector with components

(~∇ϕ)~x, i =
1

∆

(
ϕ(~x+ ê(i) ·∆)− ϕ(~x)

)
. (1.50)

This is the Hamiltonian of a many-particle system with coordinates ϕ~x ≡ ϕ(~x) and
conjugate momenta π~x ≡ π(~x). Here ~x is simply a discrete label, but we will find it more
convenient notationally to keep writing it as an argument. The Hamiltonian can also be
written as

H =
∑
~x

1

2
π(~x)2 + Ṽ ( {ϕ(~x), ~x ∈ Lattice} ) . (1.51)

Here Ṽ is the potential of this many-particle system. It is defined by comparing with
(1.49) and includes the gradient energy (1/2)

∑
(~∇ϕ)2

~x of the field-theory.

Now we have made explicit that we are dealing simply with a set of many QM
particles with canonical kinetic terms (with masses m = 1). We can hence apply our
previous derivation of the path-integral formula, the only change being the transition to
many variables. Explicitly,

|q〉 → |q1 · · · qn〉 → | {ϕ(~x), ~x ∈ Lattice} 〉 (1.52)

|p〉 → |p1 · · · pn〉 → | {π(~x), ~x ∈ Lattice} 〉 , (1.53)

where the first arrow corresponds to the transition to an n-particle system in standard
QM notation and the second arrow to the transition to discretized field theory. (Note
that we can always think of a finite volume and hence finite number of lattice points,
taking the infinite volume limit at the very end.) To make the analogy even more clear,
let’s for example give the action of a field operator at some specific lattice point ~y:

ϕ̂(~y) | {ϕ(~x), ~x ∈ Lattice} 〉 = ϕ(~y) | {ϕ(~x), ~x ∈ Lattice} 〉 . (1.54)

Similarly, one can write down expressions analogous to all the formulae of Sect. 1.1. Let
us give one more example concerning the normalization of position eigenstates (which
now become field eigenstates):

〈q′|q〉 = δ(q′ − q) → · · · → 〈ϕ′|ϕ〉 =
∏
~x

δ
(
ϕ′(~x)− ϕ(~x)

)
. (1.55)
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Here we also introduced the abbreviation

|ϕ〉 ≡ | {ϕ(~x), ~x ∈ Lattice} 〉 . (1.56)

With these preliminaries, it is mostly an excercise in carefully keeping track of no-
tation to repeat the derivation of Sect. 1.2. The result, which the reader should now be
able to derive in all detail, is

〈ϕb|e−iH(tb−ta)|ϕa〉 =
∏
~x

(∫
Dϕ(~x)

)
exp i

∑
i

{∑
~x

[
1

2

(
ϕi+1(~x)− ϕi(~x)

∆t

)2

(1.57)

−Ṽ ({ϕi(~x), ~x ∈ Lattice})

]}
∆t .

Here the time interval length is ∆t (not to be confused with the lattice spacing ∆) and,
as before, ∫

Dϕ(~x) ≡ 1

C(∆t)

∏
i

(∫
dϕi(~x)

C(∆t)

)
. (1.58)

In analogy to the discrete version qi of the function q(t), we now view ϕi(~x) as the
discrete version of the function ϕ(t, ~x) (for each ~x). With this, it is clear how to return
to continuum notation for both time and space (taking the limits ∆t, ∆ → 0):

〈ϕb|e−iH(tb−ta)|ϕa〉 =

∫
DϕeiS[ϕ] , (1.59)

where

S[ϕ] =

∫ tb

ta

dt L[ϕ(t), ϕ̇(t)] =

∫ tb

ta

dt

∫
d3xL(ϕ, ∂ϕ) . (1.60)

Here the argument ϕ(t) of L is the function ~x 7→ ϕ(t, ~x) (and similarly for ϕ̇(t)). The
symbol

∫
Dϕ means ‘summation’ over all smooth functions ϕ(x) ≡ ϕ(t, ~x) satisfying

ϕ(ta, ~x) = ϕa(~x) and ϕ(tb, ~x) = ϕb(~x). In other words, one integrates over all time-
dependent fields or ‘fields histories’ which interpolate between two given field configu-
rations ϕa and ϕb at some initial and final time. A pictorial representation of this is
attempted in Fig. 3

We can also repeat the discussion of Sect. 1.3, which in the field theory case leads to
the important formula (assuming 〈0|0〉 = 1)

〈0|T ϕ̂(x1) · · · ϕ̂(xm)|0〉 =

∫
Dϕϕ(x1) · · ·ϕ(xm) eiS[ϕ]∫

DϕeiS[ϕ]
. (1.61)

Here

S =

∫
d4x

[
1

2
(∂ϕ)2 − V (ϕ)

]
and V (ϕ) =

1

2
(m2

qft − iε)ϕ2 +O(ϕ3) . (1.62)

The field operators are Heisenberg picture fields of the fully interacting theory such
that (1.61) captures the full dynamics. As explained earlier, the iε term suppresses the
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Figure 3: One of the many functions ϕ(t, x) interpolating between ϕa(x) = ϕ(ta, x) and
ϕb(x) = ϕ(tb, x).

contribution of non-vacuum states in the limit tb/a → ±∞. Technically, this happens
because the resulting factor exp(−

∫
εϕ2/2) suppresses states with larger ϕ more strongly.

The crucial conceptual progress we have achieved can be summarized as follows:
Let’s accept, one the basis of QM experience, that the path integral is a valid approach
to quantizing a theory. Then (1.61) is an immediate and natural generalization (without
the notationally painful derivation we sketched above) of the corresponding QM formula.
It is automatically fully covariant and can be taken to define quantum field theory (given
of course that we know how to evaluate functional integrals – which we will learn). The
only reason we need to refer back to QFT I is the LSZ formula, which we still require to
relate correlation functions to scattering amplitudes.

Finally, we note that most of what we will do in the next chapters is perturbation
theory in the path integral approach. However, our previous discretized derivation of
QFT path integral formulas can be taken as a non-perturbative definition. This requires
that one can (in many cases numerically) perform very high-dimensional integrals and
approximate the limits of large volume (or equivalently ∆,∆t → 0) sufficiently well.
That is arguably our best way to actually mathematically define QFT. The whole area
of research is called lattice field theory (or lattice gauge theory, since the main
interest is in gauge field theories), see e.g. [10].

1.5 Schrödinger wave functional and other comments

So far, we only considered q̂-eigenstates as initial and final states in our QM path integral
formula for amplitudes,

〈qb|e−iH(tb−ta)|qa〉 =

∫
qa,qb

Dq eiS[q] . (1.63)

Here the indices of the integration sign remind us of the boundary conditions q(ta/b) =
qa/b. This is easy to generalize to arbitrary states using

|ψ〉 =

∫
dq ψ(q) |q〉 . (1.64)
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Note that this relation is obvious since |q〉 corresponds to the wave function q′ 7→ δ(q′−q).
Now we can multiply (1.63) by arbitrary wave functions ψa(qa) and ψ∗b (qb) and integrate
to obtain∫

dqa

∫
dqb ψ

∗
b (qb)〈qb|e−iH(tb−ta)|qa〉ψa(qa) =

∫
dqa

∫
dqb ψ

∗
b (qb)ψa(qa)

∫
qa,qb

Dq eiS[q] .

(1.65)
In other words, we have the general path integral formula for amplitudes

〈ψb|e−iH(tb−ta)|ψa〉 =

∫
dqb ψ

∗
b (qb)

∫
dqb ψa(qa)

∫
qa,qb

Dq eiS[q] . (1.66)

It is intuitively clear that, on the r.h. side, we now sum over all paths q(t), weighted with
the eiS and with the Schrödinger wave functions ψa and ψ∗b for initial and final state
respectively.

Next, we recall the QFT analogue of (1.63),

〈ϕb|e−iH(tb−ta)|ϕa〉 =

∫
ϕa,ϕb

DϕeiS[ϕ] , (1.67)

where the indices of the integration sign again remind us of the boundary conditions.
The initial state |ϕa〉 is a state in which the field value at every position is exactly known.
Let’s drop the index a for now and write this state, which can be viewed as a product
of ‘position’ (actually, field-value) eigenstates, explicitly as

|ϕ〉 =
∏
~x

|ϕ(~x)〉 . (1.68)

Here the many labels ϕ(~x) are nothing but many qi’s, generalizing the single lable q
to many-particle QM. If we want to describe a general initial state, we must as before
multiply by a wave function and integrate, i.e. our state will be

|Ψ〉 =
∏
~x

(∫
dϕ(~x)

)
Ψ({ϕ(~x), ~x ∈ Lattice}) |ϕ〉 . (1.69)

Returning to the continuum point of view, we see that the Schrödinger wave function
Ψ on the r.h. side, with its huge number of arguments, is actually a functional: It takes
a field configuration ϕ(~x) as its argument and returns a complex number. We will call
this a Schrödinger wave functional:

|Ψ〉 is caracterized by Ψ : ϕ 7→ Ψ[ϕ] , (1.70)

where ϕ depends only on space, not on time. Ψ characterizes a general state in QFT,
just as ψ does in QM. Thus, a more general general QFT path integral formula reads

〈Ψb|e−iH(tb−ta)|Ψa〉 =

∫
Dϕb Ψ∗b [ϕb]

∫
Dϕa Ψa[ϕa]

∫
ϕa,ϕb

DϕeiS[ϕ] . (1.71)
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We sum over all field 4-dimensional field configurations ϕ(t, ~x) with t ∈ [ta, tb], weighted
by eiS and two wave functionals for initial and final state.

To play a bit more with this new notation, let’s return to our previous formula be
assuming that each of our wave functionals Ψ is non-zero only for one particular classical
field configuration. In other words, consider δ-functionals of the form

Ψa,b[ϕ] = δ[ϕ− ϕa,b] ≡
∏
~x

δ
(
ϕ(~x)− ϕa,b(~x)

)
. (1.72)

It is clear that, inserting this in (1.71) gives us (1.67).

Finally, as an independent remark, it may be useful to note that the path integral
can be defined not by discretiziation but using Fourier coefficients or some analogue
thereof. For example, return to QM and decompose q(t) on the interval [ta, tb] into a
basis of orthonormal functions qi(t) consistent with the boundary conditions,

q(t) =
∑
i

λiqi(t) . (1.73)

Then ∫
Dq eiS[q] →

∏
i

(∫
dλi

)
eiS(λ1,λ2,··· ) . (1.74)

An analogous expansion can of course be used in field theory, the only difference being
that ϕ has more arguments and hence i might be a ‘multi-index’,∫

DϕeiS[ϕ] →
∏
i

(∫
dλi

)
eiS(λ1,λ2,··· ) , (1.75)

where λi might correspond to the Fourier modes φ̃(k) and the 4-vector k to the index i.

Also, in this context a δ-functional takes the explicit form

δ[ϕ− ϕ0] =
∏
i

δ(λi − λ0
i ) , (1.76)

where λ0
i are the (Fourier) expansion coefficients of the function ϕ0. Clearly, much more

could and should be said about path integrals in QM and QFT, but we have to move
on.

2 Feynman rules in the path integral approach

2.1 The generating functional

Recall first some basic facts about functional differentiation. Let F be a functional, i.e.
a map F : j 7→ F [j], with functions j : x 7→ j(x). Here F [j] is a number in R or C.
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The functional derivative
δF [j]

δj(x)
(2.1)

is a function of x (i.e. a number for any fixed x) defined by

F [j + δj]− F [j] =

∫
d4x

δF [j]

δj(x)
· δj(x) +O

(
(δj)2

)
. (2.2)

Obviously, for fixed x we can also think of δF [j]/(δj(x)) as of a functional depending on
j. Two simple examples are

a) F [j] = j(y) ;
δ

δj(x)
j(y) = δ4(x− y) , (2.3)

b) F [j] =

∫
d4y j(y)ϕ(y) ;

δ

δj(x)

∫
d4y j(y)ϕ(y) = ϕ(x) , (2.4)

where b) is an application of a), using linearity. It will be helpful to always keep in mind
the analogy with the simpler, discrete case,

continuous x ↔ discrete set {xi} , (2.5)

in which case j is characterized by a discrete set of values ji and hence the above examples
become

a)
∂

∂ji
jk = δi

k (2.6)

b)
∂

∂ji

∑
k

jkϕk = ϕi . (2.7)

After these preliminaries, let us define the generating functional Z of a scalar field
theory with lagrangian L as

Z[j] =

∫
Dϕ exp i

∫
d4x (L(ϕ, ∂ϕ) + j(x)ϕ(x)) . (2.8)

The crucial feature, explaining the name of this object (it generates Green’s functions),
is

〈0|T ϕ(x1) · · ·ϕ(xn)|0〉 =
1

Z[0]

(
δ

iδj(x1)

)
· · ·
(

δ

iδj(xn)

)
Z[j]

∣∣∣∣∣
j=0

, (2.9)

where we assumed 〈0|0〉 = 1.

The demonstration of this feature is straightforward. Note first that

δ

iδj(x1)

∫
Dϕ exp i

∫
d4x(L+ j(x)ϕ(x)) =

∫
Dϕϕ(x1) exp i

∫
d4x(L+ j(x)ϕ(x)) .

(2.10)
This can be derived from the definition using exp(a+ ∆a)− exp(a) ' ∆a exp(a). It can
also be viewed as an application of the chain rule for functional differentiation. Next,

15



apply further differentiations with δ/(iδj(x2)) up to δ/(iδj(xn)). This brings down a
factor ϕ(x1) · · ·ϕ(xn) under the path integral. Noting also that, by definition,

Z[0] =

∫
DϕeiS , (2.11)

the result follows from our previously derived path integral formula for Green’s
functions.�

2.2 Generating functional for the free field

We start by rewriting the free action S0 =
∫
d4xL0 as

S0 =
1

2

∫
d4xϕ(x)(−�−m2 + iε)ϕ(x) (2.12)

=
1

2

∫
d4x

∫
d4y ϕ(x)(−�x −m2 + iε)δ4(x− y)ϕ(y) (2.13)

=
1

2

∫
d4x

∫
d4y ϕ(x) iD−1

F (x− y)ϕ(y) , (2.14)

where
iD−1

F (x− y) = (−�x −m2 + iε)δ4(x− y) . (2.15)

The last equality can be understood as a definiton of the function D−1
F , but it can also be

easily checked that this is indeed the inverse operator (‘inverse matrix’) of the Feynman
propagator DF encountered earlier:∫

d4y D−1
F (x− y)DF (y − z) = δ4(x− z) . (2.16)

Here it is useful to visualize the close analogy to the matrix formula (M−1)ijM
j
k = δik.

This is a good place for a small mathematical detour: We can think of DF and D−1
F

as of functions (more generally, distributions) of two arguments, x and y. As such, they
are ‘integral kernels’ of linear operators acting on functions or ‘kernel representations’ of
such operators. (Do not confuse with the ‘kernel of an operator’ in the usual sense.) We
describe this using a more general notation: DF/D

−1
F → A. Indeed, let a linear operator

A be defined by

A : f(x) 7→ g(x) =

∫
d4y A(x, y)f(y) . (2.17)

Clearly, A(x, y) is analogous to a (continuous-index) matrix representing an operator.
We can also look at the corresponding map for the Fourier-transforms:

f̃(p) =

∫
d4x eipxf(x) 7→ g̃(p) =

∫
d4q Ã(p, q)f̃(q) . (2.18)
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For this to hold we need

Ã(p, q) =

∫
d4x d4y

(2π)4
ei(px−qy)A(x, y) , (2.19)

as you should check explicitly. Applying this to D−1
F we find

D̃−1
F (p, q) = −i(p2 −m2 + iε)δ4(p− q) (2.20)

and hence

D̃F (p, q) =
i

p2 −m2 + iε
δ4(p− q) , (2.21)

which you should again check.

While talking about D−1
F and its inverse DF , a further set of comments might be

appropriate: Note that D−1
F is, of course, a differential operator, although in the above

we emphasized it’s kernel representation D−1
F (x, y). Let’s consider, more generally, some

differential operator L and it’s inverse G, acting on an appropriate function space, e.g.
the square-integrable functions on R4. Then

L ·G = 1 and LxG(x, y) = δ4(x− y), (2.22)

where the first expression is a general statement about operators and the second is
adopted to the case that Lx acts by differentiation in x. Clearly, knowledge of G allows
one to find a function g which, for a given function f , solves

L · g = f . (2.23)

Indeed g = G · f does the job. Hence the ‘Green’s function’ G is such an important
object. Now, in many cases, L annihilates a certain subspace of the relevant function
space. If L were a finite dimensional matrix, this would simply mean that the inverse,
in this case G, does not exist. However, in the infinite-dimensional case, the left-inverse
will indeed cease to exist (H · L = 1 has no solution H), but the right-inverse G exists.
Roughly speaking, G makes use of the infinite-dimensionality of the space to ‘free’ the
zero-eigenvalue subspace of L of any information, such that the combination L ·G does
not destroy any ‘information’ and can be equal to the unity operator. However, because
of this zero-subspace, the inverse or Green’s function G is not unique. Specifically, if
L = i(� + m2), without the iε, this inverse G = L−1 involves the choice of the pole-
prescription, leading to advanced, retarded and Feynman propagators. Here, we adopt
the perspective (appropriate for our path-integral approach) that L = D−1

F already comes
with an iε, hence it has no zero-subspace and an unambiguous (left and right) inverse
G = D−1

F , also with the apprpriate iε.

Now we return to our main line of development and introduce a set of convenient
shorthand notations for our last expression for S0:

iS0 = i

∫
d4xL0 = −1

2
ϕx
(
D−1
F

)
xy
ϕy = −1

2
ϕTD−1

F ϕ = −1

2
ϕD−1

F ϕ . (2.24)
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This is borrowed from the standard matrix notation∑
ij

aiMijbj = aTMb , (2.25)

where in the last expression in (2.24) we even dropped the T for ‘transpose’ since it is
really obvious how to contract the ‘indices’ x and y.

To further simplify notation, we let DF → D, such that the generating functional of
the free theory now reads

Z0[j] =

∫
Dϕ exp

(
−1

2
ϕTD−1ϕ+ ijTϕ

)
. (2.26)

The change of integration variable,

ϕ → ϕ+ iDj , (2.27)

(in more detail,

ϕ(x) → ϕ(x) + i

∫
d4y D(x− y)j(y) , (2.28)

but fortunately we don’t need this bulky notation any more) gives

Z0[j] =

∫
Dϕ exp

(
− 1

2
ϕTD−1ϕ− i

2
jTDTD−1ϕ− i

2
ϕTD−1Dj (2.29)

+
1

2
jTDTD−1Dj + ijTϕ− jTDj

)
. (2.30)

Making use of DT = D (check this explicitly!), we see that we have actually completed
the square, such that

Z0[j] =

∫
Dϕ exp

(
−1

2
ϕTD−1ϕ− 1

2
jTDj

)
= Z0[0] exp

(
−1

2
jTDj

)
. (2.31)

We can now show that D is the Feynman propagator without reference to its explicit
form (introducing some further shorthand notation as we go along):

〈0|Tϕ(x1)ϕ(x2)|0〉 = 〈Tϕ1ϕ2〉 =
1

Z0

(
δ

iδj1

)(
δ

iδj2

)
Z0 exp−

1
2
jDj

∣∣∣∣∣
j=0

(2.32)

= − δ

δj1

(
−1

2
jxDxx2 −

1

2
Dx2xjx

)
exp−

1
2
jDj

∣∣∣∣∣
j=0

(2.33)

=
δ

δj1

(
jxDxx2

)
= Dx1x2 = D12 = D(x1 − x2) . (2.34)

Note in particular that we write δ/(δj1) for δ/(δj(x1)) etc. Also, recall the corresponding
Feynman diagram in Fig. 4.
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Figure 4: Propagator.

Figure 5: Free-theory 4-point function.

The next-simplest application of the free-theory generating functional is

〈Tϕ1ϕ2ϕ3ϕ4〉 =
δ

iδj1
· · · δ

iδ2

e−
1
2
jDj

∣∣∣∣∣
j=0

= D12D34 +D13D24 +D14D23 , (2.35)

with the diagram representing the last expression in a self-evident way given in Fig. 5.
Please check explicitly how this expression arises from (functionally) differentiating the
exponential.

The underlying general rules (Feynman rules) should now have become clear: Draw
the relevant points (in this case x1 · · ·x4). Connext them pairwise in all possible ways by
lines. Write Dij = D(xi−xj) for a line connecting xi with xj. Add all such contributions.
It should also be clear that these rules reflect precisely what happens in deriving the
analytical expression by differentiation. The key is that each δ/(δj) corresponds to a
point and each j to an end of a line, and that all must be paired up for a non-zero result
since we set j = 0 at the end. Thus, one can Taylor-expand the exponent and focus only
on the term with the right humber of j’s. The factorial and the (1/2)-prefactors take
care of multiple possiblities leading to the same final result. Hence, no prefactors are left
in the end.

2.3 Generating functional for interacting theories

We will focus on a single scalar field, more specifically, on λϕ4-theory, but the method
generalizes straightforwardly. Consider

Z[j] =

∫
Dϕ exp

(
iS0[ϕ] + iSint.[ϕ] + ijTϕ

)
, (2.36)

where iS0 = −(1/2)ϕTD−1ϕ and, for example,

iSint. = −i
∫
d4x

λ

4!
ϕ(x)4 . (2.37)

Rewrite the exponent as
eiSint.[ϕ] eiS0[ϕ]+ijTϕ (2.38)
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Figure 6: Illustration of how vertex and propagator Feynman rules arise.

and view exp(iSint.) as a power series in ϕ, i.e.

eiSint. = 1 + (−i)
∫
d4x

λ

4!
ϕ(x)4 + (−i)

∫
d4x

λ

4!
ϕ(x)4 (−i)

∫
d4y

λ

4!
ϕ(y)4 + · · · . (2.39)

The key idea is that one can replace each ϕ(x) by a δ/(iδj(x)), acting on exp(ijϕ).
Thus,

Z[j] =

∫
Dϕ exp

(
iSint.

[
δ

iδj

])
exp (iS0[ϕ] + ijϕ) (2.40)

= exp

(
iSint.

[
δ

iδj

])
Z0[j] = Z0[0] exp

(
iSint.

[
δ

iδj

])
e−

1
2
jDj . (2.41)

In actual calculations, it will be useful to think of Taylor expansions of the exponentials,
i.e.

Z[j] = Z0[j]

(
1− iλ

4!

∫
x

(
δ

iδj(x)

)4

+ · · ·

) (
1− 1

2
jDj +

1

2

(
−1

2
jDj

)2

+ · · ·

)
.

(2.42)

To begin, let’s evaluate Z[0], i.e. simply set j = 0 after all j-differentiations have been
performed. Clearly, there will be infinitely many terms in our perturbative approach.
Thus, we set the prefactor Z0[0] aside for now and start with the term linear in λ:

−iλ
4!

∫
x

(
δ

iδj(x)

)4
1

2

(
−1

2

∫
y

∫
y′
j(y)D(y − y′)j(y′)

) (
−1

2

∫
z

∫
z′
j(z)D(z − z′)j(z′)

)
.

(2.43)
As an excercise, this should be worked out explicitly. However, the whole point of Feyn-
man rules is of course to systematize such calculations by drawing pictures. Indeed,
a preliminary identification of vertex and propagator is given in Fig. 6. Clearly, each
differentiation attaches an end of one of the lines to the vertex associated with this
differentiation. The corresponding two space-time points are then identified (cf. Fig. 7).

The resulting diagram corresponds to the analytical expression

I8 = −iλ
∫
d4xD(x− x)D(x− x) = −iλ

∫
d4xD(0)2 . (2.44)
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Figure 7: Differentiation corresponds at attaching a line-end to a vertex. The resulting
figure-of-eight diagram is shown on the right.

The divergence of D(x) at x → 0 is a standard UV divergence, to be dealt with, e.g.,
in momentum space by dimensional regularization as already discussed. The divergent
x-integration signals (correctly) the proportionality of Z to the space-time volume. Cru-
cially, we have derived that the vertex corresponds precisely (up to combinatorial factors)
to −iλ

∫
d4x and the line attached to vertices at x and y corresponds to D(x− y).

As in our Wick-theorem-based derivation of Feynman rules, we naively expect that
the no combinatorial factors arise: The factor (1/2) takes care of exchanging the two
ends of one line. The factor (1/4!) takes care of permuting the 4 ends of a vertex. The
factors (1/n!) from the Taylor series of the exponential take care of permuting several
vertices and lines appearing in the same diagram.

However, this expectations fails in diagrams with symmetries. Indeed, the figure-of-
eight diagram comes with a symmetry factor (1/8) such that

Z[0] = Z0[0]

(
1 +

1

8
I8 +O(λ2)

)
. (2.45)

The explicit underlying calculation is illustrated in Fig. 8: At each step, one picks one of
the vertex-lines (i.e. one of the δ/(δj)’s) and lets it act on the propagator line-ends (the
j’s). The prefactors come from the different choices leading to the same picture. In the
end, one multiplies with the standard prefactor,

(4 · 2 + 4 · 2 · 2) · 1

2 · 2 · 4! · 2!
=

1

8
. (2.46)

At order λ2, the diagrams of Fig. 9 arise, one of them disconnected (are there more?).
It is clear that, at any order, only diagrams without external lines (vacuum diagrams)
contribute. Hence

Z[0] = Z0[0]
(

1 + {Sum of all vac. diagrams, with appropr. symm. factors}
)
. (2.47)
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Figure 8: Illustration of symmetry-factor calculation as explained in the text.

Figure 9: Vacuum diagrams at order λ2.

2.4 Green’s functions

The generalization to derivatives of Z[j] and hence to Green’s functions is straightorward:

〈0|Tϕ1 · · ·ϕn|0〉 =
1

Z[0]

(
δ

iδj1

)
· · ·
(

δ

iδjn

)
Z[j]

∣∣∣∣∣
j=0

(2.48)

=
1

Z0[0] (1 + vac. diagrs.)

(
δ

iδj1

)
· · ·
(

δ

iδjn

)
exp

(
iSint.

[
δ

iδj

])
Z0[0] e−

1
2
jDj

∣∣∣∣∣
j=0

.

First, the factor Z0[0] cancels. Next, we see that now, due to the factors δ/(iδji), lines
can end not only at vertices but also at the external points xi. Thus, the above expression
generates all diagrams with n external lines ending at the points xi. As we showed in
an excercise in QFT I, from ‘all diagrams’ a term ‘(1+vac. diagrs.)’ can be factored out.
This term is cancelled by the prefactor, giving

〈Tϕ1 · · ·ϕn〉 =
(

Sum of all diagrs., without vacuum diagrs.
)
. (2.49)

Here the diagrams are built from lines and vertices with the corresponding analytical
expressions summerized in Fig. 10.

Figure 10: Feynman rules of λφ4 theory.

To practice, you may want to calculate the two-point function up to order λ2, cf.
Fig. 11, including symmetry factors and the demonstration that no further diagrams
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contribute at this order. As a reminder, the second diagram (and the only at order λ)
gives ∫

d4xD(x1 − x)D(x− x)D(x− x2) . (2.50)

Figure 11: Two-point function in perturbation theory.

There are many immediate generalizations, including other interaction terms, e.g.

Sint. = −
∫

λ

n!
ϕn , (2.51)

and theories with several fields, e.g.

iS0 = −1

2
ϕD−1

ϕ ϕ− 1

2
χD−1

χ χ with Sint. = −
∫
λ

2
ϕ2χ . (2.52)

In the latter case, one needs two source terms, jϕϕ and jχχ, otherwise everything goes
through as before. As an excercise, you may derive the Feynman rules, cf. Fig. 12. Note
that the propagators must really be distinguished since the two scalars may have different
mass.

Figure 12: Feynman rules for the theory defined in (2.52).

As a further excercise, you may derive all contributions relevant to ϕϕ → ϕϕ scat-
tering at order λ4, cf. Fig. 13.

Figure 13: One of the diagrams for 2-to-2 scattering in theory of (2.52).

Very importantly, we can now deal with derivatives in Sint. without the complica-
tions encountered in the canonical approach.3 Indeed, consider e.g.

Sint. =
λ

2

∫
d4xϕ2(x) ∂µ∂µχ(x) . (2.53)

3At this point we actually define the quantized theory using the path integral, without proving that
the canonical approach gives the same result.
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The picture in the resulting Feynman rule is still the same as in Fig. 12, but the analytical
expression is different. To see this, note that

Sint.

[
δ

iδjϕ
,
δ

iδjχ

]
=
λ

2

∫
d4x

(
δ

iδjϕ

)2

∂µ∂µ

(
δ

iδjχ

)
(2.54)

and hence, e.g.,

〈Tϕ1ϕ2χ3〉 =

∫
d4xDϕ(x1 − x)Dϕ(x2 − x)

∂

∂xµ

∂

∂xµ
Dχ(x− x3) . (2.55)

Thus, the Feynman rule receives a factor ∂2 acting on the Dχ in real space and a factor
−p2

χ in momentum space.

Another very important example is that of the complex scalar field, which requires
the introduction of a complex source, with j and ̄ treated as independent (analogously
to the field):

Z0[j, ̄] =

∫
Dφ exp i

∫
d4x

[
φ̄(−∂2 −m2 + iε)φ+ φ̄j + ̄φ

]
. (2.56)

It is a good excercise to evaluate this, then to introduce an interaction term ∼ (φ̄φ)2,
and to derive the Feynman rules. Note that, while D is the same as for the real scalar, it
will appear in the form ̄TDj. Thus, to keep track of which side belongs to j and which
to ̄, arrows on the lines will be required.

3 Path integral for fermions

3.1 Bosonic harmonic oscillator in the holomorphic represen-
tation

Bosonic (fermionic) fields can be viewed as collections of bosonic (fermionic) harmonic
oscillators. Thus, our basic building block will be the path integral treatment of the
fermionic harmonic oscillator. This is very similar to the path integral treatment of the
bosonic oscillator in the holomorphic representation. While the latter is a standard QM
topic in principle, it is not part of every course and we introduce it from scratch. Other
common names are the coherent-state or Bargman-Fock representation and relevant
books include those by Zinn-Justin, Fadeev/Slavnov and Itzykson/Zuber [9, 11,12].

Consider the harmonic oscillator with

H = ω

(
a†a+

1

2

)
and [a, a†] = 1 . (3.1)

We represent

a† , a by z̄ ,
∂

∂z̄
, (3.2)
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acting on anti-holomorphic functions f(z̄). On this function space, we define the scalar
product

〈f1|f2〉 =

∫
d2z

π
f1(z̄) f2(z̄)e−zz̄ , (3.3)

where d2z ≡ r dr dϕ is the standard measure on the (complex) plane and 1/π is a
convenient normalization. Of course,

z = reiϕ and z̄ = re−iϕ . (3.4)

The fact that the a, a†-commutation relation is properly represented is obvious. We check
that a† is really the hermitian conjugate of a w.r.t. to this scalar product:

〈f1|a†f2〉 =

∫
d2z

π
f1(z̄) z̄ f2(z̄)e−zz̄ =

∫
d2z

π
f1(z̄) (−∂z) f2(z̄)e−zz̄ (3.5)

=

∫
d2z

π

(
∂zf1(z̄)

)
f2(z̄)e−zz̄ =

∫
d2z

π
(∂z̄f1(z̄)) f2(z̄)e−zz̄ = 〈af1|f2〉 .

It should be immediately clear that the standard (orthonormal) Hilbert-space basis of
energy eigenstates is identified as follows:

|n〉 =
(a†)n√
n!
|0〉 > ↔ ψn(z̄) ≡ z̄n√

n!
↔ |ψn〉 . (3.6)

While the orthonormality of the ψn basis indirectly follows from the above, you should
also explicitly (replacing z, z̄ by polar coordinates and integrating) check that

〈ψm|ψn〉 = δmn . (3.7)

The above are old facts in a different language. A new feature is that one can very
easily write down eigenstates |z〉 of a with eigenvalue z:

a|z〉 = z|z〉 , explicitly: |z〉 ↔ fz(ȳ) = ezȳ . (3.8)

We can think of fz(ȳ) as of a power-series in ȳ acting on the constant function, i.e. on
the vacuum: fz(ȳ) = fz(ȳ) · 1. Since our anti-holomorphic variable is identified with a†,
we have the identification

|z〉 ↔ fz(ȳ) = ezȳ ↔ eza
†|0〉 . (3.9)

The states |z〉 are called coherent states and deserve some more detailed com-
ments: Among many other important applications, they are crucial for understanding
the classical limit of the harmonic oscillator. Indeed, consider a particle with E � ω
oscillating in a quadratic potential. It will have predictible, non-zero values of position
and velocity at certain times. However, the expectation values of a, a† are always zero in
energy-eigenstates,

〈n|a|n〉 = 〈n|a†|n〉 = 0 . (3.10)
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Since
x̂, p̂ ∼ a± a† , (3.11)

this implies that expectation values of x and p always vanish. By contrast, we have for
example

〈z̄|(a+ a†)|z〉 = 〈z̄|z〉(z + z̄) 6= 0 . (3.12)

Thus, coherent states can model the classical situation better.4 Note also that the ‘bar’
in 〈z̄| is pure notation. 〈z̄| is just the dual state belonging to |z〉.

More importantly for us, in QFT the field-operators are also linear superpositions of
a’s and a†’s. Thus, coherent states are needed to describe situations in which a field has
non-zero expectation value. This is of course crucial to understand how ED follows from
QED. The name refers to the coherent superposition of infinitely many Fock states.

Finally, we calculate the overlap between |z〉 and |ψn〉,

〈ψn|z〉 = 〈0| a
n

√
n!
eza
†|0〉 =

zn√
n!
, (3.13)

and between two coherent states

〈z̄|y〉 =
∑
n

〈z̄|ψn〉〈ψn|y〉 =
∑
n

(z̄y)n

n!
= ez̄y . (3.14)

A further important relation is

1 =

∫
d2z

π
e−z̄z|z〉〈z̄| . (3.15)

It follows from the one-line calculation,∫
d2z

π
e−z̄z〈ψm|z〉〈z̄|ψn〉 = δmn = 〈ψm|1|ψn〉 , (3.16)

where we used standard drdϕ-integration to get the Kronecker delta. We note that the
states |z〉 are referred to as an ‘overcomplete basis’ since they can be used to repre-
sent unity as above but are not mutually orthogonal. This is no surprise since a is not
hermitian.

3.2 Path integral with coherent states

As before, we start with transition amplitudes. Using the completeness relation, we have

〈z̄|e−iHt|y〉 =
n−1∏
i=1

(∫
d2zi
π
e−z̄izi

)
〈z̄|e−iHε|zn−1〉〈z̄n−1|e−iHε|zn−2〉 · · · 〈z̄1|e−iHε|y〉 ,

(3.17)

4Of course, there are many other states with non-zero expectation values of x and p. Coherent states
are special in that they saturate the uncertainty inequality ∆x∆p ≥ 1/2 (‘minimize uncertainty’).
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with t = nε. Without loss of generality, we can assume H = H(a†, a) to be a normal-
ordered expression in terms of a and a†. (If it’s originally not normal-ordered, we can
always re-order it at the expense of adding extra terms. Also, it can clearly involve higher
powers of a and a†, beyond the harmonic-oscillator case.) We then find

〈z̄i|e−iH(a†,a)ε|zi−1〉 ' 〈z̄i|(1− iH(a†, a)ε)|zi−1〉 (3.18)

= ez̄izi−1(1− iH(z̄i, zi−1)ε) ' ez̄izi−1−iH(z̄i,zi−1)ε .

Collecting all such terms and renaming z̄ = z̄n and y = z0, we obtain

〈z̄n|e−iHt|z0〉 =
n−1∏
i=1

(∫
d2zi
π

)
exp

[
z̄0z0 +

n∑
i=1

(z̄izi−1 − z̄i−1zi−1 − iεH(z̄i, zi−1))

]
.

(3.19)
We now rewrite

n∑
i=1

(z̄izi−1 − z̄i−1zi−1) = ε
n∑
i=1

z̄i − z̄i−1

ε
zi−1 '

∫ t

0

dt′ ˙̄zz . (3.20)

Taking the continuum limit also for the full expression, we can finally write

〈z̄b|e−iHt|za〉 =

∫
DzDz̄ exp

[
z̄(0)z(0) +

∫ t

0

dt′( ˙̄zz − iH(z̄, z))

]
, (3.21)

Several important comments have to be made: First, it is crucial to always remember
that the functional form of H(z̄, z) is really different from the familiar H(p, q). One must
first express H in terms of a and a† and then switch to classical variables z, z̄. Also,
please do not confuse the identification of a, a† with the classical variables z, z̄ in the
path integral with the original representation by ∂/(∂z̄) and z̄.

Second, the path integral is over two independent complex functions z(t′) and z̄(t′)
with (partial!) boundary conditions z(0) = za and z̄(t) = z̄b. (We switched notation from
z0 and z̄n to achieve more similarity with the earlier Dx path integral.)

The independence of z and z̄ in the path integration can be argued in more detail
as follows: First, by definition, we have at each of the n intermediate time slices∫

d2z =

∫
r dr dϕ =

∫
dx dy , (3.22)

where we used z = x + iy and z̄ = x − iy with real x and y in the last step. However,
we can think of x and y as of complex variables which are to be integrated along the
contours Im(x) = 0 and Im(y) = 0, i.e.∫

d2z =

∫ +∞

−∞
dx

∫ ∞
−∞

dy . (3.23)

Since the integrand is an analytic function of x and y, we can deform the contours,∫
d2z =

∫
Cx

dx

∫
Cy

dy , (3.24)
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to the extent allowed by the behaviour at infinity. Now, changing variables back to z,
z̄, the latter are by definition two independent complex variables and z̄ 6= z∗ for generic
Cx,y. All of this is not a pure formality: There are, for example, situations where the path
integral is well-approximated ‘semi-classically’ by a stationary point (or saddle-point) of
the exponent (which is S(z, z̄), as we will see shortly). Such a saddle point may indeed
occur for a path with z̄ 6= z∗.

Third, it may be perceived as unpleasant to have a boundary term only at one of two
boundaries. This is easily fixed, a more symmetric form being obtained after integration
by parts:

exp

[
1

2
{z̄(t)z(t) + z̄(0)z(0)}+

∫ t

0

dt′
(

1

2
{ ˙̄zz − z̄ż} − iH(z̄, z))

)]
. (3.25)

Fourth, one can easily see that up to boundary terms the exponent is the classical
action. Indeed, we invert

q =
1√
2ω

(a+ a†) , p = −i
√
ω

2
(a− a†) (3.26)

to

z = a =
1

2

(√
2ω q + i

√
ω

2
p

)
, z̄ = a† =

1

2

(√
2ωq − i

√
ω

2
p

)
. (3.27)

Thus,

˙̄zz =
ω

2
qq̇ − i

2
ṗq +

i

2
pq̇ +

1

2ω
pṗ = ipq̇ + total derivative (3.28)

and ∫ t

0

dt′( ˙̄zz − iH(z̄, z)) = i

∫ t

0

dt′(pq̇ −H(p, q)) + boundary terms (3.29)

= iS[p, q] + boundary terms . (3.30)

Here S[p, q] is the action of the hamiltonian formulation of classical mechanics. Its vari-
ation w.r.t. q(t) and p(t) as independent functions gives the Hamilton equations. Given
our holomorphic approach, we will need to return to the variables z and z̄, writing S[z, z̄]
for the classical action in the exponent.

As a side-remark, we note that a (non-holomorphic) Hamiltonian path integral for-
mula

〈qb|e−iHt|qa〉 =

∫
DpDq exp(iS(p, q) + bnd. terms) (3.31)

also exists. Here the Dp integration is not restricted at the boundaries. You may want to
prove this along the lines of our Dq path integral derivation and fix the boundary terms.

Finally, we can as before include Heisenberg-picture operators a(t) and a†(t) in our
amplitude and replace the initial and final states by the vacuum. The latter is, as before,
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accounted for by introducing the iε convergence factor in the path integral. Using also
the normalization 〈0|0〉 = 1 we finally obtain

〈0|Ta(t1)a†(t2) · · · |0〉 =

∫
DzDz̄[z(t1)z̄(t2) + · · · ] exp iS[z, z̄]∫

DzDz̄ exp iS[z, z̄]
. (3.32)

Boundary terms drop out together with all other prefactors in the ratio on the r.h. side.
It is crucial to remember that S[z, z̄] is obtained by expressing the action in terms of the
(classical variables) a and a† and replacing the latter by z and z̄.

3.3 Fermionic harmonic oscillator and Grassmann variables

Next, we turn to the so-called fermionic harmonic oscillator, defined by

H = ω

(
a†a− 1

2

)
with {a, a†} = 1 and {a, a} = {a†, a†} = 0 . (3.33)

The system has just two states, with energies ±ω/2, the lower one annihilated by a.5

Let us try to find a representation of the fermionic a, a† algebra using variables θ, θ̄, in
analogy to the last section. This will turn out to work if θ, θ̄ are Grassmann variables.

To make the analogy most apparent, we would like to think of our previous function
spaces in z and/or z̄ as of formal power series in z, z̄. Now, instead, we look at formal
power series and θ, θ̄. In both cases we basically work with the algebra generated by
unity together with z, z̄ or θ, θ̄.

Before, z, z̄ were commuting variables. Now, instead, we have

{θ, θ̄} = {θ, θ} = {θ̄, θ̄} = 0 , (3.34)

i.e., θθ̄ + θ̄θ = 0, θ2 = θ̄2 = 0. In complete analogy to the bosonic case, we represent

a† , a by θ̄ ,
∂

∂θ̄
, (3.35)

acting on functions of θ̄. This function space is clearly just 2-dimensional since θ̄2 = 0:

f(θ̄) = f0 + f1θ̄ . (3.36)

With the natural definition
∂

∂θ̄
(f0 + f1θ̄) = f1 (3.37)

we find (
∂

∂θ̄

)2

= 0 , (3.38)

5The negative vacuum energy, i.e. the explicit (−1/2)-term in H, is somewhat ad hoc at this stage.
One can argue that it follows naturally from the generalization Hbosonic = (ω/2)(a†a + aa†) →
Hfermionic = (ω/2)(a†a− aa†). It is also what one finds in QFT coupled to gravity, where the fermion
contributes negatively to the vacuum energy.

29



and {
∂

∂θ̄
, θ̄

}
f(θ̄) =

∂

∂θ̄
θ̄f(θ̄) + θ̄

∂

∂θ̄
f(θ̄) = f0 + θ̄f1 = f(θ̄) , (3.39)

i.e. {
∂

∂θ̄
, θ̄

}
= 1 , (3.40)

as desired.

Thinking of the original physical 2-state system, it is natural to write

|f〉 = |0〉f0 + |1〉f1 (3.41)

and hence to define the scalar product on the function space by

〈g|f〉 = ḡ0f0 + ḡ1f1 . (3.42)

To realize this as an integral, we define Grassmann variable integration (the Berezin
integral) by ∫

dθ · 1 =

∫
dθ̄ · 1 = 0 ,

∫
dθ θ =

∫
dθ̄ θ̄ = 1 . (3.43)

Up to normalization, this definition is forced upon us if we want the rule∫
dθ

∂

∂θ
(· · · ) = 0 (3.44)

to hold, which is technically very important. Note also that the operations of integrating
and differentiating coincide, ∫

dθ (· · · ) =
∂

∂θ
(· · · ) , (3.45)

and that one can show ∫
dθ dθ̄ = −

∫
dθ̄ dθ , (3.46)

using θθ̄ = −θ̄θ.

Next, it is easy to check that the definition

〈g|f〉 =

∫
dθ̄ dθ g(θ̄)f(θ̄) e−θ̄θ (3.47)

is consistent with the earlier definition using f0,1 and g0,1. One simply needs to note that
e−θ̄θ = 1− θ̄θ. With this scalar product, (a)† = a†, as you should again check explicitly.

We are now ready to define coherent states, in this case eigenstates of a = ∂/(∂θ̄)
with eigenvalue η:

|η〉 ↔ fη(θ̄) = eθ̄η = 1 + θ̄η = |0〉+ |1〉η . (3.48)

Here η is another Grassmann variable, just like θ. We assume anti-commutation relations
between any two of the variables η, η̄, θ, θ̄.
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We note that, to write the above relations, we need to be able to multiply Hilbert-
space vectors with Grassmann variables. In other words, we work in the tensor product
of the Hilbert space and the Grassmann algebra (or several Grassmann algebras, if we
need more than one extra variable η). Identifying the Hilbert space with the θ-algebra
and calling the extra Grassmann variable η, we can also think of this tensor product as
the Grassmann algebra spanned by 1, θ and η. It is then important to choose an ordering
convention by identifying |1〉η with θη (as opposed to ηθ).

We also extend the usual anti-linearity of the Hilbert-space scalar product to the
Grassmann algebra coefficients,(

|f1〉η
)
·
(
|f2〉
)

= (η)∗〈f1|f2〉 . (3.49)

For this, we need to introduce a so-called ∗-operation on our Grassmann algebra, which
we do be defining

(η)∗ = η̄ , (ηη̄)∗ = (η̄)∗η∗ = ηη̄ (3.50)

etc.

Now we demonstrate that |η〉 really has the desired property. First, we do so explicitly
utilizing the energy eigenstate basis,

a|η〉 = a (|0〉+ |1〉η) = |0〉η = η (|0〉+ |1〉η) = η|η〉 , (3.51)

where we used η2 = 0. Next, we repeat the argument using our differential-operator
representation:

∂

∂θ̄
(1 + θ̄η) = η = η (1 + θ̄η) . (3.52)

Finally, we generalize our completeness relation according to

1 =

∫
d2z

π
e−z̄z|z〉〈z̄| → 1 =

∫
dθ̄ dθe−θ̄θ|θ〉〈θ̄| . (3.53)

This follows from∫
dθ̄ dθe−θ̄θ|θ〉〈θ̄| =

∫
dθ̄ dθ (1− θ̄θ) (|0〉+ |1〉θ) (〈0|+ θ̄〈1|) = |0〉〈0|+ |1〉〈1| , (3.54)

where the last step uses our previously defined integration rules.

The other crucial relation we needed in the bosonic case was

〈θ̄|η〉 = eθ̄η , (3.55)

which is again easy to check.

With these tools, we can now repeat our coherent-state path integral derivation of
the bosonic system line by line. Two comments should possibly be made: First, one
must be careful with signs which can arise due to θ̄η = −ηθ̄. (We assumed that distinct
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Grassmann variables also anti-commute.) Second, we have to ‘insert unity’ at many
different times, such that expressions like∫

dθ̄(ti) dθ(ti) · · · (3.56)

for many different times ti arise together. For us, nothing new happens in the correspond-
ing manipulations since we treat the various θs at different times simply as independent
Grassmann variables, just like e.g. θ and η above.

After going through the Grassmann version of the derivation (which you should do!),
one arrives at

〈0|Ta(t1)a†(t2) · · · |0〉 =

∫
Dθ̄Dθ[θ(t1)θ̄(t2) + · · · ] exp iS[θ, θ̄]∫

Dθ̄Dθ̄ exp iS[θ, θ̄]
, (3.57)

in complete analogy to the bosonic case. Crucially, the fermionic time-ordering needs to
be defined with the usual signs for each necessary exchange of operators. (Prove this!)
Furthermore, the action is now by definition

S[θ, θ̄] =

∫
dt(iθ̄θ̇ −H(θ, θ̄)) . (3.58)

3.4 Path integral for fermions in QFT

As before, we start from our canonically quantized system and derive path integral
formulae for the canonically defined amplitudes and correlation functions. To this end,
we recall that we described the Dirac fermion,

L = ψ̄(i/∂ −m)ψ with ψ = {ψa} =

 ψ1

:
ψ4

 , (3.59)

using the canonical momenta

πa =
∂L
∂ψ̇a

= iψ†a or π = iψ† , (3.60)

interpreting π as a row-vector. Thus,

H =

∫
d3xH =

∫
d3x(πψ̇ − L) =

∫
d3x(iψ†ψ̇ − L) =

∫
d3xψ†γ0(−iγi∂i +m)ψ

=

∫
d3x d3y

4∑
a,b=1

ψ†a(~x)

[
−i(γ0γi)a

b ∂

∂xi
+m (γ0)a

b

]
δ3(~x− ~y)ψb(~y) . (3.61)

The last line can be read as an infinite-dimensional row-vector ψ†a(~x) with index {a, ~x}
multiplying a matrix, which then multiplies a column-vector ψb(~y) with index {b, ~y}.
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We quantized the system postulating the anti-communtation relations

{ψ(~x), π(~y)} = iδ3(~x− ~y)1 or, equivalently, {ψa(~x), ψ†b(~y)} = δ3(~x− ~y)δa
b , (3.62)

with all other anti-commutators of ψ and ψ† vanishing. Hence, we are precisely in a
setting with Hamiltonian

H =
∑
ij

a†iMi
jaj and {ai, a†j} = δi

j , (3.63)

with i standing for the double-index {a, ~x} mentioned before and the matrix M defined
in (3.61). But this is just the multi-variable generalization of our fermionic harmonic
oscillator

H = ω a†a with {a, a†} = 1 (3.64)

of the last section. (Note that here a and a† are identified with ψ and ψ†, not with the
particle-type creation and annihilating operators defined in momentum space in QFT I.)

Now our path integral derivation goes through without any difficulty, the only change
being that one has to sum (or take products over) the index i ≡ {a, ~x} whenever one
deals with the variables ai ≡ ψa(~x). The fact that all these variables are independent
in the sense of diagonal anti-commutation relations (cf. (3.62) and (3.63)) is of course
essential. The fact that the Hamiltonian (i.e. the matrix M) is not diagonal is of no
consequence. Indeed, we never referred to the explicit form of H as a function of a and
a† in our derivation.

Thus, generalizing our previous result (3.57), we have

〈0|Tψa1(x1)ψ†b2(x2) · · · |0〉 =

∫
Dθ̄Dθ[θa1(x1)θ̄b2(x2) · · · ] exp iS[θ, θ̄]∫

Dθ̄Dθ exp iS[θ, θ̄]
, (3.65)

where

S[θ, θ̄] =

∫
dt

[∫
d3x

4∑
a=1

θ̄a(x)θ̇a(x)−H[θ, θ̄]

]
, (3.66)

and ∫
Dθ ≡

∏
a,~x

(∫
Dθa(~x)

)
. (3.67)

Now, it is conventional in QFT not to change variable-names when going from the
operators to the ‘classical’ Grassmann variables. In other words, the path integral is
written using ψ and ψ† as variables. Furthermore, it is common to replace ψ† by ψ̄ = ψ†γ0,
which is just a linear change of variables. Finally, the action (3.66) is, after replacing θ
by ψ, just our familiar covariant Dirac action, as we saw at the beginning of this section.
Thus, we can summarize by writing

〈0|Tψa1(x1)ψ̄b2(x2) · · · |0〉 =

∫
Dψ̄Dψ[ψa1(x1)ψ̄b2(x2) · · · ] eiS∫

Dψ̄Dψ eiS
, (3.68)
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with

S =

∫
d4xψ̄(i/∂ −m+ iε)ψ . (3.69)

We will comment of the iε in a moment. Before doing so, we note that we have
worked very hard to show that the above formula for correlation functions follows from
the canonical definition of QFT I. However, we also see that the path integral for the
Dirac fermion is, obviously, a very simple and natural generalization of the bosonic path
integral. Thus, it is may be more natural to think of the last two formulae as defining
the quantum theory. The only drawback is that the Hilbert space as a Fock space and
its particle interpretation are more transparent on the canonical side.

There are two subtleties left to discuss, which turn out to be related. The first is the
vacuum energy. It should be zero in the above definition of the quantum theory since H
was normal-ordered in ψ†, ψ and we did not include an explicit constant. By contrast
in the canonical ‘Fourier-mode’ quantization using a~p, a

†
~p etc., we found a (divergent)

constant. This difference is explained by noting that the vacua in the two approaches
are actually different.6 Indeed, ψ annihilates the present vacuum, but of course not the
canonical particle-vacuum since ψ contains a~p and b†~p.

The above does not bother us given that we do not include gravity and are free
to subtract a constant as a we please. However, we do have to make sure that the
iε prescription really suppresses higher-energy states. We can not argue the sign of iε
simply as a convergence factor since ∫

dθ̄dθeaθ̄θ (3.70)

is well-defined for any a.

Based on what was said above, it is best to discuss this issue in the particle-picture.
To do so, recall that

ψ(~x) =

∫
dp̃
(
as~pus(p)e

i~p~x + bs†~p vs(p)e
−i~p~x

)
(3.71)

and
ūr(p)us(p) = 2mδrs , v̄r(p)vs(p) = −2mδrs . (3.72)

Now, if we replace m by m− iε, the hamiltonian acquires an extra piece

−iε
∫
d3xψ̄ψ = −iε

∫
dp̃
m

p0

(
as†~p a

s
~p − bs~pb

s†
~p

)
= −iε

∫
dp̃
m

p0

(
as†~p a

s
~p + bs†~p b

s
~p

)
+ const.

(3.73)
The coefficient of (−iε) is clearly larger on excited states than on the vacuum. Hence,
the factor

e−iH∆t ⊃ e−i(−iε)∆t·(positive) = e−ε∆t·(positive) (3.74)

6Of course, we already know that the particle vacuum is the true vacuum in the sense of being the
lowest-energy state. This is not in conflict with the above since, in fact, we did not check the positivity
properties of our matrix Mi

j defining the hamiltonian.
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suppresses non-vacuum states more strongly, as required. This justifies the iε in our
path integral formula above, which is in agreement with the pole-prescription-(iε) of the
canonical approach.

3.5 Feynman rules for fermions

As in the bosonic case, we introduce source fields η(x) and η̄(x) (which are spinors and
Grassmann variables, just like ψ(x) and ψ̄(x)) and define

Z[η̄, η] ≡
∫
Dψ̄Dψ eiS+iη̄ψ+iψ̄η . (3.75)

We remind the reader of our shorthand notation

“ η̄ψ ” ≡
∫
d4x η̄(x)ψ(x) . (3.76)

It is straightforward to see that

〈Tψ1ψ̄2 · · · 〉 =
1

Z

(
δ

iδη̄1

)(
δ

−iδη2

)
· · ·Z[η̄, η]

∣∣∣∣∣
η̄,η=0

. (3.77)

Note that the spinor indices of the ψs and ηs are not contracted in this expression – we
have only suppressed them for brevity. Note also that the minus-sign coming with the η-
derivative is needed to compensate for the minus-sign coming from the anti-commutation
relations:

δ

−iδ(η2)b
(iψ̄η) =

∫
d4x ψ̄a(x)

δ

δηb(x2)
ηa(x) =

∫
d4x ψ̄a(x) δa

b δ4(x2 − x) = ψ̄b(x2) .

(3.78)

As before, the free case can be treated completely explicitly (note that we suppress
the iε for brevity):

iS0 = i

∫
d4x ψ̄(i/∂ −m)ψ ≡ −ψ̄S−1ψ , (3.79)

with the fermionic or spinor propagator S (do not confuse with the action, which is
unfortunately also called S) explicitly given by

S−1(x, y) = −i(i/∂x −m) δ4(x− y) and S(x, y) =

∫
d4k

i

/k −m
eik(x−y) . (3.80)

With this, one finds

Z0[η̄, η] =

∫
Dψ̄Dψ exp

[
−ψ̄S−1ψ + iη̄ψ + iψ̄η

]
(3.81)

and completes the square by the substitutions

ψ → ψ + iSη and ψ̄ → ψ̄ + iη̄S . (3.82)
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Since we are working with the formally defined Grassmann variable integration, the
underlying operation of shifting the integration variable requires justification. Indeed,
consider the generic function f(θ) = f0 + f1θ. Then, on the one hand,∫

dθ f(θ) = f1 , (3.83)

but also ∫
dθ f(θ − η) =

∫
dθ (f0 + f1θ − f1η) = f1 . (3.84)

Thus, our final formula reads

Z0[η̄, η] =

∫
Dψ̄Dψ e−ψ̄S

−1ψ e−η̄Sη = Z0[0, 0] e−η̄Sη . (3.85)

The free-theory 2-point-function is thus obtained as

〈Tψ(x)ψ̄(y)〉 =
δ

iδη̄(x)

(
δ

−iδη(y)

)
e−η̄Sη = S(x− y) , (3.86)

with the corresponding Feynman rule given in Fig. 14.

Figure 14: Fermion propagator (the arrow corresponds to going from the right to the left
index of the matrix S).

To conclude, interactions are incorporated as in the bosonic case: One rewrites Sint.
in the definition of Z according to

Sint.[ψ̄, ψ, ϕ] → Sint.

[
δ

−iδη
,
δ

iδη̄
,
δ

iδj

]
. (3.87)

Then, exp[iSint.] is taken outside the path integral in the definition of Z.

Here we included also the bosonic field ϕ and its source to allow for the simplest
interaction a fermion can have – the Yukawa interaction. Indeed, it is a good exercise to
consider the theory defined by

iS = −ψ̄S−1ψ − 1

2
ϕD−1ϕ− i

∫
x

λψ̄ψ ϕ = −ψ̄S−1ψ − 1

2
ϕD−1ϕ+ iSint. (3.88)

and to work out the Feynman rules by calculating the simplest n-point functions. Use
the ‘trick with the sources’ as described in the bosonic case (and as recalled just above).
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3.6 The ‘bosonic’ and ‘fermionic determinant’

It is instructive and will be useful in what follows to calculate certain simple path integrals
even more explicitly. We start with the conventional (bosonic) Gaussian integral∫

d2z

π
e−az̄z =

1

π

∫
r dr dϕ e−ar

2

=
1

a
(3.89)

and its fermionic analogue∫
dθ̄ dθ e−aθ̄θ =

∫
dθ̄ dθ (1− aθ̄θ) = a . (3.90)

The very important ‘inversion’ of the result when going from a commuting to an anti-
commuting variable continues to hold in the many-variable case.

Indeed, consider the integral

IB =
∏
i

(∫
d2zi
π

)
exp(−z̄jAjkzk) , (3.91)

with A a positive hermitian matrix (to ensure manifest convergence). Now, let us inter-
pret, for each i,∫

d2zi as
1

2i

∫
dz̄i ∧ dzi =

1

2i

∫
(dxi − idyi) ∧ (dxi + idyi) , (3.92)

where on the r.h. side we think of integrating a 2-form over the real subspace of C2

parametrized by xi and yi.
7 With the substitution zi = Ui

jz′k and making use of∏
i

dzi = det(U)
∏
i

dz′i and
∏
i

dz̄i = det(U)∗
∏
i

dz̄′i (3.93)

we find

IB =
∏
i

(∫
d2z′i
π

)
| detU |2 exp(−z̄′j(U †)jkAklUlmz′m) . (3.94)

Now we choose U unitary (implying |detU | = 1) such that U †AU is diagonal. The result
then becomes the product of all inverse eigenvalues of A, hence

IB =
∏
i

(∫
dz̄i dzi

2πi

)
ez
†Az =

1

detA
. (3.95)

Next, we repeat this for Grassmann variables:

IF =
∏
i

(∫
dθ̄i dθi

)
exp(−θ̄jAjkθk) (3.96)

=
∏
i

(∫
dθ̄i dθi

)
1

n!
(−θ̄j1Aj1k1θk1) · · · (−θ̄jnAjnknθkn) . (3.97)

7For those not familiar with differential forms, consider z to be real and A symmetric. Then the
analogy to the anticommuting case is not quite as perfect, but the idea should still be clear. Altrnatively,
just accept that one can integrate formally of dz̄ dz rather than over dx dy.
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Due to the anticommutation relations we have

(θ̄j1θk1) · · · (θ̄jnθkn) = (θ̄1θ1) · · · (θ̄nθn) εj1···jnεk1···kn . (3.98)

Here we also used the fact that, when exchanging two θs, we don’t get signs from the θ̄s
since we ‘pass over’ each θ̄ twice. Since

det A =
1

n!
εj1···jnAj1

k1 · · ·Ajnknεk1···kn , (3.99)

and since the explicit minus-signs disappear due to (θ̄jθj) = −(θj θ̄
j), we eventually have

IF = det A , (3.100)

i.e. precisely the inverse of the bosonic result.

If we are now prepared to generalize this formally to infinite-dimensional matrices
A, both our bosonic and fermionic results immediately apply to QFT. Ignoring normal-
ization factors, we have

Z0[̄, j]
∣∣∣
̄=j=0

=

∫
Dϕ̄Dϕe−ϕ̄D

−1ϕ ∼ 1

det D−1
(3.101)

for a complex scalar and

Z0[η̄, η]
∣∣∣
η̄=η=0

=

∫
Dψ̄Dψ e−ψ̄S

−1ψ ∼ det S−1 (3.102)

for a Dirac fermion. The expressions on the r.h. side contain infinite products of ever-
growing eigenvalues of differential operators, but this is not as meaningless as it might
seem. Indeed, in many cases one is interested in the logarithm i.e. in (for example in the
bosonic case)

ln Z0[0] = − ln det D−1 = −tr ln D−1 = −
∫

d4k

(2π)4
ln(k2 −m2) + · · · , (3.103)

where the k-integral replaces the trace and the relevant basis is that of exponentials
exp(ikx). The last expression can then be regularized and calculated. Even without
regularization, it is clear that sufficiently high derivatives w.r.t. m2 are finite.

4 Path integral quantization of gauge theories

4.1 Reminder of the basic structure and preliminary remarks

In QFT I, we discussed the quantization of abelian gauge theories in some detail but
introduced non-abelian theories only at the classical level. The reason is that the canon-
ical quantization of non-abelian gauge theories is, in fact, rather complicated and the
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path integral approach is preferred. Thus, this is the right moment to pick up this topic.
Naturally, all that follows includes the abelian or U(1) theory as a special case.

We recall that our starting point was a ‘matter’ field ψ transforming in some rep-
resentation R of a gauge group G. For simplicity, we will always think of SU(N) and,
when it comes to matter, of its fundamental representation, but you should be able to
generalize this if appropriate.

Now, to write down an action invariant under8

ψ(x)→ U(x)ψ(x) , with U(x) ∈ SU(N) , (4.1)

we want to ensure that
Dµψ → UDµψ (4.2)

with Dµ an appropriate generalization of the partial derivative ∂µ. This generalization is
provided by

Dµ = ∂µ + iAµ with Aµ ∈ su(N) (4.3)

(or Aµ ∈ Lie(G) more generally), where Aµ transforms as

iAµ → U(∂µU
−1) + U iAµ U

−1 . (4.4)

With this, the matter field lagrangian can be made gauge-invariant (consider e.g.
ψ̄(i /D −m)ψ).

To write down an action for Aµ, we introduced the field strength

Fµν ≡
1

i
[Dµ, Dν ] , (4.5)

which transforms as
Fµν → UFµνU

−1 . (4.6)

A gauge invariant Aµ lagrangian is then provided by

L = − 1

2g2
tr(FµνF

µν) . (4.7)

Using a normalized basis T a of the Lie algebra,

tr(T aT b) =
1

2
δab , (4.8)

we can go over to components and write

Aµ = AaµT
a ; Fµν = F a

µνT
a . (4.9)

After the rescaling Aµ → gAµ, one finds

L = −1

4
F a
µνF

aµν ; F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν , (4.10)

8Replace this with ψ → R(U)ψ and U ∈ G and make all the relevant changes in what follows to
make sure you understand the general case.
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where we used the structure constants of the Lie algebra defined by

[T a, T b] = ifabcT c . (4.11)

The lagrangian naturally splits into free and interacting part, L = L0 + Lint., with

L0 = −1

4
(∂µA

a
ν − ∂νAaµ)(∂νAµa − ∂µAa ν) , (4.12)

which is just as in QED but with N vector fields labelled by a. The interactions,

Lint. ⊃ gA3 , g2A4 , (4.13)

obviously induce 3- and 4-point vertices making, in contrast to QED, already the pure
gauge theory interacting.

Now, one is tempted to interpret Aaµ as a set of 4N bosonic fields, to define the
correlation functions of the corresponding operators by

〈TÂaµ(x1)Âbν(x2) · · · 〉 =

∫
DAAaµ(x1)Abν(x2) · · · eiS∫

DAeiS
, (4.14)

and to evaluate the r.h. side with the methods we developed for the real scalar. From
this, we would then get scattering amplitudes for photons (or, for G = SU(3), gluons)
after Fourier transforming, amputating external lines and going on-shell. (The last of
course requires LSZ to go through also for non-abelian gauge theories – which it does,
but this requires more thought.)

However, there are two obstacles, both related to gauge invariance. The first is tech-
nical: In our perturbative approach to the evaluation of path integrals we need the inverse
of the differental operator defining L0. But, and we already encountered this problem in
QFT I, this inverse doesn’t exist for gauge theories. We will learn how to deal with this
in a moment.

Second, we have a conceptual problem since we are trying to evaluate a non-gauge
invariant quantity. Really, we should not use (4.14) but rather

〈0|T O[Â] |0〉 =

∫
DAO[A] eiS∫
DAeiS

, (4.15)

where O[Â] is a gauge-invariant expression depending on the fields Aaµ (an ‘observable’).
We now briefly argue that specific versions of (4.14) fall into this category.

In QED, we had a proof (based on Ward-Takahashi identities) that with all the ex-
ternal fermions on-shell the photon lines (external and internal 9) are insensitive to gauge
change (kµMµ = 0). Thus, amplitudes evaluated on the basis of (4.14) and even correla-
tion functions for physical photons (on-shell and contracted with a physical polarization
vector), i.e. after

Aµ(x) → εµ(k)Ãµ(k) , (4.16)

9This holds since an internal photon line always connects to either an external fermion line or a
fermion loop.
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are gauge invariant. Hence, if we use (4.14) to calculate only such gauge-invariant quan-
tities, we are basically calculating expectation values of gauge-invariant operators, as in
(4.15). This is sensible.

For non-abelian theories, such as QCD, the gauge invariance issue is much more
subtle due to the direct coupling between gauge bosons, cf. Fig. 15. Nevertheless, on-
shell amplitudes with all gluons physically polarized are gauge invariant. Thus, we may
again say that

T O[Â] = Fourier-trf. / on-shell / phys.-pol. version of
{
T Aaµ(x1)Abν(x2) · · ·

}
. (4.17)

In this interpretation, (4.15) again makes sense.

Figure 15: Illustration of the more complicated gauge boson interaction in non-abelian
theories.

Finally, there are of course important physical situations when (4.15) can be applied
as it stands. For example, the lightest particles in pure non-abelian gauge theory (pure
‘Yang-Mills theory’) are glueballs. There are operators G, built from the fundamental
fields, such that

〈0|G[A](x) |glueball〉 6= 0 . (4.18)

Then we can set
O[A] = TG(x1)G(x2) · · · (4.19)

and, after Fourier-transforming etc., obtain scattering amplitudes and decay widths of
glueballs. Very roughly speaking, this is what’s done on the lattice, where the path
integral formula (4.15) is used as it stands, after S is discretized appropriately. It’s not
possible for us, being bound to analytical methods and hence mostly perturbation theory.

Furthermore, we can couple our pure Yang-Mills theory to matter and we will have
plenty of examples of practically relevant, manifestly gauge-invariant operators to be
placed under the path integral. The two-photon correlation function is one such example,
as should be clear from Fig. 16. (Of course, the path integral must now include also quarks
and photons.)

Figure 16: Gluons contributing to the photon self-energy at higher order.
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Anyway, we have now provided enough motivation for learning how to evaluate path
integrals of the type ∫

DAO[A] eiS (4.20)

with O a gauge invariant expression in terms of the gauge fields Aaµ. Let’s now actually
do it.

4.2 Fadeev-Popov method

We immediately anticipate a technical problem related to gauge invariance. Indeed, recall
that under a gauge rotation by

U = e−igχ ; χ(x) ∈ su(N) (4.21)

we have
iAµ → iAχy ≡ U(∂µU

−1) + iUAµU
−1 . (4.22)

If we now fix some set of field configurations A(0) which are not related to each other by
gauge transformation, the path integral splits as∫

DA =

∫
DA(0)Dχ . (4.23)

The χ integration looks divergent since the integrand is by definition independent of χ.
However, this is only an artifact of perturbation theory. Indeed, the divergence is only
real if we think of Aµ in terms of a Taylor expansion around Aµ = 0. In this case, the
Dχ-integral is just a product of unbounded real integrals, each being divergent.

However, since the relevant gauge groups are always compact (e.g. U(1) ∼ S1,
SU(2) ∼ S3), it is clear that χ should actually be integrated only over a finite range. For
example, in the U(1) case e2πi = 1 and larger χ brings one back to field configurations
which one already encountered.

In numerical appoaches, on the lattice, one can define the DA-integration such that
the gauge redundancy is explicitly finite (apart, of course, from infinities related to the
infinite-volume or zero-lattice-spacing limit). One can then proceed without the gauge-
fixing that we are going to develop next.

We note that, if we write (recall that the x-integration is implicit in this notation)

iS[A] = −1

2
Aµ(D−1)µνAν , (4.24)

the operator (D−1)µν has eigenfunctions with zero eigenvalue, for exactly the reason just
discussed. This was already mentioned in Sect. 4.1 and it was solved in QFT I by gauge
fixing. The same idea works here:

We fix the gauge by demanding G(A) = 0 for some non-gauge-invariant function G
of A. For example,

G(A) = ∂µA
µ − ω , (4.25)
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with an arbitrary function ω(x). Both ω and G take their values in the Lie algebra.

Next, generalizing the familiar relation

1 =

∫
dx δ(f(x)) |f ′(x)| (4.26)

to the case of functionals, we have

1 =

∫
Dχδ[G(Aχ)]

∣∣∣∣det

(
δG(Aχ)

δχ

)∣∣∣∣ . (4.27)

Here it may be useful to recall that, by definition,

δG(Aχ)(x) =

∫
d4y

δG(Aχ)(x)

δχ(y)
· δχ(y) + · · · . (4.28)

Hence δG(Aχ)/δχ is a linear operator on the space of Lie-algebra-valued functions, and
δG(Aχ)(x)/δχ(y) is its operator kernel. The determinant of such objects can be defined
after UV/IR regularization, as mentioned earlier.

Using (4.27), we have

〈TO[Â]〉 =

∫
Dχ

∫
DAδ[G(Aχ)]

∣∣∣det
(
δG(Aχ)
δχ

)∣∣∣ O[A] eiS[A]∫
Dχ

∫
DAδ[G(Aχ)]

∣∣∣det
(
δG(Aχ)
δχ

)∣∣∣ eiS[A]
, (4.29)

which can be interpreted as splitting the integration over all A according to Fig. 17.
Since numerator and denominator differ only by the insertion of O[A], we can focus on
the numerator in what follows.

Figure 17: One first integrates over fields Aµ subject to the gauge-fixing condition with
a specific χ, and subsequently over all gauge orbits, i.e. over χ.

First, we have
O[A] exp(iS[A]) = O[Aχ] exp(iS[Aχ]) (4.30)

due to gauge invariance. Next, we can change the integration variable from A to Aχ,∫
DA =

∫
DAχ

∣∣∣∣det

(
δAχ

δA

)∣∣∣∣−1

. (4.31)

To evaluate the determinant, focus first on infinitesimal χ, evaluating δAχ in linear order
in χ only. Referring back to (4.22), we have

δAχ = δA− i[gχ, δA] . (4.32)
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The functional derivative δ(Aχ)a(x)/δAb(y) is clearly proportional to the unit matrix
w.r.t. its space-time indices, ∼ δ4(x − y). It is non-trivial with respect to its gauge
indices. However, one can easily show (using the total antisymmetry of fabc, which you
should also prove), that

δAχ

δA
∼ 1 +M , (4.33)

with M an antisymmetric matrix (cf. problems). Hence det(1 + M) = 1 + O(M2) and
our full determinant is unity in linear order in χ. However, finite gauge transformations
can be built as an infinite product of infinitesimal ones, so that we have in full generality

det

(
δAχ

δA

)
= 1 . (4.34)

We can thus simply replace DA by DAχ. Finally, we can also write∣∣∣∣det

(
δG(Aχ)

δχ

)∣∣∣∣ =

∣∣∣∣det

(
δG(Aχ+χ′)

δχ′

)∣∣∣∣
χ′=0

. (4.35)

Putting everything together, we get∫
Dχ

∫
DAχ δ[G(Aχ)]

∣∣∣∣det

(
δG(Aχ+χ′)

δχ′

)∣∣∣∣
χ′=0

O[Aχ] eiS[Aχ] . (4.36)

Now we rename Aχ → A, making it apparent that the Dχ-integral gives just an overall,
constant prefactor, which we are allowed to drop. After that, we rename χ′ → χ and
have

〈TO[Â]〉 =

∫
DAδ[G(A)]

∣∣∣det
(
δG(Aχ)
δχ

)∣∣∣
χ=0

O[A] eiS[A]∫
DAδ[G(A)]

∣∣∣det
(
δG(Aχ)
δχ

)∣∣∣
χ=0

eiS[A]
. (4.37)

At the conceptual level we are now finished: The freedom is fixed and our path
integral is well-defined. Nevertheless, a few more steps are needed before the expression
becomes practically useful.

First, it is often convenient to replace the gauge choice G = ∂A − ω = 0 with an
arbitrary but fixed ω by a so-called ‘averaged’ gauge. Indeed, while ω explicitly appears
under the path integral, we know that the result actually is gauge invariant and can not
really depend on it. Thus, we may simply introduce a further path integral∫

Dω exp

(
−i
∫
λ

2
ω(x)2

)
(4.38)

in numerator and denominator. (We use the shorthand ω2 for ωaωa here and below.) The
ω integration can then be performed making use of

δ[G(A)] = δ[∂A− ω] . (4.39)
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Focussing just on the numerator, we now have∫
DA

∣∣∣∣det

(
δG(Aχ)

δχ

)∣∣∣∣
χ=0

O[A] exp i

(
S[A]− λ

2

∫
(∂A)2

)
, (4.40)

where we recognize the gauge-fixing term familiar from the Gupta-Bleuler approach.

Second, we use the previously derived formula

detM =

∫
Dθ̄Dθ e−θ̄Mθ (4.41)

to evaluate the Fadeed-Popov determinant det(δG/δχ). Explicitly, we recall that

(Aχµ)a = Aaµ + ∂µχ
a + gfabcχbAcµ (4.42)

and hence

δG(Aχ)a(x)

δχd(y)
=

δ

δχd(y)

(
∂Aa(x) + ∂2χa(x) + gfabc∂µ(χb(x)Acµ(x))

)
(4.43)

= δad∂2δ4(x− y) + gfadc∂µx (δ4(x− y)Acµ(x)) . (4.44)

The unphysical fermionic fields introduced to evaluate the determinant of this last matrix
are called ghosts and are frequently denoted by c̄ and c, such that

det

(
δG

δχ

)
= (4.45)∫

Dc̄Dc exp

[
−i
∫
d4x d4y c̄a(x)

{
δab∂2δ4(x− y) + gfabc∂µx (δ4(x− y)Acµ(x))

}
cb(y)

]
.

The overall prefactor and hence the “i” are irrelevant.

The expression under the exponent is equivalent to the introduction of a ghost action

iSghost = i

∫
d4xLghost = i

∫
d4x c̄a[−δab∂2 − gfabc∂µAcµ]cb (4.46)

into our theory. Note that here ∂µ acts both on A and on c.

The ghosts carry gauge indices just like A and one can think of them as of fields trans-
forming in the ‘adjoint representation’ of the group. Indeed, apart from their Grassmann
nature, one can think of c as living in the Lie algebra

c = caT a (4.47)

and transforming correspondingly:

c → UcU−1 = e−igχc eigχ = c− ig[χ, c] + · · · . (4.48)

This is (quite generally) the so-called adjoint representation by which a group acts on
a vector space isomorphic to its own Lie algebra. In the last expression, you see the
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infinitesimal version, i.e. the action of the Lie-algebra element χ on another Lie-algebra
element, in this case c. Correspondingly, one can define a covariant derivative of a field
taking values in the Lie-algebra,

Dµc = ∂µc+ ig[Aµ, c] . (4.49)

In components, this reads

(Dµc)
a = ∂µc

a − gfabcAbµcc , (4.50)

and hence we can also write

Lghost = −c̄ ∂µ
(
∂µc+ ig[Aµ, c]

)
= −c̄ ∂µDµc . (4.51)

To play with the new concept of a field in the adjoint representation, you may want
to prove gauge invariance and work out the component form of the lagrangian

L = −tr
(
DµΦDµΦ

)
(4.52)

of a so-called adoint scalar Φ (a field taking values in the Lie algebra or, if you wish,
in its complexification). Determine the relevant representation matrices Radj.(Aµ)a

b and
derive the Feynman rules for the coupling of Φ to gauge bosons!

In summary, we have derived the fundamental result

〈T O[A]〉 =
1

Z[0]

∫
DADc̄DcO[A] eiS[A]+iSgf [A]+iSghost[c̄,c,A] (4.53)

where

Lgf = −λ
2

(∂A)2 and Lghost = −c̄ ∂µDµc , (4.54)

are the so-called gauge-fixing and ghost lagrangians. Z[0] is defined by the path integral
given in (4.53), but without the insertion of O[A].

4.3 Feynman rules

Introduce sources jaµ, η̄a, ηa for the fields Aaµ, ca, c̄a, such that

S → S +

∫
d4x (jµaAaµ + η̄aca + c̄aηa) , (4.55)

and define a generating functional Z by

Z[jµ, η, η̄] =

∫
DADc̄Dc exp i[S + Aj + η̄c+ c̄η] . (4.56)

Write the action as S = S0 + Sint., where S0 contains all terms that are quadratic in
A, c, c̄, and define Z0 on the basis of S0. As usual, the source-dependence of Z0 can be
determined by completing the square:

Z0[j, η, η̄] = Z0[0] exp

[
−1

2
jDAj − η̄ Dη

]
. (4.57)
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Next, Sint. = Sint.[A, c̄, c] is incorporated by writing its field-arguments as derivatives
w.r.t the sources, i.e.

Z[j, η, η̄] = exp

[
iSint.

(
δ

iδj
,

δ

−iδη
,
δ

iδη̄

)]
Z0[j, η, η̄] . (4.58)

This is already our final formula from which the Feynman rules follow by working out 2-,3-
and 4-point functions and identifying the analytical terms corresponding to propagators
and vertices. The only unusual feature of the above theory are the ghosts, which are
scalars and at the same time fermions (Grasssmann variables). This contradicts the
spin-statistic theorem and is only permissible since the ghosts are not physical particles.
Their sources, η and η̄ will always be set to zero, such that ghosts appear only in loops.

Let us start with the central element, the gauge boson propagator. It follows from
the two quadratic pieces

−1

2
trF 2 ⊃ 1

2
(−∂µAν∂µAν + ∂µA

µ∂νA
ν) (4.59)

and

−λ
2

(∂A)2 = −λ
2
∂µA

µ∂νA
ν . (4.60)

Here the gauge index a of Aaµ and its summation is suppressed for brevity. The two pieces
above combine into an inverse propagator in momentum space

D−1
A (k)µν = i[k2ηµν − kµkν(1− λ)] , (4.61)

where the prefactor (1/2) has disappeared and a prefactor ‘i’ has been introduced as a
result of our definition of the propagator, of the Fourier transform and the opposite signs
of the momenta k belonging to the two Aµ-factors.

The inverse follows by making the ansatz

DA(k)µν = Aηµν +Bkµkν (4.62)

and determining A and B. It reads

DA(k)µν =
−i

k2 + iε

(
ηµν +

(1− λ)

λ
· kµkν
k2

)
(4.63)

or, with the frequently used parameterization by ξ = 1/λ,

DA(k)abµν =
−i

k2 + iε

(
ηµν − (1− ξ) kµkν

k2

)
δab . (4.64)

In the last expression, we restored the previously suppressed gauge indices. We should
have also have followed the ‘iε’ convergence factor throughout the analysis. However, it
was easy to restore it in the end recalling that the physical polarizations of Aµ should
behave like massless real scalars. This fixes the sign unambiguously since we want an
exponential suppression of high-energy states. Hence, k2 is replaced by k2 + iε. The iε
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associated with the kµkν term could in principle be determined, but it will drop out
together with the gauge parameter dependence when evaluating observables.

These are all “general Lorentz” or “covariant” gauges. The specific choice ξ = 1 is
called Feynman gauge, the choice ξ = 0 Landau gauge. The latter gauge is special since
it is the only one of the covariant gauges which is “truly fixed” rather than just averaged,
as explained before. Indeed, recall that the gauge fixing lagrangian emerged from∫

Dω e−i(λ/2)
∫
ω2

, (4.65)

with ω = ∂µA
µ. Thus, only at λ =∞ (i.e. ξ = 0) is the condition ∂µA

µ = 0 really strictly
enforced. Not surprisingly, the Landau-gauge propagator is transverse, i.e. longitudinal
gauge bosons do not propagate in Landau gauge:

(ηµν − kµkν/k2) kµ = 0 . (4.66)

The ghost propagator is a massless, scalar Feynman propagator, D(k) = i/(k2 + iε).
We leave the remaining Feynman rules, of which especially the 3- and 4-gauge-boson
vertices are worth checking in detail, as an excercise.

To derive the latter, it useful to write down explicitly how the terms in Sint. act on
a set of propagator terms. Symbolically, one has(∫

d4x

(
δ

iδj(x)

)(
δ

iδj(x)

)(
δ

iδj(x)

)) (
−
∫
y

∫
z

j(y)DA(y − z)j(z)

)(
...

)(
...

)
.

(4.67)
Here we have for brevity suppressed all prefactors, indices, space-time derivatives acting
δ/(δj(x)) etc. Then, one goes over to the Fourier transform, keeping in mind some fixed
convention about the momentum flow, e.g. that in

D(x− y) =

∫
d4k

(2π)4

i

k2
e−ik(x−y) (4.68)

the momentum flows from y to x. (This is relevant for the sign of the 3-gauge-boson
vertex.) The result is summaried in Fig. 18. Note that this also applies to the abelian
case, including the ghosts. However the ghosts decouple and the 3/4-gauge-boson vertices
vanish since fabc = 0 (actually, since there is just one generator, faaa = 0).

Let us include charged fields, in the simplest case Dirac fermions in the fundamental
representation of SU(N),

Lmatter = ψ̄i[(i /D −m)ψ]i , (4.69)

where the fundamental-representation index i runs from 1 to N (cf. the ‘color-index’
of quarks in QCD running over ‘r,g,b’). We chose to write the fundamental index as a
subscript, the anti-fundmantal one as a superscript, but this is of course merely con-
ventional. The two extra Feynman rules are easy to derive and the result is given in
Fig. 19. Finally, just as reminder, the Feynman rules for incoming/outgoing particles are
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Figure 18: Feynman rules for non-abelian gauge theories.

Figure 19: Coupling to Dirac matter in the fundamental representation.

summarized in Fig. 20. Note that, concerning the gauge boson states, we are working
at the moment by analogy to QED – understanding the corresponding Hilbert space in
non-abelian theories is our task for the next Section.

Among the large number of related books, we recommend in particular those by
Weinberg and Pokorski [13,14].

5 BRST symmetry, Hilbert space and canonical

quantization

In the last section, we have learned to calculate correlation functions of gauge invariant
operators. Physical states can be constructed by letting such operators act on the vac-
uum. This gives us the Hilbert space and the ability to calculate transition amplitudes
from correlation functions.
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Figure 20: Incoming/outgoing states.

Even more directly, if we recall the concept of the Schrödinger wave functional and
restrict these functionals by the requirement of gauge invariance, we have the Hilbert
space. The path integral immediately allows for the calculation of transition amplitudes.
Clearly, the Hamiltonian is indirectly defined by our ability to follow the time-evolution
of states: We just call H the operator generating this evolution.

So why invest more time?

One very good reason is that both experimentally10 and calculationally, the particle-
based / perturbative way of thinking is very useful. However, the wave-functional ap-
proach to the Hilbert space is somehow ‘orthogonal’ to this – cf. our discussion of coherent
states and how they differ from energy eigenstates. Thus, we want to be able to construct
the Hilbert space also perturbatively, as a Fock space corresponding to the free part of
the lagrangian. This is also necessary if we want to repeat the LSZ argument to relate
correlation functions to scattering amplitudes.11 For all of the reasons above, it is crucial
to understand the Fock space and, in this context, what the physical gauge boson states
are.

Jumping ahead, the outcome will be as expected: Analogously to QED, external glu-
ons (my shorthand for ‘non-abelian gauge bosons’ from now on) have to be transversally
polarized, external ghosts are not allowed.

10One important way in which we how know about QCD, an SU(3) gauge theory with fundamental
fermions (quarks), is through quark and gluon scattering at machines like the LHC. QCD is in think
context also crucial as a stepping stone towards new (‘beyond-the-standard-model’) physics to be studied
at particle colliders. While the LHC really collides protons and produces ‘jets’ of hadrons, it is by
now well-understood how to relate this to the underlying process where quarks/gluons scatter into
quarks/gluons. (See also later in this course.) Similarly, electroweak interactions are described by an
SU(2) × U(1) gauge theory and we probe them via scattering processes involving the corresponding
gauge-bosons (W±, Z, γ).

11Conceptually, this may seem like a step back since gauge invariance will only emerge order-by-
order in perturbation theory, as opposed to our ‘gauge-invariant-operator’ point of view. Nevertheless,
technically such amplitudes are central.
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5.1 BRST symmetry

Let us write the gauge fixing condition as

δ[(∂A)− ω] ∼
∫
Db exp i

∫
d4x ba(ω − ∂A)a , (5.1)

where we ignore normalization issues and appeal to the standard formula for the δ-
function, but at every point in space-time. The field b = baT a is the so-called Nakanishi-
Lautrup field, transforming in the adjoint representation.

With this, we go back to our derivation of last section, replace the gauge-fixing
condition by the above and do not carry out the integral over ω. The resulting lagrangian
is

L = −1

2
trF 2 + ba(ω − ∂A)a − λ

2
ωaωa − c̄a∂µDµc

a + ψ̄(i /D −m)ψ , (5.2)

where we suppressed the gauge indices of the matter fields. The corresponding path
integral is over Aµ, ω, b, c, c̄ and ψ̄, ψ.

Integrating first over b and then over ω corresponds to what we did before, giving
the known result with gauge-fixing term ∼ (∂A)2. Here, it will be useful to integrate over
ω first. Suppressing gauge indices, we write

b(ω − ∂A)− λ

2
ω2 = −λ

2
(ω − b/λ)2 +

1

2λ
b2 − b(∂A) , (5.3)

where we completed the square w.r.t. ω. If we now shift ω by b/λ, the path integral over
ω becomes a simple Gaussian. This gives just an irrelevant overall prefactor.

As a side-remark, what we just did is called ‘integrating out’ the field ω. It was
possible in this simple and explicit way since ω did not have a kinetic term, one also says
that it was just an ‘auxiliary field’.

Thus, we can now work with the lagrangian

L = −1

4
F 2 +

1

2λ
b2 − b(∂A)− c̄∂µDµc+ ψ̄(i /D −m)ψ , (5.4)

where we keep suppressing gauge indices, writing in this spirit trF 2 = F aF a/2 = F 2/2.
Clearly, we could go on to integrate out the Nakanishi-Lautrup field b as above: One
completes the square, shifts the field and drops the trivial Gaussian integration. The
result would be our gauge fixed action of last section (Check this!).

As a further side-remark, this way of integrating out an auxiliary field is equivalent
to writing down its equation of motion, solving for the auxiliary field and plugging the
result back into the action. Indeed, the EOM for b is

b

λ
− ∂A = 0 , (5.5)

hence b = λ(∂A) and

1

2λ
b2 − b(∂A) → −λ

2
(∂A)2 . (5.6)
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As a small excercise, argue why this second way of integrating-out must be equivalent
to the first one! Under which conditions is it appropriate to integrate out a massive,
dynamical (i.e. possessing a kinetic term) field in this way?

For us, the most useful form of the action or lagrangian is that of (5.4). The reason
is that the BRST transformation

δεAµ = εDµc (5.7)

δεψ = −igεcψ
(

short for (δεψ)i = −igεca(T a)jiψj
)

(5.8)

δεc = −igεc2
(

short for (δεc)
a =

1

2
gεfabccbcc

)
(5.9)

δεc̄ = −εb (5.10)

δεb = 0 (5.11)

is a symmetry of this action (Becchi/Rouet/Stora ’76 – Annals of Phys. & Tyutin ’75 –
Lebedev Institute preprint).

Before demonstrating this claim, a few comments are in order. First, the infinitesimal
parameter ε has to be a Grassmann variable, for reasons which will become apparent
later on. This affects us only through the signs – everything you learned about continuous
symmetries still holds. Next, we show that c2 is in fact not zero (as one might naively
have suspected from its Grassmann nature):

c2 = (caT a)(cbT b) = cacb T aT b =
1

2
(cacb − cbca)T aT b =

1

2
(cacb T aT b − cacbT bT a)

=
1

2
cacb[T a, T b] =

i

2
fabccacbT c =

i

2
fabccbccT a ≡ (c2)aT a . (5.12)

Here we used the the total antisymmetry of fabc. The above confirms that the two forms
of (5.9) coincide. Finally, as we will see, the BRST symmetry is so important since it
represents the ‘gauge-fixed/quantum version’ of the gauge symmetry.

Now we check in detail that the BRST transformation leaves the action invariant.
Note first that the usual gauge transformation of the gauge potential reads

δχAµ = ∂µχ− i[χ, gAµ] = Dµχ , (5.13)

where in the last expression we treat χ as a conventional adjoint field, with corresponding
action of the covariant derivative. We thus discover that the BRST transformation of Aµ
is nothing but a gauge transformation with gauge parameter

χ = εc . (5.14)

Similary, the BRST transformation of ψ is manifestly a gauge transformation with gauge
parameter εc. Thus, the BRST invariance of

−1

4
F 2 + ψ̄(i /D −m)ψ (5.15)
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is proven.

The b2 term is trivially invariant.

We are left with the task of establishing the invariance of

ba(∂A)a + c̄a∂µDµc
a = 2tr{b(∂A) + c̄∂µDµc} . (5.16)

Now, since
δεAµ = εDµc and δεc̄ = −εb , (5.17)

the effect of varying A in the first term of (5.16) precisely cancels the effect of varying c̄
in the second term. Since b does not vary, all that is left is calculating the effect of the
variation of Dµc:

δε(Dµc) = δε{∂µc+ ig[Aµ, c]} = Dµδεc+ ig[(δεAµ), c] (5.18)

= −igεDµc
2 + ig[εDµc, c] = igε

(
− [(Dµc)c+ c(Dµc)] + {Dµc, c}

)
= 0 .

This ends our proof, but as an excersice you might want to repeat the last part of the
calculation using the component form of δεc, such that fabcs appear explicitly.�

5.2 The BRST operator

Let us now consider the classical field theory defined by the gauge-fixed lagrangian, in
the form including the auxiliary and ghost fields b and c, c̄. This system can be quantized,
either by the path integral (in which case the Hilbert space are the wave functionals)
or canonically (see below). The (global!) classical symmetry transformation δε of the
lagrangian system implies a corresponding symmetry of the Hamiltonian system. The
latter is generated by via the Poisson bracket by an observable, which we call Q and,
after quantization, by the operator Q̂. This is the BRST operator or BRST charge.

Equivalently, the Noether theorem implies the existence of a current jµ associated
with δε. The charge Q is then defined by

∫
d3x j0, as usual. (We will drop the ‘hat’ on

Q in what follows – it should always be clear from the context whether the operator or
the classical observable are meant.)

Let us try to make the operator Q more explicit. To this end, let us adopt the
definition

δε ≡ −εQ or, more concretely δεϕ ≡ −{εQ, ϕ} (5.19)

at the classical level, with ϕ standing for any of the relevant fields and {· · · } the Poisson
bracket. By the standard Dirac quantization rule {A,B} → −i[A,B], we find at the
quantum level

δε ≡ iεQ or, more concretely δεϕ ≡ [iεQ, ϕ] . (5.20)

As we have learned, operators become classical fields under the path integral. Hence,
operator relations (like the above definition of a symmetry transformation of an operator)
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become classical relations under the path integral. Thus, our knowledge about how the
BRST symmetry acts classically allows us to write

〈Ψb|
[
iεQ,O[ϕ]

]
· · · |Ψa〉 =

∫
Ψa,Ψb

Dϕ
(

(δεO[ϕ]) · · ·
)
eiS . (5.21)

Crucially, our classical defintion of δε defines the quantum operator Q within the path
integral approach. Indeed, we can calculate arbitrary expectation values of a transformed
operator O[ϕ]. We can even transform states, for example by defining states through some
operator acting on the vacuum,

|Ψ〉 ≡ O[ϕ] |0〉 , (5.22)

and then transforming the operator as above. That allows us to calculate the overlap of
a BRST-transformed state with some arbitrary other state.

The punchline of all this that, even without having written down Q explicitly in
terms of annihiliation and creation operators, we can work with it rather explicitly. In
particular, we can check the crucial claim that Q is nilpotent,

Q2 = 0 (5.23)

by a classical calculation. Namely, we observe that

δε′δε = εε′Q2 (5.24)

vanishes if and only if Q2 = 0. Thus it is sufficient to establish δεδε′ = 0. Indeed,

δεb = 0 ⇒ δε′δεb = 0 . (5.25)

Similarly,
δεc̄ = −εb ⇒ δε′δεc̄ = δε′(−εb) = −εδε′b = 0 . (5.26)

Furthermore,
δεc = −igεc2 (5.27)

implies

δε′δεc = −igεδε′c2 = (−ig)2ε[(ε′c2)c+ c(ε′c2)] = (−ig)2εε′[c3 − c3] = 0 . (5.28)

Here we have extended the action δε on products of fields by the Leibniz rule

δε(fg) = (δεf)g + f(δεg) . (5.29)

Here it proves convenient that we have defined ε to be Grassmann, such that δε is
‘bosonic’. Finally, one the application of δε′δε to ψ and Aµ is left as an excercise. Similarly,
you should convince yourself that Q2ϕi = 0, with ϕi any one of our many fields, implies
that Q2ϕi1 · · ·ϕin = 0, i.e. Q2 vanishes on any polynomial function of fields.

To summarize, the BRST symmetry is generated by the nilpotent BRST operator
Q. Our knowledge of the BRST transformation on fields allows us to work with Q rather
explicitly, given that we understand both operators and states via fields inserted under
the path integral.
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5.3 The Hilbert space

Recall that we are working here with the theory defined by the gauge-fixed lagrangian,
i.e.

L = L(Aµ, ψ, ψ̄, c, c̄, b) . (5.30)

We have not yet quantized canonically, so our understanding of the ‘Hilbert space’ of this
theory relies on the path integral: Field operators acting on the vacuum define states,
the overlap of such states is defined via the path integral,(

〈0|Ot′

)
·
(
Ot|0〉

)
=

∫
DϕOt′Ote

iS . (5.31)

However, both from the experience with canonical quantization of QED, from the wrong
sign of the zero-zero part of the 2-gauge-boson correlator (e.g. in Feynman gauge),

〈TAµ(x)Aν(y)〉 =

∫
d4k

(2π)4

−iηµν
k2 + iε

e−ik(x−y) , (5.32)

and from the violation of the spin-statistics theorem by the ghosts we suspect that this
space is not positive-definite. (Hence our quotation marks on ‘Hilbert space’ above.) This
is resolved as follows:

Let us denote the whole linear space (of wave functionals) by F . Let us denote by
Fphys its subspace annihiliated by Q,

Fphys ≡ KerQ ⊂ F . (5.33)

The index ‘phys’ stands for physical subspace and is justified as follows: The BRST
symmetry is closely related to gauge symmetry, most obviously on the physical fields Aµ
and ψ. As a result, we expect physical and hence gauge invariant states to be invariant
under the BRST transformation.

Note furthermore that states in

F0 ≡ ImQ ⊂ F (5.34)

have zero norm due to Q2 = 0. Indeed, the overlap of two states Q|Ψ1〉 and Q|Ψ2〉 from
F0 always vanishes,

〈Ψ1|Q†Q|Ψ2〉 = 〈Ψ1|Q2|Ψ2〉 = 0 , (5.35)

since Q is hermitian.12 More generally, states in F0 (such as Q|Ψ1〉) have zero overlap
with physical states, say |Ψphys〉, with Q|Ψphys〉 = 0. Indeed,

〈Ψ1|Q†|Ψphys〉 = 〈Ψ1|Q|Ψphys〉 = 0 . (5.36)

12The latter is certainly expected of a observable, but due to the involvement of ghosts it is not
compeletely obvious. With the appropriate definition of the hermitian conjugation on ghost fields (see
below) Q is indeed hermitian.
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All of this culminates in the mathematically highly natural definiton of our true Hilbert
space,

H ≡ Fphys
F0

≡ KerQ

ImQ
, (5.37)

as a quotient space or the space of equivalence classes of states within Fphys. Linearity and
scalar product on this new space are inherited from F in a natural way. (You should be
able to prove that, addition, multiplication by complex numbers and the scalar product
can be defined on H on the basis of representatives since they do not depend on which
representative one chooses.)

The above construction is also known as the cohomology of Q. It should be familiar
in the context of the exterior derivative d, which also satisfies d2 = 0. Indeed

d(p) : p-forms → (p+ 1)-forms , (5.38)

and

Hp(M) ≡ closed p-forms

exact p-forms
≡

Ker d(p)

Im d(p−1)

. (5.39)

For an n-dimensional compact manifold M , this space Hp of ‘cohomology classes’ of
p-forms is dual to the space Hn−p of ‘homology classes’ of n− p cycles. An example with
n = 2 and p = 1 and M a Riemann surface of genus 3 is illustrated in Fig. 21. As the
cohomology of d reveals the topology of the manifold, the cohomology of Q reveals the
gauge-invariant structure of the space of wave functionals.

Figure 21: Illusration of the (6-dimensional) space of homology classes of 1-cycles of a
Riemann surface of genus 3.

The next important point is to demonstrate that physical amplitudes do not depend
on the gauge choice. Indeed, let us split the lagrangian as

L = −1

4
F 2 + ψ̄(i /D −m)ψ + Lgf + Lghost (5.40)

with

Lgf =
1

2λ
b2 − b(∂A) and Lghost = −c̄∂µDµc . (5.41)

We now claim that the part in which all gauge-choice-dependence resides, i.e. the com-
bination Lgf + Lghost is BRST exact, i.e., there exists an operator Φ such that

Lgf + Lghost = [Q,Φ] . (5.42)

In terms of classical fields, this means that

ε(Lgf + Lghost) = −iδεΦ . (5.43)
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That this is the case follows from the simple calculation

δε c̄

(
(∂A)− 1

2λ
b

)
= −εb

(
(∂A)− 1

2λ
b

)
+ c̄ε∂µDµc = ε

(
−b(∂A) +

1

2λ
b2 − c̄∂µDµc

)
,

(5.44)
which also defines which Φ to choose. It is true more generally, i.e. for gauge-fixing
functions other than (∂A), that the gauge-fixing/ghost part of L is BRST exact. Any
change of this gauge dependent part of L (in the simplest case the change of λ) can thus
be written as

δλS = [Q, δλΦ] , (5.45)

where δλ symbolizes some change of the gauge-fixed action due to a change of the gauge
condition and δλΦ is an appropriate operator. Now, clearly, a transition amplitude be-
tween physical states Ψa and Ψb changes by∫

Ψa,Ψb

Dϕei(S+δλS) −
∫

Ψa,Ψb

DϕeiS (5.46)

for such a gauge condition change. Infinitesimally, one has∫
Ψa,Ψb

Dϕ [Q, δλΦ] eiS = 0 because 〈Ψb|Q = Q|Ψa〉 = 0 . (5.47)

This establishes that physics is gauge-choice-independent.

Finally, as a short but very important remark, Q is by definition conserved, i.e. it
commutes with H and hence with time evolution. Thus, our definition of the physical
subspace commutes with time evolution. As a result, the dynamics (e.g. scattering) will
never force us to leave the physical subspace.

5.4 Canonical quantization

Fundamentally, we are now done. Of course, the proofs that the resulting Hilbert space
H is positive definite and that the scattering matrix on this space is unitary are missing.
We will not give these proofs but refer to the book by Kugo [15], where this is carried
in the canonically quantized theory.

Independently, it desirable to understand the relation of the Hilbert space formally
defined in the path integral approach to the Fock space. This is also crucial for the LSZ
formalism. Finally, we want to get some intuition about how BRST quantization relates
to Gupta-Bleuler quantization defined earlier.

Thus, we have good to reason to try and canonically quantize the theory defined by

L = −1

4
F 2 − b(∂A) +

1

2λ
b2 − c̄∂µDµc . (5.48)

Here we have dropped the matter part since its treatment is straightforward and it does
not contribute to the gauge-theory subtleties we are interested in. Our treatment will be
a highly simplified version of the detailed analysis in [15].
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As in the abelian case, we have (always suppressing the gauge index)

πi =
∂L
∂Ȧi

= F i0 . (5.49)

Since F 00 = 0, the corresponding contribution to π0 vanishes. However, the gauge-fixing
part of L contains Ȧ0 such that one finds

π0 =
∂L
∂Ȧ0

= −b . (5.50)

The Nakanishi-Lautrup field b has no canonical momentum, such that one only finds the
four commutation relations (at t = x0 = 0)

[Ai(~x), πk(~y)] = iδi
k δ3(~x− ~y) (5.51)

[A0(~x), −b(~y)] = iδ3(~x− ~y) . (5.52)

For the ghosts, we have (after integrating by parts, such that ∂µ acts on c̄)

πc =
∂L
∂ċ

= ˙̄c (5.53)

πc̄ =
∂L
∂ ˙̄c

= ċ− ig[A0, c] . (5.54)

Thus, quantizing with anti-commutators as appropriate for fermions, we have

{c(~x), πc(~y)} = {c̄(~x), πc̄(~y)} = iδ3(~x− ~y) . (5.55)

We make the familiar ansatz for expressing the free fields (corresponding to g = 0)
in terms of creation and annihilation operators:

Aµ(x) =

∫
d3k

(2π)32k0

(
aµ~ke

−ikx + aµ
†

~k
eikx
)

(5.56)

b(x) =

∫
d3k

(2π)32k0

(
b~ke
−ikx + b†~ke

ikx
)

(5.57)

c(x) =

∫
d3k

(2π)32k0

(
c~ke
−ikx + c†~ke

ikx
)

(5.58)

c̄(x) =

∫
d3k

(2π)32k0

(
c̄~ke
−ikx − c̄†~ke

ikx
)
. (5.59)

Thus, b is simply a real scalar. It may be surprising that we make this ansatz, motivated
by the dynamics of the Klein-Gordon equation for a non-dynamical scalar. However, at
g = 0 we have from the variation of the action

∂µF
µν = ∂νb and hence ∂2b = 0 . (5.60)

So the ansatz makes sense.
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In addition, another conceptual issue arises in this context: For the five creation/an-
nihilation operator pairs aµ †/aµ and b†/b we only have the four canonical commutation
relations (5.51) and (5.52). To machieve a consistent Fock space construction, we need
to reduce the number of independent creation/annihiliation operators. This is achieved
by demanding the b-field equation of motion at the oprator level, i.e.

b = λ ∂A . (5.61)

Concerning the unusual sign in the ansatz for c̄ (the minus sign in in front of c̄†~k), this is
a purely notational issue which requires a comment: Our ghost lagrangian is only real if

c† = c and c̄† = −c̄ . (5.62)

This could be fixed easily be redefining c or c̄ by an i, giving real ghosts and an i prefactor
in the ghost lagrangian. However, then we would clash with much of the literature cited
in the last sections. Presumably, this would overall be advantageous and indeed, the very
careful text by Kugo uses such conventions. For the record:

bKugo = −b , cKugo = −c , c̄Kugo = ic̄ . (5.63)

We will stick with the ‘antihermitian-c̄’ convention in what follows.

We do not derive the creator/annihilator commutation relations, which is standard.
As usual, one restricts oneself to g = 0 and uses Feynman gauge, where b = ∂A, so that
b-excitations correspond to unphysical A polarizations. The result is

[aµ~k , a
ν
~q ] = −ηµν 2k0 (2π)3 δ3(~k − ~q) , (5.64)

{c~k, c̄
†
~q} = {c̄~k, c

†
~q} = 2k0 (2π)3 δ3(~k − ~q) . (5.65)

Crucially, due to higher-order terms in πi = F i0 and in πc̄, the interaction lagrangian
differs from minus the interaction hamiltonian and non-covariant pieces arise in the
canonically derived Feynman rules. This is the same complication we encountered before
in scalar QED and we will not dwell on this.

The (free-particle) Fock space is still defined by starting from a vacuum, annihiliated
by all annihiliation operators, and applying creation operators to get the excited states.
However, this state is not positive definite and, differently from QED, the operation of
making it positive definite mixes states of different particle number. This is where the
BRST symmetry and the BRST operator are really needed. Indeed, the corresponding
Noether current is

Jµ = bDµc− (∂µb)c+
i

2
g(∂µc̄) · {c, c} − ∂ν(Fµνc) (5.66)

and the charge explicitly reads

Q =

∫
d3x

(
ba(D0c)

a − (∂0B)aca +
i

2
g(∂0c̄)

afabccbcc
)
. (5.67)
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Here we have re-established explicit gauge indices, just to be sure that they are not
entirely frogotten.

With this operator Q, we can approach our Fock space, construct the physical sub-
space and mod out the gauge redundancies. The statement H = ImQ/KerQ says it all.
Of course, Q has to be given explicitly in terms of creation/annihiliation operators of the
fields, but this is now easy. The actual cohomology construction is, however, highly com-
plex due to the cubic piece in Q: Indeed, Q mixes states with different particle number.
This makes the Hilbert space very different from the free-particle Fock space we started
with.

The non-trivial statements to be made are that H is positive-definite and the scat-
tering matrix is unitary. We refer to Kugo’s book for the relatively lengthy proof.

We can, however, develop some intuition for what’s going on by restricting our at-
tention to the abelian case or, equivalently, to the limit g → 0. Moreover, this is also
what’s relevant for the 1-particle sector of the Fock and Hilbert space. As you recall, the
1-particle sector is sufficient to understand LSZ, where we argue from locality that all
incoming and outgoing states are far apart and we only care about the overlap of each
such state with the 1-particle-sector of the Fock space.

In this limit, we have

Q =

∫
d3x b

↔
∂ 0 c = i

∫
d3k

(2π)32k0

[c†~kb~k − b
†
~k
c~k] . (5.68)

We also recall that we are in Feynman gauge, such that b = ∂A. Furthermore, we use the
following polarization vectors for Aµ(k), with ~k = {ki} pointing in positive z-direction:

εµ± =
1√
2


0
1
±i
0

 , εµL =
1√
2


1
0
0
1

 , εµU =
1√
2


1
0
0
−1

 , (5.69)

where L and U stand for ‘longitudinal’ and ‘unphysical’. We can also switch from the
creation/annihiliation operators aµ/aµ † to operators α±/α

†
±, αL/α

†
L and αU/α

†
U , corre-

sponding to the above polarizatios (cf. QFT I). We then have

α†
{±,L,U}, ~k

= εµ±,L,U(k) a~k µ (5.70)

and

Q ∼
∫
d3k [c†~kαL,~k − α

†
L,~k
c~k] . (5.71)

At the 1-particle level, we encounter (suppressing the momentum index) the two
physical gluon polarizations

α†±|0〉 (5.72)

and the so called BRST quartet

c̄†|0〉 → α†L|0〉 → 0 , α†U |0〉 → c†|0〉 → 0 , (5.73)
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where the arrows correspond to the action of Q. To appreciate this structure, it is crucial
to also remember that the non-zero scalar products within this quartet are

〈0|cc̄†|0〉 and 〈0|αUα†L|0〉 . (5.74)

We see that, generalizing the Gupta-Bleuler approach, we now have α†U/c̄
† as forbid-

den excitations and α†L/c
† as residual-gauge-freedom excitations. Crucially, and showing

this would require more work, this quartet structure extends to the full Fock space and al-
lows for a systematic understanding that, in the LSZ approach to scattering amplitudes,
only the poles associated with α†± contribute. In other words, the physical S-matrix
is unitary. This also requires the use so called Slavnov-Taylor identities. The latter
are derived using BRST symmetry in analogy to how Ward-Takahashi identities are
derived using gauge symmetry in the abelian case. We will return to this issue.

To appreciate better what one would need to show, we give a demonstration in the
much simpler case of QED. Since the (gauge-fixed) lagrangian is real, H is hermitian
and S unitary,

SS† = 1 . (5.75)

It acts on the full (non-positive definite) Fock space F . Let us define F± as the subspace
built only from physically polarized photons (F± ⊂ Fphys ⊂ F). Let P be the projector
on F± (which implies P 2 = P and P † = P ). Unitarity of the physical S-matrix then
means

(PSP )(PSP )† = P . (5.76)

This is equivalent to
PSPS†P = P , (5.77)

which will hold if
SPS† = SS† . (5.78)

Thus, we need to show that we can remove a projector P in between two S-matrix
elements. Focus on one of the external photon lines of such an S-matrix element, let’s
say with index µ and momentum k (which we will suppress). We simply need to prove
that ∑

±

Mµε
µ
±ε

ν ∗
±M∗

ν =Mµ(−ηµν)M∗
ν . (5.79)

But this immediately follows from the completeness relation∑
±

εµ±ε
ν ∗
± + εµLε

ν ∗
U + εµUε

∗ ν
L = −ηµν (5.80)

together with the Ward-Takahashi identity Mµk
µ = 0 . �

A ‘slick’ argument for the non-abelian case can be given as follows (cf. [1]): Let g → 0
at t→ ±∞. Our initial states are then defined in the well-understood Hilbert spaces of
the free theory (cf. Gupta-Bleuler approach ‘plus ghosts’, es explained above). We are
certain that the physical part of the full Fock-space is positive definite in this case. Now,
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as we very slowly13 switch on g, this simple physical space of transverse gauge bosons
evolves into the space H formally defined using Q. Since Q commutes with H, we will
never leave this space in the dynamical evolution. Furthermore, since the dynamics is
unitary by defintion (given hermitian H), the dynamics restricted to H is also unitary.
Thus, after switching off g in the far future, we find an outgoing physical state in the
free space of transverse gluons and we are assured that the scattering matrix is unitary.

For a more details, see e.g. [11, 13,15–20].

6 Running coupling and β-function, in QCD and in

general

6.1 QCD

Most of the concrete calculations in this section will be performed in QCD, so let us give
a brief summary: We are dealing with an SU(3) gauge theory with 6 flavors of Dirac
fermions (quarks) in the fundamental representation:

L = − 1

2g2
trFµνF

µν +
∑
f

ψ̄f (i /D −mf )ψf , (6.1)

where f ∈ {u, d, s, c, b, t}. This should be familiar as part of the Standard Model, but we
are at the moment not interested in the additional SU(2)×U(1) gauge symmetry and the
lepton and Higgs fields. Jumping ahead, we note that this theory has a strong-coupling
or confinement scale at ΛQCD ∼ 200 MeV, and from the prespective of that scale one
sometimes refers to {u, d, s} as ‘light’ and the rest as ‘heavy’ quarks.

We have

Aµ = AaµT
a with T a =

1

2
λa , (6.2)

with the latter known as Gell-Mann matrices. The first three are explicitly given by
placing the Pauli-matrixes in the upper-left corner, corresponding to an SU(2) subgroup,

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 , (6.3)

the next four by placing the off-diagonal Pauli-matrices in the ‘middle’

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , (6.4)

13This is the catch: We need to think about Poincare and BRST symmetry in this limit.
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and the lower-right blocks,

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 . (6.5)

The last is the unqiue traceless element orthogonal to λ3,

λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (6.6)

SU(3) has a maximal commuting subalgebra of dimension 2 (one says the group has
rank 2), spanned by λ3,8:

[λ3, λ8] = 0 . (6.7)

Our perturbative methods will allow us to deal with this theory only at high ener-
gies, above ΛQCD, where quarks and gluons are useful degrees of freedom. We will learn
that going to lower energies the coupling blows up near ΛQCD, making perturbative
calculations impossible. Fortunately, by now one has enough control of the path inte-
gral numerically (on a lattice) to be sure that the very same fundamental lagrangian is
responsible for the wealth of meson/hadron physics observed in that low-energy domain.

6.2 Dimensional regularization and minimal subtraction

We will do perturbation theory, using the Feynman rules derived with the Fadeev-Popov
method and working in d space-time dimensions, as in our QED analysis in QFT I. In
d 6= 4 dimensions, the gauge coupling is dimensionful. Indeed, Aµ has mass-dimension
one,

Dµ = ∂µ + iAµ ⇒ [Aµ] = 1 , (6.8)

which implies

S =

∫
ddx

1

2g2
tr(F 2) ⇒ −d− [g2] + 2 + 2[Aµ] = 0 ⇒ [g2] = 4− d . (6.9)

Of course, the mass dimension of Aµ will change if we rescale Aµ by g, as is frequently
done, but the non-trival mass dimension of g remains.

It will be convenient to write d ≡ 4− ε and to redefine g according to

g2 → g2µε , (6.10)

where µ is a new mass scale which is necessarily introduced in the process of renormal-
ization. Thus, from now on, g is again dimensionless.

Let us now calculate some observable which is not sensitive to the “mess” near ΛQCD

which we are not able to control analytically. (This is a very rough description of what is
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called an IR-safe observable and can of course be defined more precisely.) The example
we choose is the cross-section for

e+e− → hadrons , (6.11)

which can also be thought of as the ‘decay width’ of γ∗ to hadrons, with some of the
relevant diagrams shown in Fig. 22.

Figure 22: Some diagrams contributing to e+e− → hadrons or, what is only relevant
here, γ∗ → hadrons.

Let us go to high cms-energies s = Q2 = q2, with q the momentum of γ∗, and
normalize the result according to

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (6.12)

For nf active flavors (‘active’ means light from the perspective of s = Q2), we will find
for this by definition dimensionless quantity

R = R(Q2/µ2, g2) = 3nf

[
1 + g2µεQ−εf1(ε) + g4µ2εQ−2εf2(ε) +O(g6)

]
. (6.13)

As a side-remark, the prefactor ‘3’ was historically an important piece of evidence for
the color-degree-of-freedom.

In Eq. 6.13, the factors µε accompany factors of g2 due to our redefinition of the
coupling. Since Q is the only other dimensionful parameter (we take m/Q → 0 for all
particle masses involved), theQ-dependence is then fixed. The functions f1,2,... follow from
explicit loop calculations and the ε-dependence can, in particular, involve divergencies
(poles) at ε→ 0:∫

ddk

(k2 + q2)2
∼ (q2)d/2−2

∫
ddx

(x2 + 1)2
∼ Q−ε

(
1

ε
+ · · ·

)
. (6.14)

In the concrete example above, f1(0) = 1/4π2 is finite, which can be understood
before any calculation. Indeed, according to what we already learned any possible diver-
gence must be absorbed by a counterterm, in our case by writing

g2 ≡ g2
0 = g2

physZ
2
g with Z2

g ' 1 + 2δZg ≡ 1 +
g2 ·#
ε

, (6.15)

where we used the fact that odd orders in g do not arise in convetional perturbation
theory. Thus, the first 1/ε from a counterterm arises at O(g4). Hence, the first 1/ε from
a loop can appear in f2. A divergence found in f1 would represent an inconsistency.
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With these remarks, it is now clear that we expect to find

R = 3nf

[
1 +

g2

4π2

(
µ

Q

)ε(
1 + g2

(
µ

Q

)ε
f(ε) +O(g4)

)]
. (6.16)

If we now assume, as calculations will indeed show, that

f(ε) =
c1

ε
+ c2 + c3ε+ · · · , (6.17)

and if we write the second (µ/Q)ε term as(
µ

Q

)ε
= eε ln(µ/Q) = 1 + ε ln(µ/Q) +O(ε2) , (6.18)

we arrive at

R = 3nf

[
1 +

g2

4π2

(
µ

Q

)ε(
1 + g2

{
c1

1

ε
+ c2 + c1 ln(µ/Q) +O(ε)

}
+O(g4)

)]
. (6.19)

Now we renormalize by replacing the g with gphysZg and choosing

Zg = 1− g2c1

2ε
, (6.20)

i.e. such that it precisely cancels the pole. This defines the minimal substraction
or MS scheme, where minimal refers to the the fact that just the pole is being cancelled.
Thus, we find

R = 3nf

[
1 +

g2
phys

4π2

(
µ

Q

)ε (
1 + g2

phys {c2 + c1 ln(µ/Q) +O(ε)}+O(g4
phys)

)]
. (6.21)

Now we can take the limit ε→ 0 and, after renaming gphys → g for notational simplicity,
we have

R = 3nf

[
1 +

g2

4π2

(
1 + g2 {c2 + c1 ln(µ/Q)}+O(g4)

)]
. (6.22)

This works to all orders in g, so that we quite generally obtain a finite expression for

R = R(Q2/µ2, g2) (6.23)

of the type displayed above, with g now being the physical coupling.

We note that we did not renormalize any fields (e.g. Aµ → AµZ
1/2
A ). This would

not affect our result since the corresponding ZA-factors would precisely cancel between
vertices and external legs (where they induce a modifications of the Z-factors of LSZ).
Of course, we can not expect to get finite Green’s functions in this approach, but that’s
not important for us at the moment. If needed, it is clear how to extend the MS scheme
to Green’s functions.

Furthermore, we note that the MS scheme we just defined actually represents a
whole 1-parameter family of schemes, with the so-far arbitrary parameter being µ. The
observable R we just calculated appears to explicitly depend on this parameter, which
of course should not be the case.
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6.3 The β function

The resolution is simple: Our MS-scheme physical coupling g also depends on µ, in just
the right way for R to be µ-independent:

g = g(µ) such that 0 = µ2 d

dµ2
R(Q2/µ2, g2(µ)) . (6.24)

Note that it is common and useful to think in terms of the so-called logarithmic µ-
derivative,

µ2 d

dµ2
=

d

d ln(µ2)
. (6.25)

The above implies

0 = µ2

(
∂

∂µ2
+
dg2

dµ2
· ∂

∂g2

)
R(Q2/µ2, g2) (6.26)

or

µ2dg
2

µ2
= −

(
µ2 ∂

∂µ2
R

)/(
∂

∂g2
R

)
. (6.27)

The expression on the r.h. side formally depends on g2 and (Q2/µ2), but in fact the
(Q2/µ2)-dependence drops out. This must be the case since the l.h. side does not depend
on Q. Indeed, while we use a particular observable to determine the µ-dependence of g,
the latter is a universal quantity and it should not matter which obersvable we use. Thus,
the observable-specific quantity Q must disappear. The parameter µ always appears
together with Q and hence also disappears.

The upshot is that we have found a way to calculate (via a specific observable) the
universal quantity

µ
dg

dµ
≡ β(g) , (6.28)

the so-called β-function in the minimal subtraction scheme. In our concrete example we
have

dg2

d lnµ2
= −3nfc1g

4/(4π)2 +O(g6)

3nf/(4π2) +O(g2)
, (6.29)

and hence
β(g) = −c1

2
g3 . (6.30)

It is important to remember that we must always work consistently to a given order in
perturbation theory to make sure that the Q2-dependence of the underlying observable
drops out. It is also worth noting that, once the fundamentals are clear, we do not need
to pay much attention to R or any other observable: Indeed, the leading-order β-function
coefficient is just the coefficient of the leading ε-pole in Zg.

Jumping ahead, we note that for an SU(Nc) gauge theory with Nf flavors one finds

β(g) = − g3

16π2

(
11

3
Nc −

2

3
Nf

)
. (6.31)
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Recall that in QFT I we derived

β(e) =
e3

12π2
, (6.32)

for QED with just the electron running in the loop. As a simple excercise, try to under-
stand (6.32) as a ‘limit’ of (6.31) without doing any calculation. We also recall that the
leading-order β-function is universal, i.e. the results in other schemes and even that for
the bare coupling as a function of the cutoff Λ agree.

In practice, we can only get a fixed-order result for R and, to make the unknown
higher orders as small as possible we must avoid large logarithms. Thus, we choose µ = Q
and use

R = R(1, g2(Q2)) (6.33)

to compare with experiment. In fact, for this very reason one uses g = g(s) if one has a
leading-order result for some observable (e.g. a cross-section) depending on a single mass
scale

√
s.

We also note that the true expansion parameter is actually not g or g2 but

g2

16π2
Nc ≡

αs
4π
Nc , (6.34)

since we get further factors Nc at each higher-loop level as well as further ‘loop suppres-
sion factors’ 1/(16π2) with each new loop. To understand the last point, note that∫

d4k

(2π)4
=

∫
k3 dk V ol(S3)

(2π)4
=

1

16π2

∫
k2 d(k2) , (6.35)

where we used V ol(S3) = 2π2.

Finally, we can think of determining αs(µ
2) by solving the renormalization group

equation (6.28). The result is

αs(µ
2) ∼ 1

lnµ2/Λ2
QCD

, (6.36)

with ΛQCD being the integration constant and the normalization changing (in the sim-
plest approximation in steps) with growing energy due to changing Nf . It is known from
LEP (the predecessor of LHC at CERN) that αs(mz) ' 0.12, which implies ΛQCD ' 200
MeV. The behavior αs → 0 at µ→∞ is famously known as asymptotic freedom.

As an important generalization of this section, we note that the crucial relation(
µ
∂

∂µ
+ β(g)

∂

∂g

)
R(g,Q/µ) = 0 (6.37)

generalizes to the Callen-Symanzik equation for Green’s function:(
µ
∂

∂µ
+ β(g)

∂

∂g
+ nγ(g)

)
G(n)({xi}, g, µ) = 0 . (6.38)
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In this renormalization group equation, a term depending on the field-renormalization
appears:

γ ≡ −µ ∂

∂µ
δZϕ . (6.39)

Note that, for simplicity, we have here returned to the simplest case of a theory with
just one real scalar field. Also, in the above µ is interpreted as the renormalization
scale of some general renormalization procedure. Specifically in dim. reg. with minimal
subtraction, a little more work has to be invested since, naively, the δZ’s contain just the
pole and no µ dependence. However, everything works out OK is one takes into account
how the dimension of the fields changes in d 6= 4.

6.4 The 1-loop β-function of QCD

6.4.1 General strategy

The explicit calculation of the β-function is unavoidably somewhat technical and we will
follow closely the rather detailed presentation of [1]. It is more convenient not to discuss
a particular observable but to renormalize the lagrangian. This involves renormalizing
fields and the gauge-fixing parameter. We start with Aµ and the gauge parameter ξ,

(A0)aµ = Z
1/2
3 Aaµ , ξ0 = Zξξ . (6.40)

We will demonstrate that we must demand Z3 = Zξ since it is know from QCD Ward
identities (or Slavnov-Taylor identities)14 that the gluon self-energy is transverse. Thus,
our counterterm should be transverse as well, which will only be the case if the above
relation holds.

Indeed, the counterterm follows from (suppressing the gauge index)

S ⊃ −1

2

∫
k

(A0)µ

(
k2ηµν − kµkν

(
1− 1

ξ0

))
(A0)ν (6.41)

⊃ −1

2

∫
k

Z3Aµ

(
k2ηµν − kµkν

(
1− 1

Zξξ

))
Aν . (6.42)

If Zξ = Z3 = 1 + δZ3, this gives

S ⊃ −1

2

∫
k

[
Aµ

(
k2ηµν − kµkν

(
1− 1

ξ

))
Aν − δZ3Aµ

(
k2ηµν − kµkν

)
Aν

]
, (6.43)

such that the term proportional to δZ3 vanishes if Aµ(k) ∼ kµ, which is what we call
transverse.

In addition, we have

ψ0 = Z
1/2
2 ψ , c0 = Z1/2

c c , m0 = Zmm, g0 = Zgg . (6.44)

14While these are in general more complicated than in QED, the crucial feature of a transverse
self-energy survives.
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Plugging all of this into the lagrangian and separating all the terms involving δZs, we
get the counterterm lagrangian. Among others, it involves the counterterm for the
fermion-fermion-gluon vertex,

∼ g ψ̄ /Aψ (Z2Z
1/2
3 Zg − 1) ≡ g ψ̄ /Aψ (Z1,F − 1) , (6.45)

which implies that
Zg = Z1,FZ

−1
2 Z

−1/2
3 . (6.46)

Thus, to find Zg we need to calculate the counterterms δZ1,F , δZ2 and δZ3 which make the
fermion-fermion-gluon vertex, the fermion self-energy and the gluon self-energy finite.15

As in QED, we can then follow the logic (in cutoff notation) that

β(g) =
d

d ln Λ
g0 = g

d

d ln Λ
(Zg) . (6.47)

Recalling that the ln Λ-term corresponds precisely to the coefficient of the ε-pole, all we
need to do is to extract the coefficients of 1/ε from Z1,F , Z

−1
2 and Z

1/2
3 , to add them and

to multiply by g. The result will be the leading order β-function. This of course precisely
corresponds to what we saw in (6.20) and (6.30).

6.4.2 Gluon self energy

Let us start with the gluon self energy, i.e. with Z3. We already saw the corresponding
lagrangian term in Fourier space above. It gives rise to the counterterm Feynman rule of
Fig. 23. This conterterm has to cancel the divergence in

iΠ
(1)
µν, ab = i(q2ηµν − qµqν) Π(1)(q

2)δab , (6.48)

where on the r.h. side we assumed transversality, as discussed earlier. For the separate
diagrams see Fig. 24. The quantity we need for our β-function calculation is

δZ3 = Π(1)(0)
∣∣∣
1
ε
–term

. (6.49)

Figure 23: Couterterm Feynman rule for gluon self energy.

15Note that in QED we similarly had Ze = Z1Z
−1
2 Z

1/2
3 , with Z1 ≡ Z1,F since we do not need to

specify which vertex we are talking about. However, since we also knew that Z1 = Z2, it was sufficient
to calculate the photon self-energy or vacuum palarization to fix Z3.
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Figure 24: Gluon self energy.

a) Fermion loop

Let us now proceed diagram by diagram. Contribution a) is as in QED, except for the
group-theoretic factor 1/2 that comes from

T aijT
b
ji = tr(T aT b) =

1

2
δab . (6.50)

For Nf flavors we hence obtain

Π
a)
(1), QED = − e2

6π2ε
⇒ Π

a)
(1) = − g

2Nf

12π2ε
. (6.51)

Before carrying on, it is useful to think about this a bit more generally: The fermions
could transform in any representation, called r, generated by matrices

(T ar )ij with tr(T ar T
b
r ) = C(r)δab ≡ T (r)δab , (6.52)

where both the notations C(r) and T (r) can be found in the literature. What is crucial
is that the matrices T ar must be normalized such that they satisfy precisely the same
commutation relations as the matrices

T aF ≡ T a ≡ λa

2
(6.53)

of the fundamental representation. The quantity C(r), which is group-theoretically re-
lated to the ‘Dynkin index’ is then characteristic of the representation r. Our specific
factor 1/2 arises as a result of

C(F ) =
1

2
. (6.54)

With this notation, the Dirac fermion loop contribution in its most general form reads

Ia) = i(q2ηµν − qµqν)δab
(
−g

2NfC(r)

6π2ε

)
. (6.55)

b) Gluon loop with 3-vertices

Next, we evaluate contribution b) is Feynman gauge, ξ = 1. First, let us recall the
3-gluon-vertex Feynman rule, cf. Fig 25.
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Figure 25: Feynman rule for 3-gluon vertex.

This rule gives rise to the gluon-loop diagram in Fig. 26 and the corresponding
analytical expression. We note that, in contrast to the scalar λϕ3/3! term, there is no
1/3! factor in the corresponding term of the interaction lagrangian. Hence, one expects
3! terms to arise in the analytical expression. This does indeed happen in the form of
the two terms coming with k1 and k2 and the additional terms from cyclic permutations.
Multiplication of the two vertices the gives 36 terms, as above. The prefactor (1/2) is
a symmetry factor coming from the symmetry of the diagram under reflection about a
horizontal axis. It arises in the very same manner as the corresponding factor (1/2) in
the analogous diagram in λϕ3 theory.

Figure 26: Gluon-self-energy diagram based on 3-gluon vertices. The way in which the
different terms arise from cyclic permutations is emphasized.

Finally, let us turn to the group theoretic factor. One can show that

facdf bcd ∼ δab . (6.56)

The reason is basically that one expects an ‘invariant tensor’ with two adjoint indices
and δab is the only candidate.

To understand this structure in more general terms, think of (−ifacd) as of an
(N2 − 1)× (N2 − 1) matrix. This is a generator of the adjoint representation of SU(N):

−ifacd = (−ifa)cd ≡ (T aA)cd . (6.57)
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This interpretation should be self-evident if you recall what we said when discussing how
the covariant derivative acts on ghost fields (see also problems). We then have

facdf bcd = (−ifa)cd(−if b)dc = tr(T aAT
b
A) = C(A)δab , (6.58)

where we used total antisymmetry of the structure constants and our earlier definition
of C(r).

Alternatively, we can rewrite our color factor as

facdf bcd = fdacfdbc = (−ifd)ac(−ifd)cb = (T dAT
d
A)ab ≡ C2(A)δab . (6.59)

This is a special case of the more general definition of a parameter C2(r) which exists
for any irreducible representation r:

(T ar T
a
r )ij ≡ C2(r)δij . (6.60)

The operator
T ar T

a
r ≡ C2(r)1 (6.61)

is called the ‘quadratic Casimir operator’ of the representation r. Somewhat confusingly,
this name is then often also used for the parameter C2(r). Note that, as before, the fact
that the r.h. side of (6.60) is proportional to δij follows because this is the only invariant
tensor available.

In the course of our discussion, we have just proved that

C2(A) = C(A) . (6.62)

This is a special case of the more general relation

d(r)C2(r) = d(A)C(r) , (6.63)

where d(r) is the dimension of the representation r. The proof is an easy excercise.

Finally, we state without proof that for SU(N)

C2(A) = C(A) = N , (6.64)

which is hence our color factor associated with diagram b). For more group-theoretic
details see [1] or any of the various books on group and representation theory (e.g. [21]).

We now turn to the evaluation of the loop integral using the idea of the ‘Feynman
parameter’ introduced in the context of QED:

1

p2
· 1

(p+ q)2
=

∫ 1

0

dx
1

[(1− x)p2 + x(p+ q)2]2
=

∫ 1

0

dx
1

(k2 −∆)2
, (6.65)

where
k ≡ p+ xq and ∆ ≡ −x(1− x)q2 . (6.66)

The integration variable is now changed,
∫
ddp→

∫
ddk.
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Let us now turn to the numerator, i.e. the product of the two big curly brackets in
Fig. 26 with open indices µ, ν. It is straightforward to rewrite this structure in terms of
k, q and x. Since it appears under an SO(1, 3) symmetric k-integral,∫

ddk
1

(k2 −∆)2

[
· · ·
]
, (6.67)

any term linear in k will vanish. Furthermore, any term quadratic in k will give a con-
tribution ∼ ηµν , and the prefactor is easy to determine. Indeed, by SO(1, 3) symmetry∫

ddk f(k2) kµkν = a ηµν , (6.68)

and hence ∫
ddk f(k2) k2 = a · d . (6.69)

Thus,

a =

∫
ddk f(k2)

k2

d
, (6.70)

and we can use the substitution

kµkν → k2

d
ηµν (6.71)

inside the square bracket in (6.67). Doing all this, we have (with the curly brackets
defined in Fig. 26)∫

ddp

(2π)d
· 1

p2(p+ q)2
·
{
· · ·µ

}
·
{
· · ·ν

}
= (6.72)

=

∫ 1

0

dx

∫
ddk

(2π)d
· 1

(k2 −∆)2
·

{
− ηµνk26

(
1− 1

d

)

−ηµνq2
[
(2− x)2 + (1 + x)2

]
+ qµqν

[
(2− d)(1− 2x)2 + 2(1 + x)(2− x)

]}
.

We now Wick-rotate, k0 → ik0, and subsequently apply the more generally useful for-
mulae ∫

ddk

(2π)d
· 1

(k2 + ∆)n
=

1

(4π)d/2
·

Γ
(
n− d

2

)
Γ(n)

(
1

∆

)n− d
2

(6.73)

and ∫
ddk

(2π)d
· k2

(k2 + ∆)n
=

1

(4π)d/2
· d

2
·

Γ
(
n− d

2
− 1
)

Γ(n)

(
1

∆

)n− d
2
−1

. (6.74)

The reader may recall that we already used such integrals, in the special case n = 2,
in QED. Here, we will provide some more calculational detail and mathematical back-
ground:
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First, recall that (in euclidean signature)∫
ddk =

∫
dΩd−1

∫ ∞
0

kd−1dk = V ol(Sd−1)

∫ ∞
0

kd−1dk . (6.75)

Next, write ∫ ∞
0

kd−1dk

(k2 + ∆)n
=

1

2

∫ ∞
0

d(k2)
(k2)d/2−1

(k2 + ∆)n
= · · · , (6.76)

which, after the substitutions

(k2 + ∆) ≡ ∆

y
, d(k2) = −∆

y2
dy , k2 = ∆ ·

(
1

y
− 1

)
=

∆ · (1− y)

y
, (6.77)

becomes

· · · = 1

2

(
1

∆

)n−d/2 ∫ 1

0

dy yn−1−d/2(1− y)d/2−1 . (6.78)

We now use the definition of the Beta-function of mathematics (not to be confused
with the β-function of QFT),∫ 1

0

dy ya−1(1− y)b−1 ≡ B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, (6.79)

where the second equality is an important and useful identity. Of course, the expression
in terms of Γ functions could also have been derived directly, by evaluating the integral
explicitly for integer a, b and analytically continuing.

The integral of (6.74) is now also easily done writing the k2 in the numerator as
(k2 + ∆)−∆. Putting all of the above together, diagram b) of Fig. 24 gives

Ib) =
ig2

(4π)d/2
C2(A) δab

∫ 1

0

dx
1

∆2−d/2 ·

{
Γ

(
1− d

2

)
ηµνq2

[
3

2
(d− 1)x(1− x)

]
+

+Γ

(
2− d

2

)
ηµνq2

[
1

2
(2− x)2 +

1

2
(1 + x)2

]
(6.80)

−Γ

(
2− d

2

)
qµqν

[(
1− d

2

)
(1− 2x)2 + (1 + x)(2− x)

]}
.

Let us postpone further evaluation and turn to the other gluon loop:

c) Gluon loop – tadpole

Given what we have done so far, it is straightforward (in fact, much simpler than for
diagram b) ) to bring this to the form

Ic) = −g2C2(A)δab
∫

ddp

(2π)d
· 1

p2
· ηµν(d− 1) . (6.81)
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Figure 27: Self-energy of λϕ4 theory – tadpole diagram.

The result is consistent with the expectation from Fig. 24 that, in this contribution,
the external momentum q does not flow through the loop (with loop momentum p). We
immediately recognize the quadratic divergence at d = 4, which is completely analogous
to that of λϕ4 theory (cf. Fig. 27).

Here, we do not expect such divergences since we do not have a dimensionful la-
grangian parameter (such as the scalar mass-squared term) which could absorb a Λ2-
contribution. Thus, we expect to see that other diagrams cancel the quadratic divergence.

We also observe that, in dimensional regularization, Ic) ≡ 0 since, more generally,∫
ddp

(p2)n
≡ 0 . (6.82)

The latter is obvious since, under the substitution p → αp, this integral acquires an
overall factor αd−2n, which is only consistent if the integral evaluates to zero.

The presence of a quadratic divergence and the zero value are not in contradiction.
Indeed, a quadratic divergence in d = 4 corresponds to a log-divergence in d = 2, implying
a pole in ε. But in d = 2 we also have an infrared divergence (a divergence at p2 → 0),
i.e.

d→ 2 :

∫
d2−εp

p2
∼ 1

ε
− 1

ε
= 0 . (6.83)

While it is thus completely consistent to set Ic) to zero, it will be instructive to separate
IR and UV divergence and see the cancellation of the latter explicitly. This is achieved
by rewriting the integrand as

1

p2
=

(p+ p)2

p2(p+ q)2
, (6.84)

introducing a Feynman parameter x in complete analogy to diagram b), and performing
the p-integration:

Ic) =
ig2

(4π)d/2
C2(A)δab

∫ 1

0

dx

∆2−d/2 · η
µν · q2 × (6.85)

×
{
−Γ

(
1− d

2

)
1

2
d(d− 1)x(1− x)− Γ

(
2− d

2

)
(d− 1)(1− x)2

}
,

where, as before,
∆ = −x(1− x)q2 . (6.86)

We see that the first and second Γ functions provide the expected poles at d = 2 (corre-
sponding to the quadratic divergence at d = 4) and the pole at d = 4 (the log-divergence).
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The IR-divergence now hides in the divergence at x = 0. Indeed, the term multiplying
Γ(2− d/2) is non-vanishing at x→ 0, such that∫ 1

0

dx

[−q2(x(1− x)]2−d/2

∣∣∣∣∣
d=2

⊃
∫

0

dx

x
. (6.87)

d) Ghost loop

Nothing conceptually new happens, although it may be worthwhile recalling the factor
(−1) coming with every fermion loop:

Id) = (−1)

∫
ddp

(2π)d
· i
p2
· i

(p+ q)2
· g2fdacf cbd(p+ q)µpν (6.88)

=
ig2

(4π)d/2
C2(A)δab

∫ 1

0

dx

∆2−d/2 × (6.89)

×
{
−Γ

(
1− d

2

)
ηµνq2 1

2
x(1− x) + Γ

(
2− d

2

)
qµqνx(1− x)

}
. (6.90)

Combining the diagrams

Let us first combine the coefficients of Γ(1−d/2) in diagrams b), c) and d). All functional
dependence except that on the number of dimensions d is the same, such that one arrives
at

Ib) + Ic) + Id)

∣∣∣
Γ(1−d/2)

∼ (3d− 3− d2 + d− 1) = −2

(
1− d

2

)
(2− d) . (6.91)

We find a factor (1 − d/2) which cancels the pole 1/(1 − d/2) of the Γ function. Thus,
indeed, there is no quadratic divergence in d = 4.

Using the freedom to exchange

x ↔ (1− x) (6.92)

in any term in the numerator one finds, after some algebra,

Ib) + Ic) + Id) =
ig2

(4π)d/2
C2(A)δab

∫ 1

0

dx
Γ(2− d/2)

∆2−d/2 ·
(
ηµνq2 − qµqν

)
× (6.93)

×
[(

1− d

2

)
(1− 2x)2 + 2

]
.

This can be fully evaluated in terms of Γ functions (cf. Itzykson/Zuber, [12]), for generic
d. We will limit ourselves to extracting the pole,16 which is easy since

∆2−d/2 → 1 at d→ 4 . (6.94)

16To get the finite terms right, one expands

∆−ε/2 = 1− ε

2
ln[−q2x(1− x)] + · · ·

before doing the x-integration.
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At this point, we include the fermion loop diagram Ia) and recall that, according to

Fig. 24, we have now obtained Π
(1)
µν (q2). This is related to Π(1)(q

2) and eventually to δZ3.
Thus, we find

δZ3 = Π(1)(0)
∣∣∣
1/ε-part

= −g
2Nf

6π2ε
C(r)− g2

(4π)2

(
−5

3

)
C2(A)Γ

(
2− d

2

)
+ · · ·

∣∣∣∣∣
1/ε-part

= − 2g2

16π2ε

[
4

3
NfC(r)− 5

3
C2(A)

]
, (6.95)

where we used

Γ

(
2− d

2

)
=

1

2− d/2
+ finite =

2

ε
+ finite . (6.96)

In the last expression for δZ3, we clearly see that by replacing C(r) with unity we would
recover the vacuum polarization effect of QED. In QED, this is all that contributes to
the β function. Also, we see that an opposite-sign effect proportional to C2(A) arises
due to the non-abelian nature of our theory. In fact, its coefficient 5/3 is going to be
enhanced to 11/3 by δZ2 and δZ1,F .

6.4.3 Fermion self energy

We only need the fermion self energy, cf. Fig. 28, to determine δZ2. The corresponding
analytical expression reads

IF = (ig)2

∫
ddp

(2π)d
γµT a

i

/p− /k
γµT

a (−i)
p2

. (6.97)

Evaluating this is a straightforward excercise in γ-matrix algebra and loop integrals. One
also needs to use

(T aT a)ij = C2(r)δij . (6.98)

Finally, one needs to write down the corresponding counterterm diagram proportional
to δZ2 and demand cancellation of the divergence. This gives

δZ2 = − g2

16π2
· 2

ε
· C2(r) . (6.99)

Figure 28: Fermion self-energy.
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6.4.4 Gluon-fermion-fermion vertex

The relevant diagrams, let us call them A and B, are shown in Fig. 29. Their divergence
has to be cancelled by the counterterm

L ⊃ i(Z1,F − 1)ψ̄ig /Aψ = −δZ1,F ψ̄g /Aψ . (6.100)

Straightforwardly applying the Feynman rules gives

IA = g3

∫
ddp

(2π)d
T bT aT bγν

1

/p+ /k
′γ
µ 1

/p+ /k
γν ·

1

p2
. (6.101)

There is no quadratic divergence. To extract the log-divergence, it will be sufficient to
evaluate the diagram at k = k′ = 0.

Figure 29: The two diagrams, referred to as A and B in the text, contributing to the
vertex.

The most interesting part of the calculation is the group theory factor:

T bT aT b = T bT bT a + T b[T a, T b] = C2(r)T a + T bifabcT c . (6.102)

The second term can be further rewritten as

ifabc
1

2
[T b, T c] =

1

2
ifabcif bcdT d =

1

2
(−C(A))δadT d = −1

2
C2(A)T a , (6.103)

such that one eventually finds

T bT aT b =

[
C2(r)− 1

2
C2(A)

]
T a . (6.104)

Note that the color structure of the tree-level vertex is, of course, simply T a. Thus, our
result is consistent with multiplicative renormalization.

We also have ∫
ddp

(2π)d
·
γν/pγµ/pγν

(p2)3
=

∫
ddp

(2π)dd
· γ

νγργµγργν
(p2)2

. (6.105)

Here we used the substitution

pρpσ → p2η
ρσ

d
, (6.106)

78



which is allowed under a Lorentz-invariant p-integral. Doing the γ algebra and extracting
the pole is now straightforward. One need not be concerned that the last inegral also
appears to have an IR divergence – the latter is just an artifact of setting k and k′ to
zero.

Diagram B is evaluated in complete analogy - we leave it as an excercise. The most
interesting part is again the color factor,

fabcT bT c =
1

2
fabcif bcdT d =

i

2
C2(A)T a . (6.107)

Combining A and B and requiring the overall (1/ε) term to be cancelled, one obtains

δZ1,F = − g2

16π2
· 2

ε

(
C2(r) + C2(A)

)
. (6.108)

6.4.5 Summary

Finally, recall that
Zg = Z1,FZ

−1
2 Z

−1/2
3 (6.109)

and hence

β(g) = gZg

∣∣∣
coeff. of (1/ε)

= g

(
−1

2
δZ3 − δZ2 + δZ1,F

) ∣∣∣
coeff. of (1/ε)

=
g3

16π2

( [
4

3
NfC(r)− 5

3
C2(A)

]
+

[
2C2(r)

]
+

[
2C2(r)− 2C2(A)

] )
=

g3

16π2

(
4

3
NfC(r)− 11

3
C2(A)

)
. (6.110)

This is a famous formula which, in particular, implies that non-abelian gauge theories
are asymptotically free as long as there is not too much matter.

It may be the right moment to recall how we arrived at this result at the conceptual
level: Quite generally, we have a renormalization scale M and a cutoff scale Λ, such that

gbare(Λ) = Zg(Λ/M)gphys.(M) (6.111)

and

β(gphys.) =
d

d lnM
gphys.(M) . (6.112)

This last derivative can be rewritten as

d

d lnM
gphys.(M) =

d

d lnM
Z−1
g (Λ/M) gbare(Λ) = − d

d ln Λ

(
Z−1
g (Λ/M)

)
gbare(Λ)

=
dZg(Λ/M)

d ln Λ
Z−2
g (Λ/M) gbare(Λ) ' dZg(Λ/M)

d ln Λ
gphys.(M) , (6.113)

where the last simplification is only valid at leading order in g.
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Now, specifically in dim. reg., M is identified with µ and

dZg(Λ/M)

d ln Λ
= δZg

∣∣∣
coeff. of (1/ε)

(6.114)

in the MS scheme at leading order. This can be extended to higher orders, where higher
poles in ε appear and a more complicated µ-dependence arises from expanding µε to
higher order in ε. We will not pursue this.

As a concluding remark, we note that it is often useful to visualize the β function
of theory in diagrams such as that of Fig. 30. The arrows indicate in which direction
the coupling ‘flows’ with growing µ. Zeros of the β function are called ‘fixed points’ for
obvious reasons.

Figure 30: Schematic illustration of the β function of QCD inside the so-called ‘conformal
window’. The change of sign at larger g can arise dur to the ∼ g5 term in β(g) for
appropriately chosen Nc and Nf . See problems.

7 Operator product expansion and its simplest ap-

plication in QCD

The operator product expansion (OPE) is a very powerful tool which is useful in many
QFTs. It dates back to the work of Wilson in 1969 and treats the limit in which the
space-time arguments of two local operators converge ((x−y)→ 0):

A(x)B(x) ∼
∑
C

FAB
C (x− y) · C(y) . (7.1)

The non-trivial point is that, on the r.h. side, all possible divergences arising in this limit
reside in the complex coefficients F (x − y) while the operators C are well-defined and
finite in this limit. The OPE has historically been very important in QCD, which is still
its most important application in the realm of experimentally accessible particle physics.
However, it is also absolutely essential in string theory, where it is applied to the 2d
worldsheet QFT (more precisely a CFT) describing the embedding of the string in the
so-called target space. Moreover, it is crucial in the study many non-perturbative QFTs,
especially CFTs, also outside d = 2.
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7.1 e+e− to hadrons at leading order (LO)

Before we can develop and apply the OPE, we need to gain some basic physical un-
derstanding of the process that will serve as our main example application. This is also
worthwhile in itself.

Recall our calculation of e+e− → µ+µ− in QFT I, cf. Fig. 31, which gave the result

dσ

dΩ
=
α2
em

4s
(1 + cos2 θ) . (7.2)

From this, the total cross section follows by applying∫
dΩ · · · =

∫
dϕ sin θ dθ · · · = 2π

∫ 1

−1

d cos θ · · · , (7.3)

i.e.

σ =
2πα2

em

4s

∫ 1

−1

dx (1 + x2) =
4πα2

em

3s
. (7.4)

Figure 31: Diagram for e+e− → µ+µ−.

For e+e− → q q̄ (cf. Fig. 32), the relevant part of the lagrangian is

L ⊃
∑
f

q̄f (i /D −mf )qf ⊃
∑
f

q̄f (−eQf /Aγ)qf , (7.5)

where it is crucial to remember that /D contains the SU(3), SU(2)L and U(1)Y gauge
connection in the full theory. Here, we may assume that the electroweak symmetry is
already broken, SU(2)L × U(1)Y → U(1)em and we need only SU(3) and U(1)em. At
tree level, only the latter is relevant. Nevertheless, we need to remember that we have
suppressed the color index and, actually, qf → qf,i with i ∈ {1, 2, 3}. It follows that

σe+e−→q q̄ = σe+e−→µ+µ− · 3
∑

f , mf�s

Q2
f = 3 · 4πα2

em

3s
·
∑

f , mf�s

Q2
f . (7.6)

We also need to remember that Qu,c,t = 2/3 and Qd,s,b = −1/3 and that we must stay
below 100 GeV unless we want to also include the Z boson contribution.

All of this of course also works if we keep the cross section differential in θ and ϕ.
The corresponding observable is the angular distribution of two jets, cf. Fig. 33.
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Figure 32: Diagram for e+e− → q q̄.

Figure 33: Two hadronic jets from e+e− → q q̄.

7.2 e+e− → hadrons at next-to-leading order (NLO)

The relevant diagrams, shown in Fig. 34, fall into two categories – virtual and real
corrections. Note that, because αem � αs, we ignore QED corrections. Hence, there are
no loops or real corrections (i.e. corrections associated with the radiation of extra real
particles) attached to the incoming electron and positron. The correction to the total
cross section arising from the sum of all QCD corrections given symbolically in Fig. 34
is finite. This is non-trivial and deserves some discussion.

Figure 34: NLO corrections (virtual + real) to e+e− → q q̄.

First, we recall that we already explained the UV finiteness in Sect. 6.2. As a re-
minder, the argument was that the LO ‘R-ratio’ (of e+e− → hadrons and e+e− → µ+µ−)
was just a number and hence unable to absorb a divergence. Without referring to R, we
can also simply argue that the LO result depends on only on αem. But the LO renor-
malization of αem is due exclusively to the vacuum polarization diagram, Fig. 35. The
latter knows about αem and the electromagnetic charges of all light particles, but not
about αs. Hence, we can’t find a UV divergence in the above cross section. Technically,
the cancellation occurs between the two first diagrams in Fig. 34.

Next, we turn to the infrared or, in more detail, soft and collinear divergences. Soft
divergences are those associated with gluon momentum near zero. Collinear divergences
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Figure 35: Vacuum polarization. All sufficiently light charged particles run in the loop.

come from the region in the gluon-momentum integral when the latter is nearly parallel
to one of the outgoing quark momenta.17 Divergences of these types come from all three
diagrams in Fig. 34. In particular, divergences of the real correction come from the
relevant region of the phase space integral. They may be treated by evaluating the phase
space in d dimensions. This makes it possible to see explicitly how divergences cancel
between virtual and real corrections. Note also that divergences up to 1/ε2 arise since
the gluon can be soft and collinear at the same time.

It is worth remembering that the second diagram in Fig. 34 actually needs to be
resummed, i.e., many such fermion self energies are allowed to appear on the same
outgoing line. This leads to a factor Z on the external leg which, together with the explicit
Z−1/2 from LSZ gives a final overall factor Z1/2 per leg. Eventually, this corresponds to
one-half of the effect of the diagram in Fig. 36, with on-shell fermion momentum.

Figure 36: Quark self energy.

To understand in detail how the infrared divergences cancel between the three dif-
ferent types of terms goes beyond what we can do here. Suffice it to say that the ‘trick’
of writing an apparent dim.-reg. zero as

0 =
1

εUV
− 1

εIR
(7.7)

is useful. Here, of course, εUV = εIR, but labelleling the divergences differently helps
as a bookkeeping device. More details can be found in [1], in the book by El-
lis/Sterling/Webber [22] and in my lecture notes on ‘Perturvative QCD” in the ITP
library. The much simpler QED analogue of such infrared cancellations can be promoted
to an ‘all-orders finiteness result’, the Kinoshita-Lee-Nauenberg theorem, cf. [13].

For completeness, we recall the final formula,

σe+e−→hadrons = σe+e−→qq̄ ·
(

1 +
αs
π

+O(α2
s)
)
. (7.8)

We also note that, if one keeps the result differential in the angular variables of the
three outgoing particles, one predicts the 3-jet differential cross section (cf. Fig. 37).
The collinear divergences correspond to the region where the gluon jet becomes nearly

17Obviously, in our case a collinear divergences arises only if one takes mq = 0. This, however, is
appropriate in the present situation since, at least for the light quarks, mq � ΛQCD.
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parallel with one of the quark jets are now cut off by the so-called ‘jet-definitions’. For
example, the jet defintion will in general say that, if quark and gluon are ‘too’ parallel,
they have to be counted as a single jet. Then the 3-jet cross section above will become
finite but dependent on this jet definition.

Figure 37: 3-jet final state in detector.

This can be extended to NnLO with n > 1. Finiteness will continue to hold for the
fully inclusive cross section.

7.3 Operator product expansion

For this particular observable of e+e− → hadrons, the OPE represents a conceptually
‘cleaner’ approach. Indeed, while finiteness is reassuring, our loop and phase-space inte-
grations go over momentum regions which are definitely too soft to trust perturbative
QCD. (Recall that αs(µ) blows up at ΛQCD.) One may wonder whether the naive per-
turbative analysis outlined above is justified. As the OPE shows, this is indeed the case.

Let us first recall the optical theorem of QM. Adopting it to our notation, we have
an S-matrix S ≡ 1 + iT and, by unitarity,

1 = (1 + iT )†(1 + iT ) = 1 + iT − iT † + T †T . (7.9)

Making the indices of the matrix T explicit, we have

i(Ti′i − iT ∗ii′) =
∑
f

T ∗fi′Tfi . (7.10)

After setting i = i′, one finds

2ImTii =
∑
f

|Tfi|2 . (7.11)

Interpeting the r.h. side as a ’total cross’ section, we morally recognize the famous state-
ment that the imaginary part of the forward scattering amplitude is related to the total
cross section. Proper proofs in QM can be found in many textbooks and the generaliza-
tion to QFT is straightforward. The only addition to our naive ‘derivation’ is a proper
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treatment of plane-wave normalization and phase space (see e.g. [23]). The result, already
applied to our case of interest, reads

σtot(e
+e− → hadrons) =

1

s
ImM(e+e− → e+e−) . (7.12)

Crucially, on the r.h. side only hadronic intermediate states are allowed (since this is how
we defined our T before squaring), cf. Fig. 38.

Figure 38: Forward e+e− scattering with only hadronic intermediate states.

Explicitly, we have

iM = (−ie)2ū(k)γµv(k′)
−i
s

(
iΠµν

h (q)
)−i
s
v̄(k′)γνu(k) , (7.13)

where Πµν
h is the hadronic (i.e. quark-antiquark plus higher orders in αs) contribution to

the vacuum polarization. Using s = q2 = (k + k′)2 and

Πµν
h (q) ≡ (q2ηµν − qµqν)Πh(q

2) , (7.14)

one easily derives

σtot(e
+e− → hadrons) = −4παem

s
Im Πh(s) . (7.15)

The leading diagrams contributing to Πh are displayed in Fig. 39.

Figure 39: Leading diagrams contributing to Πh.

Now, all diagrams start with the two photons coupling to four quarks via the γq̄q-
vertex. Thus, the expectation value of two Aµ’s can be replaced by the expectation values
of two q̄q’s. The latter explicitly enter in the same combination as in the electromagnetic
current,

jµ =
∑
f

Qf q̄fγ
µqf . (7.16)

We can hence write

iΠµν
h (q) = −e2

∫
d4x eiqx〈0|Tjµ(x)jν(0)|0〉 . (7.17)
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The way in which the difference x of the space-time arguments of the currents is inte-
grated over comes from the definition of Πh(q) in Fourier space. To check the correctness
of our proposed identity, evaluate both sides at zeroth order in αs, i.e. at the order of
the first diagram in Fig. 39. It should then be clear that the identity continues to hold
also including more and more gluon and quark loops.

We are now finally ready to apply the operator product expansion. It states that
for two local operators A(x) and B(y) one has

A(x)B(y) ∼
∑
C

FAB
C (x− y) · C(y) , (7.18)

where the sum is over a suitable set of local operators C(y) and the coefficients F are
complex functions of the separation x − y of A and B. These functions are in general
singular in the limit x− y → 0. The symbol ‘∼’ means equality of to non-singular terms,
i.e. writing

f(x, y) ∼ g(x, y) (7.19)

is equivalent to the statement that

f(x, y)− g(x, y) is analytic at the point x = y . (7.20)

Thus, at the qualitative level, the OPE can be viewed as a Laurent expansion of A(x)B(y)
with operator-valued coefficients.18

Next, we focus on the behaviour of F as x−y → 0. In this limit, the high mass-scale
|x − y|−1 dominates any other mass parameter possibly present in the theory. Thus,
assuming that |x − y| is the only dimensionful parameter in the problem, we have by
dimensional analysis

FAB
C (x− y) '

(
# depending on A,B and C

)
· |x− y| [C]−[A]−[B] . (7.21)

Here [A], [B] and [C] are the mass-dimensions of the corresponding operators and the
power of |x− y| is assumed to be negative. We note that in perturbative QFTs or QFTs
defined by a lagrangian19 (and we limit ourselves to this class in the present course),
there is a distinguished type of local operators: the elementary fields ϕ, Aµ, ψ etc. We
think of A,B,C as built from such fields. Hence [C] grows with the complexity of C.
The most singular terms in the OPE are associated with the simplest C’s.

The OPE can be given a precise formulation (involving in particular the regulariza-
tion and the renormalization of the relevant operators) and then proven. We refer e.g.
to [12, 13] for details and only illustrate the issue.

18There is an ambiguity in the selection of operators C, similar to the basis-choice ambiguity one
encounters in the description of vector spaces. One particular option that one has and which we will
always use here is to always consider normal-ordered operators.

19As a side-remark, the OPE is also very useful in QFTs without a lagrangian. In such situations, the
operators appearing in the OPE become an essential part of the definition of the theory and the OPE
plays an even more central role.
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The fact that A(x)B(y) is singular at x = y is a generic feature of QFTs. The
simplest example is ϕ(x)ϕ(y) in a free scalar theory. We know that

〈0|Tϕ(x)ϕ(y)|0〉 =

∫
d4k

(2π)4
· e−ik(x−y)

k2 −m2 + iε
, (7.22)

which clearly shows the singularity at x−y = 0. If the theory is interacting, the propaga-
tor will receive loop corrections leading to additional divergences. In ‘nice’ theories (the
scalar in d = 4 is not a good example of this), the divergences will be logarithmic and
hence induce logarithmic corrections to the singular behaviour of the coefficients FAB

C :

1

|x− y|α
→ 1

|x− y|α
ln
(

(x− y)2µ2
)
. (7.23)

We now press ahead with our QCD application. Since we are only interested in the
vacuum expectation value, 〈0| · · · |0〉 of our jµjν operator product, we may restrict

∑
C

to Lorentz scalars. The simplest such operators (i.e. those with lowest mass dimension)
are 1, q̄q and trF 2. Hence

jµ(x)jν(0) ∼ C1
µν(x) · 1 + C q̄q

µν(x) · q̄q(0) + CF 2

µν (x) · trF 2(0) . (7.24)

Now, in the massless limit QCD has a so-called chiral symmetry, i.e. the action is
invariant under

q → eiγ
5αq . (7.25)

This follows from

q̄γµq →
(
eiγ

5αq
)†
γ0γµeiγ

5αq = q†e−iγ
5αγ0γµeiγ

5αq = q̄γµq , (7.26)

while the breaking by the mass term follows from

q̄q → q†e−iγ
5αγ0eiγ

5αq = q̄e2iγ5αq 6= q̄q . (7.27)

Thus, q̄q can appear in the OPE of jµjν only if m 6= 0.

On dimensional grounds we then have

C1
µν ∝ x−6 ; C q̄q

µν ∝ mx−2 ; CF 2

µν ∝ x−2 , (7.28)

where the symbol ‘∝’ means proportionality at small |x|. Fourier transforming and using
current conservation one finds

−e2

∫
d4x eiqxjµ(x)jν(0) ∼ −ie2(q2ηµν − qµqν) × (7.29)

×
{
C1(q2)1 + C q̄q(q2)mq̄q(0) + CF 2

(q2) trF 2(0) + · · ·
}

with

C1 ∝ 1 ; C q̄q ∝ CF 2 ∝ 1

(q2)2
(7.30)
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at large q2 by dimensional analysis. The exact prefactors of C1 etc. are defined by the
requirement that (7.29) holds.

Now we apply time ordering and appeal to the relation between the two-current-
correlator and Πµν

h . Factoring out the transverse tensor structure in qµ, this gives

Πh(q
2) ∼ −e2

[
C1(q2) + C q̄q(q2)m〈q̄q〉+ CF 2

(q2)〈trF 2〉+ · · ·
]
. (7.31)

We note that 〈q̄q〉 6= 0 even in the limit m → 0 since the chiral symmetry of QCD is
spontaneously broken in the vacuum. In other words, while Ĥ is invariant, the vacuum |0〉
is not. This is not in contradiction with our previous use of the chiral symmetry argument
since the OPE respects even symmetries which are spontaneously broken (cf. [13]).

At the level of principle, we are now almost done. Indeed, the (imaginary part of
the) the l.h. side of (7.31) gives our desired cross section. The expectation values on the
r.h. side are trivial (first term) or can be obtained from the lattice (or fitted the data).
The coefficients C can, and this is essential, be obtained in perturbation theory:

Indeed, we can ‘sandwich’ (7.29) not with the proper vacuum, but with any state we
like. For example, we can take the ‘perturbative’ vacuum of the free theory, i.e. the Fock
space vacuum. In this vacuum, only the unit operator contributes on the r.h. side. On
the l.h. side, no external lines except the two currents (i.e. the two photons) will appear
after evaluation in terms of Feynman diagrams. This is illustrated in Fig. 40, where we
also switched left and right and suppressed all prefactors.

Figure 40: Perturbative evaluation of the leading operator coefficient.

Similarly, we can take a one-quark or one-gluon state to sandwich (7.29), giving rise
to perturbative expressions for C q̄q and CF 2

respectively (cf. Fig. 41). Thus, once the
non-perturbative information about the expectation values of the operators is provided,
the calculation appears to be finished.

Figure 41: Perturbative evaluation of the subleading coefficients.

7.4 Analytic continuation

However, this is not the case for the following reason: We have seen in principle
how the OPE separated perturbatively calculable quantities from the unavoidable non-

88



perturbative input about the QCD vacuum. but we have not checked that the pertur-
bative parts are not after all secretly sensitive to non-perturbatively small-momentum
regions.

Figure 42: Leading perturbative diagram.

To check this, consider as an example the simplest diagram, cf. Fig. 42. Suppressing
the numerator structure, the relevant integral reads∫

d4k
1

(k2 + iε)((k + q)2 + iε)
. (7.32)

Since q2 > 0 in our case of interest, we can go to a frame where q = (q0,~0), finding the
following poles of the two propagators:

(1) k0 = ±
√
~k2 − iε ' ±(|~k| − iε′) (7.33)

and, analogously,

(2) k0 + q0 ' ±(|~k| − iε′) ⇒ k0 ' −q0 ± (|~k| − iε′) . (7.34)

The position of the poles is illustrated in Fig. 43. It is apparent that, for |~k| < q0, the
integration contour is ‘pinched’ between the poles in such a way that Wick rotation to
imaginary k0 is impossible. In physical terms this means that the on-shell region of the
quark propagators is important.

Figure 43: Position of poles in the complex k0 plane.

By contrast, if q2 < 0 we can choose a frame where q = (0, ~q). Now, while the first
pair of poles is as above, the second pair is at

k0 ' ±(|~k + ~q| − iε′) . (7.35)
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Hence, in this case the first and third quadrant are free of poles. Wick rotation is pos-
sible and the resulting euclidean integral is dominated by the energy scale Q2 = −q2.
Perturbation theory is then justified as long as Q2 � Λ2

QCD.

So let us now assume that we can evaluate Πh(q
2) at q2 large and negative using

perturbative QCD together with the expectation values 〈0|q̄q|0〉, 〈0|trF 2|0〉 etc. Does
that help us to determine σe+e−(q2) at large and positive q2? In fact, this can be achived
using the concept of the spectral density from Sect. 6 of QFT I. Recall that

〈Tϕ(x)ϕ(y)〉 =

∫ ∞
0

dm′2DF (x− y,m′2)σ(m′2) , (7.36)

or, in momentum space,

1

q2 −m2
0 − Π(q2)

=

∫ ∞
0

dm′2
1

q2 −m′2 + iε
σ(m′2) . (7.37)

The qualitative form of σ(q2) is illustrated in Fig. 44. It implies that (7.37) has the
pole structure shown in Fig. 45 (now ε is set to zero). In other words, the expression is
analytical in q2 except for poles and cuts on the real positive q2-axis. They correspond
to physical states that give a non-zero contribution if inserted between ϕ(x) and ϕ(y).

Figure 44: Spectral density of a scalar field theory.

Figure 45: Pole structure of the Fourier transform of the full propagator.

The crucial point is now that all of this, including the derivation presented in QFT I,
applies equally well to the time-ordered expectation value of two currents,

〈0|Tjµ(x)jν(y)|0〉 and hence to Πh(q
2) . (7.38)
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With the understanding that Πh(q
2) is an analytic function of q2 with poles and cuts

only on the real positive axis (as in Fig. 45), we can make progress as follows:

Consider the so-called ‘moments’ (with n ≥ 1) of our desired cross section,

In ≡
∫ ∞

0

ds

π

s σe=e−(s)

(s+Q2)n+1
= −4πα

∫
dq2

2πi
· 1

(q2 +Q2)n+1
· 2iIm Πh(q

2) . (7.39)

This is somewhat reminiscent of the well-known concept of Mellin-transforms and Mellin-
moments.

Now we note that, according (7.37), the cut or ‘branch cut’ (you are familiar with
this feature of complex functions from the logarithm or the square root) can be thought
of as a superposition of poles. For a pole, we have

1

(q2 + i∆)−m′2
=

[
1

(q2 − i∆)−m′2

]∗
, (7.40)

for real q2 and ∆. In other words, approaching the real axis from above or below is
related to complex conjugation. Hence, 2iImΠh(q

2) is just the difference of the values of
Πh above and below the cut, the so-called ‘disconituity’. We can write

In = −4πα

∫
dq2

2πi
· 1

(q2 +Q2)n+1
Discontinuity

{
Πh(q

2)
}
, . (7.41)

Next, the integral of the discontinuity can is equivalent to the integral above the cut
minus the integral below the cut. The latter contour can be completed can be closed at
infinity (cf. Fig. 46) to give

In = −4πα

∮
dq2

2πi
· 1

(q2 +Q2)n+1
· Πh(q

2) = −4παRes.

{
Πh(q

2)

(q2 +Q2)n+1

}
q2=−Q2

. (7.42)

Expanding Πh in a Taylor series,

Πh(q
2) = Πh(−Q2) + (q2 +Q2)

d

dq2
Πh(q

2)
∣∣∣
q2=−Q2

+ · · · , (7.43)

we see that In is only sensitive to the nth term:

In = −4πα

n!

(
d

dq2

)n
Πh(q

2)
∣∣∣
q2=−Q2

. (7.44)

Crucially, in this last expression Πh appears only evaluated at negative q2, i.e. in the
regime where we can Wick rotate and where large Euclidean momentum corresponds to
small euclidean distance (between the two currents). Hence, we apply (7.31) and have a
clean, first principles prescription for calculating the moments of the cross section σe+e− .
The structure of the result is

In =

∫ ∞
0

ds
sσe+e−(s)

(s+Q2)n+1
=

4πα

n(Q2)n
· ΣfQ

2
f +O(αs(Q

2)) +O
(

1

(Q2)3

)
. (7.45)
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Figure 46: Closing the integral around the cut at infinity.

The first two terms on the r.h. side are just the moments of the LO result and of the αs
corrections. The last term are so called power corrections associated with higher terms
in the OPE and sensitive to nonperturbative physics. Our last result is also known as the
ITEP sum rule (Voloshin/Vainshtein/Novikov/Shifman ’78). Extracting σe+e−(s) from
the moments is still non-trivial, but discussing this goes beyond what we can do here.

8 Parton distribution functions (PDFs)

8.1 Factorization of hard processes in hadronic collisions

In the last section, we learned that, up to corrections of relative size ∼ 1/(Q2)2, the
cross section σ(e+e− → hadrons) is perturbatively calculable in spite of the relevant
physics obviously being in part hadronic or ‘soft’. The key is the ‘hard’ scale Q2 and the
‘inclusiveness’ of the observable in question. (Indeed, the outcome would be much less
favorable if we asked, e.g., for the number ratio between pions and ρ-mesons in the final
state of this process.)

Our example was exceptionally nice in the sense that the suppression of non-
perturbative physics was by 1/(Q2)2, but more generally the perturbative calculability
up to 1/Q2 corrections is expected for sufficiently inclusive observables with non-hadronic
initial state.

However, sometimes one is interested in hard processes with hadronic initital state.
Just at this very moment, with the proton-proton-collider LHC running and searching
or new physics at the highest energy scales, this is a particularly timely issue to discuss.

The classical example is the Drell-Yan process, i.e. the production of an e+e− pair
in a hadron-hadron collision. The LO diagram at the so-called partonic level is shown in
Fig. 47. It may be thought of as the ’hard’ part of the more complete process shown in
Fig. 48. Here, we collide two protons but focus only on two quarks taken from each of the
protons. Those get involved in a hard (governed by an energy scale Q� ΛQCD) process
for which we envision a perturbative order-by-order calculation using the smallness of
αs(Q

2) and possible further small couplings.

The key statement allowing us to draw Fig. 48 is that the cross section ‘factorizes‘,
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Figure 47: Leading partonic diagram for Drell-Yan process.

Figure 48: Pictorial representation of the factorization assumption.

i.e., it can be given as a convolution of PDFs fi and a partonic cross section:

σ =
∑
i,j

∫ 1

0

dx1

∫ 1

0

dx2 fi(x1, µ
2) fj(x2, µ

2) σ̂ij(k1, k2, αs(µ
2), Q2, µ2) . (8.1)

The PDF quantifies, e.g., the probability for finding, in a (highly relativistic) proton with
momentum p1, a quark or gluon with certain spin/polarization (specified by the index i)
and with momentum k1 = x1p1 (where x1 ∈ (0, 1)). The physical picture is that, at very
high resolution specified by 1/µ � 1/ΛQCD ∼ Rproton, a proton beam corresponds to a
beam of quarks and gluons with certain a certain distribution of momenta. The PDF
provides the translation between the respective luminosities. Clearly, we could modify
(8.1) to make both σ and σ̂ differential in some additonal final state variables (in addition
to Q) – the assumption is that factorizations still holds. What is more, the final state may
even contain hadronic jets – we still claim that (under certain very reasonable technical
assumptions, such as high p⊥) these do not interact with the so-called ‘proton-remnants’
and factorization continues to hold. Crucially, the PDFs are a feature of the hadron,
independent of σ̂.

Factorization can be promoted to a theorem an ‘proven’ (at a physics, not math
level of rigor). The relevant authors in this context are Collins, Soper, an Sterman (see
also [22, 24]). It holds only at leading order in 1/Q2. (This is sometimes referred to as
‘leading twist’, with higher terms – of the type discussed in the context of the OPE,
called ‘higher-twist’ terms. The terminology derives from the higher angular momentum
representations generally associated with higher-dimension operators.)

8.2 Alteralli-Parisi or DGLAP evolution

The appearance of the energy scale µ as an argument of the fi is non-obvious. To under-
stand this, recall that we calculate σ̂ in dimensional regularization, which is used for both
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the UV and IR divergences. (One could use two separate ε’s and separate µ’s for these
different types of divergences, but will not bother.) Now, while the IR (more precisely
soft and collinear) divergences cancelled among themselves in e+e− → hadrons, here
they cancel only if the full QFT description of the incoming hadrons as bound state of
quarks and gluons is taken into acccount. But in attempting to do work this out one nec-
essarily leaves the realm of perturbative QCD. Thus, the solution is to ‘make clean cut’
(actually, to interpret µ as providing such a cut) between non-perturbative information
about the hadron (fi) and the hard process (σ̂).

Some of the relevant diagrams in the Drell-Yan process are shown in Fig. 49. Focus on
the second diagram, where a one of the incoming quarks radiates a gluon before the hard
process. Clearly, one can not objectively say whether this radiation is part of the proton
dynamics or part of the hard scattering. Subjectively, this can be determined after the
so-called factorization scale µ is introduced in the course of dimensional regularization.20

Similarly, the exchange of the a soft or collinear gluon in the third diagram can be thought
of occurring before or after the partons ‘leave the proton’. Again, the in principle arbirary
scale µ provides the cut.

Figure 49: Some higher-order diagrams relevant for the DY process.

At the end, with the same argument used in UV renormalization, µ is chosen to be
of the order of Q. Thus the relevant scale at which the PDFs are evaluated is the scale of
the hard process. The PDFs can be either measured or extracted (using a slightly more
compicated version of the OPE) from lattice data. ‘Measuring’ means extracting them
from a hard process where both σ̂ and is calculated and σ is measured with sufficient
precision.

At a very rough level, one may view the PDF’s as being a ‘IR input quantities’ just
like the coupling constant g(µ2) is a ‘UV input quantity’. For the latter, we explained
that its µ-dependence must precisely cancel the µ-dependence introduced by the UV-
divergences loop-corrections. This allowed us to derive an RGE for g(µ2). Analogously,
the µ-dependence of fi(x, µ) cancels the µ-dependence of σ̂ introduced by IR divergences
related to the initial state. This leads to ‘kind-of’ an RGE for the PDFs, known as
Altarelli-Parisi or Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations.

For example, the µ2-dependence of the quark-distribution fq(x, µ
2) ≡ q(x, µ2) has a

piece depending on the quark distribution at higher x:

dq(x, µ2)

d lnµ2
=
αs
2π

∫ 1

x

dz

z
P (z) q(y, µ2) where x ≡ z · y . (8.2)

Here P (z) is a perturbatively calculable and in general highly singular function (distri-
bution) and the above equation can be interpreted as describing the radiation of a gluon

20Actually, but seeing this explicitly requires more work, this scale can be viewed as separating partons
with |k⊥| � µ from those with |k⊥| � µ, only the latter being part of the hard process.
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(with momentum fraction 1 − z) by an incoming quark before it engages in the hard
scattering, cf. Fig. 50.

Figure 50: A diagram relevant to the evolution of the quark distribution.

The equation above is an integro-differential equation and the structure on the r.h.
side is known as a convolution and often denoted by ⊗, i.e.

dq

d lnµ2
=
αs
2π

P ⊗ q . (8.3)

However, it is immediately clear that this can be only part of the story and that an
incoming gluon can similarly contribute by ‘splitting’ into two quarks. Hence, the r.h.
side should also have a term depending on fg ≡ g. Furthermore, the gluon distribution
has its own, very similar evolution equation. In total, one has

d

d lnµ2

(
q
g

)
=
αs
2π

(
Pqq Pqg
Pgq Pgg

)
⊗
(
q
g

)
. (8.4)

Our explicit example was clearly just the Pqq piece of this more complete expression.

8.3 Deep inelastic scattering (DIS)

Historically, all of this was first developed and tested in great detail in ‘deep inelastic
scattering’ (cf. Fig. 51 and 52). This is the scattering of an electron off a proton. The
interesting part for our purposes is the subprocess in which a virtual photon (γ∗) scatters
off a parton – at LO always a quark. The situation (including the factorization proof)
is simpler than in the hadron-hadron collisions since only one side involves a hadron. In
particular, OPE methods can be used.

Figure 51: Deep inelastic scattering.
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Figure 52: The leading leading partonic process in DIS (left) and the real and virtual
corrections (right).

For a more detailed discussion, including at least a partial derivation of the DGLAP
equations and of the explicit ‘splitting functions’ Pij, see the handwritten notes of my
older QFT II course.

9 Anomalies

An anomaly is the breakdown of a symmetry of a classical system after quantization.

9.1 Chiral anomaly – functional integral approach

Consider a model with a massless Dirac fermion, charged under a U(1) gauge symmetry:

L = − 1

4g2
FµνF

µν + ψ̄i /Dψ . (9.1)

In addition to the gauged U(1) symmetry ψ → exp(iα)ψ, this model possesses a global,
‘chiral’ U(1) symmetry, ψ → exp(iαγ5)ψ . This symmetry will turn out to be anomalous.

To see this, let us analyse the transformation properties of the path intergral measure
DψDψ̄ under the change of variables (i.e. under the field-redefinition)

ψ(x) → ψ′(x) =

∫
d4yM(x, y)ψ(y) . (9.2)

From our discussion of the fermionic path integral, especially the Gaussian example, it
easily follows that

Dψ′Dψ̄′ = (detM)−1(detM̄)−1DψDψ̄ . (9.3)

Here the appearance of the inverse determinant (rather than of the determinant itself)
can be easily understood by recalling that the fermionic path integral gives the determi-
nant rather than the inverse determinant of the matrix in the exponential. Furthermore,
the matrix

M̄ ≡ γ0M †γ0 (9.4)

appears due to the fact that we use ψ̄ rather than ψ† as our second variable.
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Our interest will be specifically in the two field redefinitions

ψ(x)→ eiα(x)ψ(x) and ψ(x)→ eiα(x)γ5ψ(x) . (9.5)

The corresponding matrices in the above formula can be given as

M(x, y) = U(x) δ4(x− y) with U(x) =

{
eiα(x)

eiα(x)γ5 . (9.6)

Inserting this form in (9.3), we encounter the expression

UŪ = Uγ0U †γ0 = 1 (9.7)

in the first and
UŪ = Uγ0U †γ0 = eiαγ

5

γ0e−iαγ
5

γ0 = U2 (9.8)

in the second case. Hence for the first, ‘vector-like’ U(1) transformation the measure is
invariant.21 By contrast, the measure is not invariant under the chiral transformation.
Instead,

DψDψ̄ → (detM)−2DψDψ̄ . (9.9)

Next, we focus on infinitesimal (α� 1) chiral rotations, such that

M(x, y) ' 1 + iα(x)γ5δ4(x− y) . (9.10)

We can then write

detM = exp ln detM = exp tr lnM = exp tr ln(1 + (M − 1))

' exp tr(M − 1) = exp i

∫
d4xα(x) tr(γ5)δ(x− x) . (9.11)

Introducing the ‘anonaly function’ A, defined by

−1

2
A(x) = tr(γ5)δ(x− x) , (9.12)

we find the transformation of the measure

DψDψ̄ → exp

(
i

∫
d4xα(x)A(x)

)
DψDψ̄ . (9.13)

We see that A is formally given by a product of zero (tr(γ5)) and infinity (δ4(0)), such
that a regularized calculation is required. Such a calculation will be supplied momentarily.

Let us however first consider what the implication of a possibly non-zero A would
be. Indeed, our considerations have proven the following identity:∫

Dψ′Dψ̄′DAµO(Aµ) exp

{
i

∫
L(ψ′, Aµ)

}
(9.14)

=

∫
DψDψ̄DAµO(Aµ) exp

{
i

∫ (
L(eiαγ

5

ψ,Aµ) + α(x)A(x)
)}

,

21The expression vector-like originates in the current being ∼ ψ̄γµψ, i.e. a vector, as opposed to the
pseudovector ∼ ψ̄γ5γµψ appearing in the chiral case.
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where O(Aµ) is some observable depending on the gauge field. This identity provides a
very clear understanding of the relation between classical and quantum symmetry: The
classical symmetry condition is simply that the factor eiαγ

5
should drop out of L on the

r.h. side. In our example this is indeed the case for constant α. If the path integral measure
were invariant, i.e. if A were zero, this would imply that the classical symmetry can be
promoted to the path-integral level, i.e. it becomes a symmetry of the quantum theory.
In this case the path integral formula would simply be invariant under the transition
from ψ to ψ′.

If, however, A is non-vanishing, this invariance is broken. Indeed, the term ∼ αA on
the r.h. side can be viewed as an extra or ‘anomalous’ transformation of L which arises
because L is placed under the path integral:

L(ψ,Aµ)→ L(eiαγ
5

ψ,Aµ)+α(x)A(x) for ψ → eiαγ
5
ψ under the path integral . (9.15)

Now calculate A by writing it in the following regularized form:

A(x) = −2 tr
(
γ5f( /D

2
x/m

2)
)
δ4(x− y)

∣∣
y=x

. (9.16)

Here f(s) is some smooth function (e.q. e−s or 1/(1 + s)) with

f(0) = 1 and lim
s→∞

f(s) = 0 . (9.17)

Here m provides the UV energy scale associated with the regularization. Indeed, in the
limit m → ∞ we can replace f by f(0) = 1 by assumption, such that formally the
original expression is recovered. Furthermore, one might hope that the expression with
finite m is finite since the typical fast variation of δ4 near zero leads to large values of
/D

2
, which are suppressed due to the behaviour of f . This, of course, has to be checked

in the explicit calculation.

A crucial point is that we use /D rather than /∂. This is necessary since, originally,
everything derived from the operator M acting on the space of spinorial functions ψ.
These are subject to the gauged vector-like U(1) invariance which must be maintained
in the regularization.

We now calculate A by first going to Fourier space,

A(x) = −2

∫
d4k

(2π)4
tr
(
γ5f( /D

2
x/m

2)
)
eik(x−y)

∣∣∣
y=x

. (9.18)

Next, thinking of f( /D
2
x/m

2) in terms of a Taylor expansion and using

/Dx e
ik(x−y)(· · · ) = eik(x−y)(i/k + /Dx) (· · · ) , (9.19)

we find

A(x) = −2

∫
d4k

(2π)4
eik(x−y)tr

(
γ5f

(
(i/k + /Dx)

2/m2
)) ∣∣∣

y=x

= −2

∫
k

tr
(
γ5f

(
(i/k + /Dx)

2/m2
))
. (9.20)
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In the last expression, we were able to set y = x without encountering a divergence.
Note also that ∂x contained in /Dx remains non-trivial since it can act on Aµ(x) factors
which are implicitly present. We can however drop the index x since this is now the only
space-time variable.

Let us now rescale k → km and subsequently use

(i/k + /D/m)2 = −k2 +
2ikµD

µ

m
+

(
/D

m

)2

, (9.21)

such that

A(x) = −m4

∫
k

tr

(
γ5f

(
−k2 +

2ik ·D
m

+

(
/D

m

)2
))

. (9.22)

Expanding f in powers of 1/m, one can make the following crucial observation: If more
than 4 factors of 1/m appear, one gets zero for m → ∞. If fewer than 4 factors of /D
appear, one gets zero because of the trace with γ5. Thus, a contribution can only come
from the second power of the term ( /D/m)2:

A(x) = −
∫
k

f ′′(−k2) tr(γ5 /D
4
) . (9.23)

The k-integral factors off and, after Wick rotation k0 → ik0
E, gives

i

∫
d4kEf

′′(k2
E) = i

∫ ∞
0

2π2k3dk f ′′(k2) = iπ2

∫ ∞
0

s ds f ′′(s) (9.24)

= −iπ2

∫
dsf ′(s) = −iπ2f(s)

∣∣∞
0

= iπ2 .

Here we also used that f ′(s) vanishes sufficiently fast at infinity, which is however easy
to realize.

Finally, we have

/D
2

= DµDνγ
µγν = DµDν

(
1

2
{γµ, γν}+

1

2
[γµ, γν ]

)
(9.25)

= DµD
µ +

1

4
[Dµ, Dν ] · [γµ, γν ] = DµD

µ +
i

4
Fµν [γ

µ, γν ] .

Thus,

tr(γ5 /D
4
) = − 1

16
FµνFρσ tr

(
γ5[γµ, γν ][γρ, γσ]

)
. (9.26)

Now, the commutation relations of γ matrices immediately imply that the trace is
∼ εµνρσ. The prefactor is easily fixed by also recalling that in our connventions γ5 =
iγ0γ1γ2γ3 and working out the case of {µ, ν, ρ, σ} = {0, 1, 2, 3}. One finds

tr(γ5 /D
4
) = − 1

16
FµνFρσ i · 16 εµνρσ (9.27)
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and hence

A(x) =
−iπ2

(2π)4
· i · FµνFρσεµνρσ =

1

16π2
FF̃ . (9.28)

This is a fundamental result. Our method of derivation is due to Fujikawa. The anomaly
we obtained is also known as the Adler-Bell-Jackiw anomaly and their (earlier) Feynman-
diagramatic method of derivation will be discussed later on.

9.2 Anomalous current non-conservation

The anomaly implies a violation of the of the conservation of the Noether current jµ5
associated with the global symmetry ψ → eiαγ

5
ψ.

The two symmetries ψ → eiαψ and ψ → eiαγ
5
ψ have associated Noether currents

jµ = ψ̄γµψ and jµ5 = ψ̄γµγ5ψ . (9.29)

Both conservation laws are proven in complete analogy, following the general derivation
of the Noether theorem.

Now consider the transformation ψ → eiα(x)γ5ψ where, crucially, we allow for a
non-constant transformation parameter α = α(x). Let us consider the (in general non-
vanishing) variation of the action induced by this transformation:

δS = δ

∫
d4x ψ̄i/∂ψ =

∫
d4x

[
(ψ + iαγ5ψ)i/∂(ψ + iαγ5ψ)− ψ̄i/∂ψ

]
(9.30)

=

∫
d4x ψ̄iγµ(∂µα)iγ5ψ = −

∫
d4xjµ5 ∂µα =

∫
d4x (∂µj

µ
5 )α(x) .

As a (very important!) side remark, the above provides an elegant alternative deriva-
tion of the Noether theorem. Indeed, if our underlying field configuration obeys the
EOMs, then the action must be stationary. Thus, δS = 0 irrespective of whether the
field transformation is a symmetry. In other words, the r.h. side is zero for any function
α(x), which clearly implies (classical) current conservation, ∂µj

µ
5 = 0.

Now we apply the field transformation discussed above to the whole path integral.
While we now clearly must allow for field configurations not satisfying the EOMs, the
result is still zero since the transformation is just a change of variables in an integral:

0 = δ

∫
DψDψ̄ eiS =

∫
DψDψ̄ eiS+i

∫
d4x[αA+(∂µj

µ
5 )α] −

∫
DψDψ̄ eiS . (9.31)

Expanding in α, we see that the relation

∂µj
µ
5 = − 1

16π2
εµνρσF

µνF ρσ (9.32)

holds under the path integral, i.e. for operators in the QFT. This is know as the anoma-
lous non-conservation of the so-called axial-vector current (the name derives from the
fact that ψ̄γµγ5ψ is an axial vector). It generalizes in several ways:
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First, we recall the relation between (general, left-handed and right handed) Dirac
spinors and Weyl spinors, with the latter characterized by an index ‘w’:

ψ =

(
ψw
χ̄w

)
, ψL =

(
ψw
0

)
, ψR =

(
0
χ̄w

)
. (9.33)

We introduce the operation of ‘charge conjugation’ (characterized by an upper index ‘c’),
which exchanges the two Weyl spinors contained in a Dirac spinor:

ψc =

(
χw
ψ̄w

)
, (ψL)c =

(
0
ψ̄w

)
, (ψR)c =

(
χw
0

)
. (9.34)

In particular, we note that the charge-conjugate of a l.h. (r.h.) spinor is r.h. (l.h.) spinor.
Also, the name ‘charge conjugation’ is clearly justified since any phase rotation of ψ
corresponds to an opposite phase rotation of ψc.22

Now, any Dirac spinor can be decomposed in its l.h. and r.h. parts,

ψ =
1− γ5

2
ψ +

1 + γ5

2
ψ ≡ ψL + ψR . (9.35)

Furthermore, the physics described by a r.h. spinor ψR can equivalently be described by
the l.h. spinor (ψR)c. This is just a change of variables, like interchanging φ and φ∗ in
the scalar case. In particular, by observing that

ψ̄i /Dψ = ψ̄Li /DψL + (ψR)ci /D(ψR)c (9.36)

we are able to describe a theory with a Dirac spinor ψ in terms of two l.h. spinor fields
ψL and (ψR)c.

From the above definitions, it easy to see how our l.h. spinors transform under the
two U(1) symmetries (the vector-like, V , and the chiral or axial-vector-like, A):

ψL (ψR)c

U(1)-V charge +1 −1
U(1)-A charge −1 −1

. (9.37)

Now comes the crucial point: In considering the anomaly or anomalous current-
non-conservation, it was not important to actually carry out the path integral over Aµ.
However, with Aµ being non-dynamical (i.e. a classical background field), our model is
just the sum of two completely independent theories with the l.h. spinor fields ψL and
(ψR)c. Thus, the anomaly (under the A-transformation, as before) must be the sum of
the two anomalies induced by two path intergal measures, i.e.

A = AL +ARc . (9.38)

22The operation of charge conjugation can also be defined by ψc ≡ Cψ̄T , with the matric C obeying the
relation C−1γµC = −γTµ . This relation ensures that ψc is again a Dirac spinor. An explicit representation
is given by C = iγ2γ0.
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Moreover, the form the U(1)A perspective the two fields are equivalent. From the U(1)V
perspective their charges are opposite, but since the gauge field enters quadratically this
sign can not enter the anomaly. Thus,

A = AL +ARc = 2AL . (9.39)

The axial-vector current receives contributions from both fields,

jµ5 = jµL + jµRc (9.40)

and, by the same logic as above, its anomalous non-conservation must be due to two
equal contributions:

∂µj
µ
5 = ∂µj

µ
L+∂µj

µ
Rc = − 1

16π2
FF̃ = − 1

32π2
FF̃
∣∣∣
from ψL

− 1

32π2
FF̃
∣∣∣
from (ψR)c

. (9.41)

Our final result is that, in a theory with a single l.h. fermion (or, equivalently, a
single Weyl fermion), the anomalous current non-conservation reads

∂µj
µ = − 1

32π2
FF̃ . (9.42)

Here we not have to distinguish between V and A current since (up to possible signs and
normalization conventions) there is only one U(1) current in such a theory. In particular,
a U(1) (quantum) gauge theory with a single Weyl fermion is inconsistent – one can not
gauge a transformation that is not a symmetry. One simple more technical argument
for this is as follows: For a theory being renormalizable ‘by power counting’, boson
propagators have to behave as 1/p2. Thus, gauge invariance is needed to bring the gauge-
boson propagator to the form ηµν/p2. If that fails, renormalizability is lost.

9.3 Non-abelian generalization

The second important generalization is to the non-abelian case. As above, we work with
l.h. fermions only, allowing for as many of them as desired:

ψL → ψL i . (9.43)

Here i runs over the basis of the relevant representation of some non-abelian symmetry
group (e.g. SU(3)×SU(2)×U(1) in the case of the Standard Model). We emphasize that
this group can contain many ‘simple’ factors like SU(N) and many U(1)s. No matter
how large and complicated the group, we will treat all its generators on equal footing
and call them Ta. Familiar examples include Ta = λa/2 with a = 1, · · · , 8 for SU(3) or
Ta = 1 for a U(1) under which all fermions transform univerally, ψL i → eiαψL i.

Now pick out one specific generator, say Ta for some fixed a, and consider the U(1)
transformation generated by this Ta. We calculate its anomaly exactly as before, but for
all fermions at once. Crucially, our starting point was a phase rotation with γ5, which
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can now be different for the different fermions involved. This information is encoded in
Ta: [

ψ → eiαγ
5

ψ
]
⇒

[
ψi →

(
eiαγ

5Ta
)
i

j ψj

]
. (9.44)

Later, we regularized tr(γ5)δ(0) by introducing an appropriate function of /D. The anal-
ogous expression now reads

tr
[
γ5Taf( /D

2
/m2)

]
with Dµ = ∂µ + iAbµTb . (9.45)

It is an easy excercise to follow the algebra from that point onward to discover that
eventually, in addtion to the Dirac traces to be worked out as before, a trace of three
generators is left: The first is the Ta explicitly introduced by above, the other two come
from the /D-algebra and are contracted with the two field-strength tensors:

tr[TaTbTc]F
b
µν F

c
ρσ . (9.46)

We leave it to the reader to work through this carefully and to reconsider every step.
The outcome is that all goes through as before, giving

∂µj
µ
a = − 1

32π2
Dabcε

µνρσF b
µνF

c
ρσ with Dabc ≡

1

2
tr[Ta{Tb, Tc}] . (9.47)

Here we used the symmetry w.r.t. the interchange of F bF̃ c to introduce the anti-
commutator {Tb, Tc}. The Dabc’s form a tensor which characterizes the representation
of the symmetry group one considers (be careful - normalization conventions vary). As
opposed to the fabc, it is totally symmetric (this is easy to check using tr(AB) = tr(BA)).

Much more could be said, in particular, anomalies have an interesting topological
interpretation which is worth pursuing. Unfortunately, we have to leave it to the reader
to explore this further, see e.g. [25,26].

An important application of the above is the Standard Model. Writing all fields as
left-handed spinors, the transformation properties can be summarized as follows (this
shorthand notation has been explained in QFT I):

SU(3) SU(2) U(1)(
uL
dL

)
3 2 1

6

(uR)c 3̄ 1 −2
3

(dR)c 3̄ 1 1
3(

νe
eL

)
1 2 −1

2

eR 1̄ 1 1

. (9.48)
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Note that there are different conventions concerning the normalization (an extra factor 2
is sometimes introduced) and sign of the U(1) ≡ U(1)Y charges. Our convention is such
that the electric charge obeys Q = T3 + Y , with T3 being the diagonal SU(2) generator.
Using the above table, you should be able to prove that all anomalies associated with
gauge group genrators vanish, making the Standard Model consistent in highly non-trivial
way.

As a final remark, one can of course also pick a symmetry generator which is not
gauged (examples are the U(1) transformations defining baryon (B) and lepton number
(L) in the Standard Model). The anomaly of the corresponding current follows as above,
from evaluating the trace together with all pairs of gauged generators. Now, however, a
non-zero anomaly does not imply the inconsistency of the model. Indeed, in the Standard
Model B + L is anomalous while B − L is conserved also at the quantum level.

9.4 The chiral anomaly in the Feynman-diagram approach
– 2d example

Consider QED in d = 2, i.e.

L = −1

4
FµνF

µν + ψ̄i /Dψ (9.49)

with

µ, ν ∈ {0, 1} ; {γµ, γν} = 2ηµν ; γ0 =

(
0 −i
i 0

)
; γ1 =

(
0 i
i 0

)
. (9.50)

As always in even dimensions, chiral spinors can be defined using γ5, in this case

γ5 = γ0γ1 =

(
1 0
0 −1

)
, (9.51)

and the Dirac spinor above contains two one-component Weyl spinors:

ψ =

(
ψ+

ψ−

)
. (9.52)

The V and A currents are precisely as in 4d: jµ = ψ̄γµψ and jµ5 = ψ̄γµγ5ψ. However,
compared to the 4d case a crucial simplification arises due to the identity

γµγ5 = −εµνγν (with ε01 ≡ 1) . (9.53)

This implies
jµ5 = −εµνjν . (9.54)

Let us calculate 〈jµ〉 in the presence of a background field Aµ at leading order in
e. This is most easily done by appealing to our very basic formula (from QFT I) for
evaluating time-ordered expectation values of interacting fields in terms of free fields:

〈 ψ̄(x)γµψ(x) 〉 =
〈T ψ̄0(x)γµψ0(x) exp

(
iSint[ψ0, ψ̄0, Aµ]

)
〉

〈T exp
(
iSint[ψ0, ψ̄0, Aµ]

)
〉

. (9.55)
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Recall that the vacuum on the r.h. side is free and that the denominator is just there to
cancel vacuum bubbles. It is immediately clear that the O(e) contribution will involve
just two fermion propagators and that they will be connected as shown in the diagram
in Fig. 53.

Figure 53: Electromagnetic current at leading order. Note that the wavy line and the
cross are used to symbolize the appearance of a (classical) background field Aµ in the
vertex – no gauge boson propagator is present.

Working this expression out in detail and Fourier transforming both Aµ and jµ, one
can bring it to the form

〈jµ(q)〉 = (−ie)−1iΠµν(q)Aν(q) . (9.56)

Here Πµν is the familiar one-loop expression for the vacuum polarization, which contains
the trace of the two propagators and the loop integral. The advantage of this form of
writing our expression is that we already calculated Πµν for general d. Unfortunately, at
the time we took its trace a few lines too early. So let us supply some details to have a
reasonably complete calculation. With Wick rotation already in place, one finds

Πµν(q) = −4e2

∫ 1

0

dx

∫
ddk

(2π)d
tr(1)

(
1− 2

d

)
ηµνk2 − 2x(1− x)qµqν + ηµνx(1− x)q2

(k2 + ∆)2
,

(9.57)
where

∆ ≡ −x(1− x)q2 . (9.58)

Crucially, the 1/d term comes from the replacement

kµkν → 1

d
k2 ηµν (9.59)

under the integral.

After performing the k-integration, we have

Πµν(q) = −e2

∫ 1

0

dx
tr(1)

(4π)d/2
· 1

∆2−d/2 ·

{(
1− d

2

)
Γ

(
1− d

2

)
(−ηµν∆) (9.60)

+Γ

(
2− d

2

)
[−ηµν∆− 2x(1− x)qµqν ]

}
.

The first part in the curly bracket comes from the k2 in the numerator, which naively
gives a quadratic divergence at d = 4, i.e. a pole at d = 2. However, we see that the
prefactor cancels this pole,(

1− d

2

)
Γ

(
1− d

2

)
= Γ

(
2− d

2

)
, (9.61)
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such that only a pole at d = 4 and hence log-divergence in 4d is left.

We then have

Πµν(q) = −2 tr(1) e2

∫ 1

0

dx
x(1− x)

(4π)d/2
· Γ(2− d/2)

∆2−d/2 · (q2ηµν − qµqν) (9.62)

=

(
ηµν − qµqν

q2

)
e2

π
,

where in the last line we have set d = 2, such that tr(1) = 2 and the x-integration
became trivial, ∫ 1

0

dx
x(1− x)

−x(1− x)q2
= − 1

q2
. (9.63)

As a side-remark, note that this does not vanish at q2 → 0. As a result, the quantity Π
defined by Πµν = (ηµνq

2 − qµqν)Π, has a pole: Π ∼ 1/q2. If you recall how this corrects
the photon propagator, you see that the photon gets a mass in 2d. This is an interesting
fact, maybe not notally unexpected given that e has positive mass dimension and hence
the theory becomes strongly coupled at low energies. We will not pursue this.

Our central result now reads

〈jµ5 〉 = −εµν〈jµ〉 = −εµν(−ie)−1iΠνρA
ρ (9.64)

= −εµν(−ie)−1i

(
ηνρ −

qνqρ
q2

)
e2

π
Aρ = εµν

e

π

(
Aν −

qνq
ρ

q2
Aρ

)
.

Thus, while vector current conservation, qµ〈jµ〉 = 0, obviously holds, the axial current is
not conserved:

qµ〈jµ5 〉 =
e

π
εµν qµAν(q) 6= 0 . (9.65)

After Fourier transformation, this reads

∂µj
µ
5 =

e

2π
εµνFµν , (9.66)

which is our main result in this subsection.

Note first that this is structurally similar to what we found in 4d: The r.h. side is a
combination of ε tensor and field strength. Indeed, anomalies arise in all even dimensions.
This is related to the fact that an extra, independent γ-matrix (‘γ5’) exists only in even
dimensions. For example, in 5d the spinor continues to be our familiar four-component
spinor and the Clifford algebra reads

{γM , γN} = 2ηMN , M,N ∈ {0, 1, 2, 3, 5} , γ5 = iγ0γ1γ2γ3 , (9.67)

with precisely the same γ5 we used in 4d to define chirality. To define chirality in 5d by
analogy to 4d, one would need

‘γ6’ ∼ γ0γ1γ2γ3γ5 , (9.68)
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but this is of course ∼ 1. Thus, indeed, chirality does not exits in 5d (and in all other
odd dimensions). By contrast, in even dimensions our chirality and anomaly story goes
through and the general structure (in the abelian case) is

∼ εµ1µ2···µd−1µd Fµ1µ2 · · ·Fµd−1µd . (9.69)

The 2d case provides the simplest instance for discussing how anaomalies arise in the
Feynman diagram approach at the conceptual level: Classical U(1) invariance, chiral or
not, always implies classical current conservation. As shown in QED for the non-chiral
case, this symmetry can be used to derive Ward identities for the Green’s functions and
hence to establish current conservation also at the level of correlation functions, i.e. for
operators or ‘under the path integral’,

qµ〈jµ5 (q)〉 ‘ = ’ 0 . (9.70)

However, the manipulations allowing one to achieve this are at a certain level formal in
that they use divergent and hence undefined integral expressions.

This is where the anomaly comes in: In certain cases the explicit UV regulariza-
tion is inconsistent with the manipulations one would need to do to establish current
conservation. We have seen this UV sensitivity very clearly in the Fujikawa method. In
our present analysis, it arose in the way in which the naively expected pole at d = 2
disappeared in dimensional regularization.

We can make this more explicit by noting that Πµν contains two structurally different
integrals, ∫

d2k
k2ηµν

(k2 + ∆)2
and

∫
d2k

qµqν

(k2 + ∆)2
. (9.71)

The first one is divergent, but the divergence disappeared due to the prefactor (1−d/2),

(1− d/2)Γ(1− d/2) ∼ finite . (9.72)

The second is simply finite. Thus, while we found

Πµν ∼ (Aηµν −Bqµqν/q2) , (9.73)

with A = B, we have to remember that A is finite but regularization dependent. In-
variance under U(1)V requires A = B and dimensional regularization respects this. This
is a general feature of dimensional regularization, which respects vector U(1)’s but has
trouble with chiral symmetries. (We will see that even more clearly below.)

Here, we note that we found ∂µj
µ = 0 and ∂µj

µ
5 6= 0 precisely because we found

A = B. Indeed, a different regularization could have given a different A, e.g. A = 0. In
this case, as one can easily seen by recalling the calculation above, we would have found
∂µj

µ
5 = 0. But, at the same time we necessarily would also have ∂µj

µ 6= 0, making the
calculation plain inconsistent if jµ is gauged.
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9.5 The chiral anomaly in the Feynman diagram approach
– 4d example

In d = 4, there is no analogue of the simple 2d relation jµ5 = −εµνjν . Thus, while
we could calculate the vector current expectation value diagramatically, as in the last
section, we can not derive the axial current from it. However, we can directly evaluate
the expectation value of the axial current, cf. Fig. 54. The only difference is the γ5 in
the l.h. vertex and, of course, the number of dimensions.

Figure 54: Axial current at leading order. As before (cf. Fig. 53) the wavy line and the
cross are used to symbolize the appearance of a (classical) background field Aµ in the
vertex – no gauge boson propagator is present.

The expectation value will be proportional to the Fourier transform of the external
field, allowing us to define a matrix element M by

〈jµ5 (q)〉
∣∣∣
1st order in Aµ

≡Mµν(q)Aν(q) . (9.74)

However, it will become clear below that we will not find an anomaly.23

An anomaly arises only at 2nd order in Aµ, i.e. from a diagram with two external
fields. This diagram is conventionally drawn as a triangle, cf. Fig. 55. The corresponding
equation reads

〈jµ5 (q)〉
∣∣∣
2nd order in Aµ

≡Mµνρ(p, k)Aν(p)Aρ(k) . (9.75)

Figure 55: Axial current at 2nd order in A.

It is conventional to slightly reinterpret this calculation. Indeed, it is equivalent
to think of a transition amplitude with one incoming vector boson which couples to
the axial current and two outgoing vector bosons which couple to the vector current,

23The reason is that we would encounter a trace of four γ matrices with γ5, producing an ε-tensor.
But the number of independent momenta available at leading order in Aµ is too small to saturate all
indices and produce a non-zero result.
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cf. Fig. 56. This basically corresponds to ‘adding’ two photons with momenta p and
k to the external field. Since we now specify which external momenta are present, a
momentum conservation δ function also appears together with the matrix element:

〈p, k|jµ5 (q)|0〉 = (2π)4δ4(p+ k − q)Mµνρ(p, k) ε∗ν(p)ε
∗
ρ(k) . (9.76)

Figure 56: Scattering amplitude interpretation of the expectation value of the axial cur-
rent at 2nd order in A (equivalent to Fig. 55).

We will discuss the explicit calculation only briefly, focussing on the conceptual
points. Crucially, since we have ‘split up’ the external field in two photons, there are now
two diagrams with different ordering of the photons along the fermion loop. The first
diagram, already mutliplied with qµ for current conservation, gives

∼ qµ

∫
`

tr

[
γµγ5 1

/̀− /k
γρ

1

/̀
γν

1

/̀+ /p

]
. (9.77)

Using

/qγ
5 = (/̀+ /p− /̀+ /k)γ5 = (/̀+ /p)γ

5 + γ5(/̀− /k) (9.78)

this gives

=

∫
`

tr

[
γ5 1

/̀− /k
γρ

1

/̀
γν + γ5γρ

1

/̀
γν

1

/̀+ /p

]
. (9.79)

Next, shifting the integration variable as `→ `+k in the first term only and interchanging
γ matrices, γ5γρ = −γργ5, in the second term, one has

=

∫
`

tr

[
γ5 1

γ5/̀
γρ

1

/̀+ /k
γν − γ5 1

/̀
γν

1

/̀+ /p
γρ

]
. (9.80)

This last expression is antisymmetric under the exchange {p, ν} ↔ {k, ρ}. But the
second diagram of Fig. 56 follows from the first precisely under this substitution, i.e.
under {p, ν} ↔ {k, ρ}. Hence, the sum of two diagrams appears to be zero, suggesting
that the axial current is conserved. However, this result is wrong precisely as explained
at the end of last section: It is obtained by manipulations, in particular the shift of an
integration variable, with divergent integrals.

So let us now repeat the analysis in a well-defined manner, using dimensional reg-
ularization. Clearly, one faces the problem of defining γ5 in d dimensions. The correct
procedure turns out to be the use of the so-called ’t Hooft-Veltman prescription: One
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defines a formal object γ5, extending the formally defined Clifford algebra and obeying
the rules24

{γ5, γµ} = 0 for µ = 0, · · · , 3 (9.81)[
γ5, γµ

]
= 0 for µ = 5, · · · , d . (9.82)

It can be shown that, together with the usual rules of dimensional regularization, this
makes all loop integrals well-defined and finite and leads to results consistent with the
conceptually better-justified Fujikawa method.

In concrete applications, it proves convenient to split the integration variable as

` = `‖ + `⊥ , (9.83)

where the ‘parallel’ part stands for dimensions 0, · · · , 3 and the ‘perpendicular’ part for
the rest. Our previous naiv manipulations are now replaced by

/qγ
5 = (/̀+ /p− /̀+ /k)γ5 = (/̀+ /p− /̀‖ − /̀⊥ + /k)γ5 (9.84)

= (/̀+ /p)γ
5 + γ5(/̀‖ − /̀⊥ − /k) = (/̀+ /p)γ

5 + γ5(/̀− /k)− 2γ5/̀⊥ .

Now, the first two terms in the final expression change sign between the two diagrams
and cancel, exactly as before. By contrast, the new contribution encoded in the third
and last term arises in both diagrams with the same sign. Thus, overall one finds

qµMµνρ ∼
∫
`

tr

[
γ5/̀⊥

1

/̀− /k
γρ

1

/̀
γν

1

/̀+ /p

]
. (9.85)

We now rewrite all fractions in analogy to

1

/̀− /k
=

/̀− /k
(`− k)2

(9.86)

and introduce Feynman parameters according to the (more general than what we had
before) formula

1

A1A2 · · ·An
=

∫ 1

0

dx1 · · · dxn δ
(∑

xi − 1
) (n− 1)!

[x1A1 + · · ·+ xnAn]n
. (9.87)

Next, one shifts the integration variable, ` → ` + P , such that the `-integration takes
the form ∫

dd`

(2π)d
·

tr[γ5/̀⊥(/̀+ /P − /k)γρ(/̀+ /P )γν(/̀+ /P − /p)]
(`2 −∆)3

. (9.88)

Here P is an appropriate linear combination of k and p (depending on the xi) which
ensures that the denominator has no piece linear in `. Furthermore, ∆ is a function of
k, p and the xi and the integration over the xi still has to be performed in the end. Note

24We note that it is common to label indices as µ, ν, ρ, · · · = 0, 1, 2, 3, 5, 6, · · · , d, such that the ‘natural’
labelling 1, 2, 3, 4, 5, 6, · · · , d emerges after Wick rotation, x0 → ix4.
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that in the above trace the term `⊥ has not received a P -dependent piece since P is by
definition a 4d momentum.

Now, to get a non-zero result under the SO(1, d − 1) symmetric integration, one of
the other /̀ factors in the numerator must be replaced by /̀⊥. The remaining matrices
must be /k, /p, γρ and γν , such that a non-zero trace with γ5 can be produced. (Of course,

/k and /p may also come from /P .)

Furthermore, since all these matrices only involve only ‘parallel-direction’ γ’s, the
two /̀⊥ terms can be moved next to each other. Thus, one has to evaluate∫

`

/̀⊥/̀⊥
(`2 −∆)3

=
d− 4

d
1

∫
`

`2

(`2 −∆)3
=
−i

2(4π)2
, (9.89)

where we set d = 4 in the last expression. This was possible because the pole of the
integral, which is ∼ Γ(2− d/2), was cancelled by the explicit (d− 4) prefactor.

Now, the trace can be evaluated and, as it turns out, the contributions with /P cancel.
Putting everything together, one finds

qµMµρν =
2ie2

(4π)2
tr[γ5/kγρ/pγ

ν ] =
e2

2π2
εαρβνkαpβ . (9.90)

With this, we return to the formula for 〈p, k|jµ5 (q)|0〉 (Eq. (9.76)), multiply by qµ, Fourier
transform and set x = 0. The result reads

〈p, k|∂µjµ5 (0)|0〉 = − e2

2π2
εαρβν(−ikα)ε∗ν(p)(−ipβ)ε∗ρ(k)

= − e2

16π2
〈p, k|εανβρFανFβρ(0)|0〉 . (9.91)

Here the correctness of the last step is most easily checked by expressing the Fµν ’s through
Aµ’s and using their decomposition in terms of creation and annihilation operators. The
prefactor e2 appears since, in contrast to our previous path integral derivation, we here
use the convention with Dµ = ∂µ + ieAµ. Apart from this factor, the results agree.
We note without proof that anomalies are ‘saturated at one loop’, i.e. all higher-order
corrections to this result vanish.

9.6 Final comments and generalizations

The calculation of the least subsection gives this ABJ anomaly the alternative name
‘triangle anomaly’, cf. Fig. 57. It should be clear from the discussion of the 2d case and
the qualitative comments about higher-dimensional situations how this generalizes to
dimensions other than four: The relevant diagram in d = 2n dimensions is a fermion
loop with one axial-current vertex and n vector-current vertices.

Figure 57 also makes it very clear how the non-abelian anomaly formular arises:
Each vertex carries the generator of the corresponding current, that the condition for
not having an anomaly reads

tr(Ta{Tb, Tc}) = 0 . (9.92)

111



Figure 57: Another representation of the triangle or ABJ anomaly.

It is also immediately clear what the condition for a single U(1) and a set of l.h. fermions
labelled by i is: ∑

i

Q3
i = 0 . (9.93)

The calculation and the possible presence of a triangle anomaly also extends to
fluctuations of the metric background, gµν = ηµν + hµν , where now hµν takes the role
of the gauge background Aµ. The corresponding diagram is shown in Fig. 58 and the
condition for not having an anomaly is∑

i

Qi = 0 . (9.94)

This is also satisfied for the U(1) of the Standard Model.

Figure 58: Gravitational anomaly.

Furthermore, we already noted that the QCD lagrangian with massless quarks has
a chiral global symmetry with current

jµ5 = Q̄γµγ5Q , where Q =

(
u
d

)
(9.95)

stands for the pair of up- and down-type quark Dirac fermions. Analogously, QCD with-
out quark masses has a global SU(2) or Isospin symmetry with currents

jµa5 = Q̄γµγ5τaQ . (9.96)

(Note that only the l.h. part of this is gauged in the Standard Model.) These currents
have non-trivial overlap with the pions, which is quantified by the so-called pion decay
constant fπ:

〈0|jµa5 |πb(p)〉 = −ipµfπδabe−ipx . (9.97)

Here the three pion fields πb are just an alternative basis w.r.t. the more commonly used
fields π0 and π±. This overlap and hence the value of fπ can for example be determined
from the charged-pion decay process π+ → µ+νµ, cf. Fig. 59.
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Figure 59: Charged pion decay.

Now focus on the current jµ 0
5 corresponding to the neutral pion. Due to the anomaly,

this current has a non-zero 3-point function with two photon fields. At the same time,
as noted above, it overlaps with the pion. Hence, using the anomaly calculation and the
pion decay constant, the decay rate π0 → γγ can be derived, cf. Fig. 60. This provides
a successful experimental test of the anomaly calculation. For more details, see [1]. An
understanding of chiral symmetry breaking and chiral perturbation theory in low-energy
QCD is useful in this context, but we have no time for this in the present course.

Figure 60: Neutral pion decay to photons via the chiral anomaly.

Finally, an entirely different but also very important anomaly is the ‘scale-invariance’
or ‘trace’ anomaly. The underlying symmetry is the change of all length scales of some
experimental setup by some universal constant factor (rescaling). A theory would be
symmetric if the experimental results do not change.

A theory which classically has this symmetry is QCD,

L = − 1

2g2
trFµνF

µν , (9.98)

which is obvious since no dimensionful constant is involved. If one includes quarks, they
would have to be massless not to break the scale-inavariance explicitly.

However, we also know that dg(µ2)/d ln(µ2) = β(g) 6= 0, such that the lagrangian to
be used in a LO analysis of an experiment at energy scale µ is rather

L = − 1

2g2(µ2)
trFµνF

µν . (9.99)

Hence, scale invariance is broken in the quantum theory, i.e. one is dealing with an
anomaly. This anomaly is sometimes referred to as ‘trace anomaly’ for the following
reason: The energy momentum tensor can be defined by

T µν ∼ δ

δgµν
S . (9.100)

From this, one can derive that the ‘trace’ T µµ measures the non-invariance under rescal-
ings, gµν → c gµν . More specifically, the relevant statement in the quantum theory is
〈T µµ〉 6= 0.
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We also note that there exist field theories which are scale-invariant even after quan-
tization. It can in many cases be shown that such quantum scale invariance implies the
stronger property of conformal invariance (invariance under angle-preserving deforma-
tions).

10 Generating functionals, effective actions, spon-

taneous symmetry breaking, condensed-matter-

QFTs

We can only give a brief overview of the above topic, each of which deserves a much
more detailed study.

10.1 Generating functionals and effective actions

Recall that

Z[j] =

∫
DϕeiS[ϕ]+i jϕ with jϕ ≡

∫
d4x j(x)ϕ(x) (10.1)

is the generating functional for time-ordered Green’s functions. We can give it a more
physical interpretation by recalling in additon that

Z[j] = 〈0|e−iHt|0〉
∣∣∣
t→∞

, (10.2)

where we view the source as an intrinsic part of H. Let us compare this to the thermo-
dynamic ‘partition function’ which (and this is no accident) is also denoted by Z:

Z = tr e−βH =
∑
i

〈i|e−βH |i〉 , where β ≡ 1

T
, kB ≡ 1 . (10.3)

With the same methods that we used for amplitudes, this expression for Z can be rewrit-
ten in terms of a path or functional integral, both in QM and in QFT. The outcome will
be a euclidean path integral and the time interval over which the particle trajectories or
fields are integrated is finite and determined by β. Hence,

Z =

∫
Dϕ exp

[
−
∫ β

0

dτ d3xLE(ϕ)

]
, (10.4)

where the integral is over field configurations that are periodic in τ with period β. This
accounts for the original presence of the trace and can be easily derived in detail by
interpreting ∑

i

〈i| · · · |i〉 (10.5)
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in the field basis (i.e. in a Hilbert space basis of eigenfunctions of the field operators
ϕ(0, ~x)).

For fermions, one has to impose anti-periodic rather than periodic boundary condi-
tions. The key idea behind this important statement can be summarized in the following
short calculation (cf. our earlier discussion of fermionic coherent states):∫

dη̄ dη e−η̄η〈−η|A|η〉 =

∫
dη̄ dη (1− η̄η) (〈0| − η̄〈1|)A (|0〉+ |1〉η)

= 〈0|A|0〉+ 〈1|A|1〉 = trA . (10.6)

The crucial sign is related to the necessary ordering prescription between Grassmann
variables and fermionic states.

Due to the compactness of Euclidean time, the ‘energy’ or k0
E spectrum in Fourier

space is now discrete (‘Matsubara frequencies’). These are the first steps to towards
‘finite temeperature field theory’, at least in the equilibrium case. For more details see
e.g. [27, 28].

We also note that, at β →∞ the distinction between the Euclidean and Minkowskian
theory disappears. Indeed, it should be irrelevant whether T → 0 or T → i0. Hence our
standard, Minkowskian partition function Z[j] is identified with the zero-temperature
limit of the thermodynamic partition function Z, with an external classical source field
j present. This j is then completely analogous to an external magnetic field, as it is
frequently used in the analysis of condensed matter systems at finite (or even zero)
temperature. Thus, there is a close relation between thermodynamics and field theory.

Let us from now on stick with the Euclidean theory and keep the close analogy with
thermodynamics in mind. It is then natural to define another generating functional,

W [j] ≡ − lnZ[j] , (10.7)

which is the analogue of the Helmholtz free energy,

F (B) ≡ −T lnZ(B) , (10.8)

with B=̂j the external magnetic field.

We can recall from standard thermodynamics that F = E − TS which implies that,
at T = 0, one has F = 〈Ĥ〉. In the field theory context, we demonstrate this as follows:

e−W = Z =

∫
Dϕe−SE = tr e−βĤ ' 〈0|e−βĤ |0〉 = e−β〈Ĥ〉 , (10.9)

where in the last steps we used that we are interested in very large β and that the vacuum
is an eigenstate of Ĥ. Hence, writing ρ for the vacuum energy density, V3 for the spatial
volume and V4 ≡ βV3, we have

W ' β〈Ĥ〉 = βV3ρ = V4ρ . (10.10)
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Thus, W/V4 is the energy density of our field theory (always with some UV cutoff im-
posed). This is now a well-define statement purely in the 4d euclidean QFT, in a form
in which the physically interesting limit V4 →∞ can be taken.

Now comes the crucial new point to be made specifically in the field theory context:
−W [j] generates the connected Green’s functions. We demonstrate this for special case
of 2-point functions:

δ2W

δj1δj2

= − δ

δj1

δ

δj2
lnZ = − δ

δj1

(
1

Z

δ

δj2

Z

)
= − 1

Z

δ2

δj1δj2

Z +

(
1

Z

δ

δj1

Z

)(
1

Z

δ

δj2

Z

)
= . (10.11)

The last line provides a graphical representation of the line before. We see that the second
term subtracts the disconnected part, confirming our claim.

This argument can be extended to n-point functions, i.e. to

δnW

δj1 · · · δjn
, (10.12)

cf. the book by Rivers [8]. An alternative proof is given in [13]: It starts with the assump-
tion that −W generated connected Green’s functions and then demonstrates (which is
merely an issue of combinatorics) that

e−W = 1 + (−W ) +
1

2
(−W )2 + · · · (10.13)

generates all Green’s functions.

We proceed by analogy to thermodynamics, where the Helmholtz free energy gives
rise to the definition of the Gibbs free energy via a Legendre transformation. In our case
this is functional Legendre transformation (or equivalently a multi-variable Legendre
transformation, with j(x) being an indpendent variable for each x). We define

Γ[ϕ] ≡ W [j[ϕ]]− j[ϕ] · ϕ with ϕ[j] ≡ δW [j]

δj
. (10.14)

Recall that we use the shorthand notation

j · ϕ =

∫
d4x j(x)ϕ(x) . (10.15)

In the QFT context, Γ[ϕ] is known as the ‘effective action’, which plays a central role in
many formal developments and applications. Its argument ϕ can be interpreted as the
(in general space-time dependent) VEV of the fundamental quantum field. Indeed

ϕ[j] =
1

Z

δ

δj

∫
Dϕ′ e−S[ϕ′]+jϕ′ = 〈ϕ̂〉j , (10.16)
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is the VEV in the presence of a source j(x).

As a general proporty of a Legendre transform, we also have

δΓ[ϕ]

δϕ
=
δW

δj
· δj
δϕ
− δj

δϕ
· ϕ− j[ϕ] = −j[ϕ] , (10.17)

where we used δW/δj = ϕ. We conclude that at stationary points of Γ[ϕ], we have
j[ϕ] = 0 and hence

Γ[ϕ] = W [j[ϕ]] = V4 ρ . (10.18)

Here the last equality additionally assumes that ϕ = const.

More generally, we define

Veff (ϕ) =
1

V4

Γ[ϕ = const.] . (10.19)

This ‘effective potential’ is the volume-normalized restriction of (minus) the effective
action to constant field configurations. It corresponds to the Gibbs free energy for such
configurations. Moreover, we have seen that at stationary points it measures the energy
density. Minima of Γ[ϕ] with constant field correspond to minima of Veff and to Poincare-
invariant vacua of the theory.

To interpret Γ as a generating functional, we make the following series of observations:
First, we have

δΓ

δϕ
= −j ⇒ − δ

δj

δΓ

δϕ
= 1 . (10.20)

Written in somewhat more detail, the last equation reads

− δ

δj1

δΓ

δϕ2

= 112 with 112 ≡ δ4(x1 − x2) . (10.21)

Next, since Γ depends of j only indirectly, through ϕ, we have

−δϕ3

δj1

· δ2Γ

δϕ3 δϕ2

= 112 ⇒ − δ2W

δj1 δj3

· δ2Γ

δϕ3 δϕ2

= 112 . (10.22)

This can be rewritten as

δ2Γ

δϕ1 δϕ2

= −
(
δ2W

δj1 δj2

)−1

“ = ” p2 +m2 + Π(p2) . (10.23)

Here in the last step we used switched to Fourier space (hence the equal sign is in
quotation marks) and used our previously introduced notation for the resummed inverse
propagator.

We recall that Π(p2) is the self-energy, i.e. the one-particle irreducible (1PI) two-
point function in Fourier space. (Note that we are in the Euclidean theory.) Also, the
term p2 + m2 can be interpreted as the two-fold functional derivative of Sfree w.r.t. ϕ.
Hence

δ2Γ

δϕ1 δϕ2

=
δ2Sfree
δϕ1 δϕ2

+ . (10.24)
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This statement as well as its derivation generalize straightforwardly to n-point functions:
Γ is the generating functional of 1PI n-point functions.

Note that the free action is, by definition, quadratic in the fields and hence gives rise
to a 1PI 2-point function. It is hence completely logical that it appears in the equation
above. Similarly, if there is a ϕ3 term in Sint, it will appear on the r.h. side of the
corresponding equation for the 3rd derivative of Γ. The remainder on the r.h. side will
be the 1PI 3-point function. And so on and so forth....

The corresponding relation without drivatives reads

Veff = Vfree + , (10.25)

with the ‘1-loop term’ given by

∼
∫
d4kE ln(k2

E +m2) . (10.26)

This follows most directly from our earlier discussion of the generating functional Z or
the partitition function of the free theory.

We finally also note that the vertices relevant for the calculation of Γ are clearly
simply the corresponding functional derivatives of the free action. But these are the
same vertices that appear in the Feynman rules for W and Z. Thus, we finally arrived
at a particularly simple method to derive Feynman rules for vertices.

10.2 Spontaneous symmetry breaking

It can happen that both S ≡ Sclass and the resulting quantum theory (and hence Γ) have
a certain symmetry, but the field configuration minimizing Γ is not invariant under this
symmetry. Quantum mechanically, this means that Ĥ possesses a symmetry, but |0〉 is
not invariant under it.

One of the simplest examples is provided by the complex scalar with

LE = |∂φ|2 +m2|φ|2 + λ|φ|4 where m2 < 0 . (10.27)

The potential is illustrated in Fig. 61. In this particular case, it is apparent that there
exists a massless scalar (let’s call it χ) which parametrizes the set of degenerate minima,
in this case obviously an S1. We can choose χ ≡ argφ. The scalar χ is called the
‘Goldstone bosons’ and its mass is zero precisely because of the exact symmetry of the
quantum theory.

All that was said above generalizes to other ‘spontaneously broken symmeties’, with
the statemant about the (set of) massless fields known as the ‘Goldstone theorem’. If a
symmetry group G is broken to H ⊂ G in the vacuum, the scalars parametrize the coset
manifold G/H. (This is easy to demonstrate, but we will not do so.)

As a side-remark, we note that the above behaviour, in particular the appearance of
a non-zero VEV of φ, is stable under the introduction of a small non-zero temperature.
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Figure 61: (Effective) potential of abelian Higgs model.

Indeed, we do not expect the effective potential, which we can also calculate at T 6= 0,
to suddenly change if a very small T is introduced. However, it turns out that the
situation is very different in d ≤ 2 dimensions: Here, the ‘Mermin-Wagner theorem’
forbids spontaneous symmetry breaking at any T 6= 0. Roughly speaking, the reason
is that fluctuations are so strong that vacuum configurations permanently ‘explore’ the
whole S1.

Let us return to d = 4 and to the simplest case of a U(1) symmetry. If the original
symmetry is gauged, then the gauge boson acquires a non-zero mass and thus 3 rather
than 2 degrees of freedom. One says that the Goldstone boson is ‘eaten’ by the gauge
field. No massless particle is left.

More explicitly (and we are now returning to Minkowskian notation),

|Dφ|2 = Dµφ(Dµφ)∗ = ∂µφ∂
µφ∗ + iAµφ∂

µφ∗ − iAµφ∗∂µφ− AµAµ|φ|2 , (10.28)

where the last term gives Aµ a mass if 〈φ〉 6= 0. Furthermore, we can write

φ = ρeiχ , such that ∂µφ = (∂µρ)eiχ + i(∂µχ)φ (10.29)

and
iAµ[φ∂µφ∗ − (∂µφ)φ∗] = 2Aµ∂

µχ|φ|2 . (10.30)

We see that, while χ itself has no mass term, it mixes with Aµ via a kinetic or derivative
term. The latter has a mass term and thus all three degrees of freedom of Aµ and χ
become massive.

At a more detailed, technical level, one can work in the so-called ‘unitary’ gauge where
χ ≡ 0 or in the ‘covariant’ gauge, where χ remains a relevant field. In the former, only
physical degrees of freedom propagate und unitarity is manifest. In the latter, the vector
propagator is similar to what we saw in the unbroken case. In particular, the absence
of power-divergences and renormalizability can be demonstrated. Going back and forth
betweem the two types of gauges requires a gauge-invariant regularization as provided by
‘dim.reg.’. This logic is crucial in establishing the consistency of spontaneously broken
gauge-theories and hence of the Standard Model (as first explained by ’t Hooft and
Veltman).

Before closing, we want to provide a particularly important and widely used example
of a covariant gauge: the Rξ gauge. We parametrize the field as

φ(x) =
1√
2

(
(v + h(x)) + iϕ(x)

)
, (10.31)
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noting that at leading order v + h and ϕ correspond to the fields ρ and χ used earlier.
Now, if one chooses the gauge fixing function

G =
1√
ξ

(∂µA
µ − ξvϕ) , (10.32)

the gauge fixin lagrangian
Lg.f. ∼ G2 (10.33)

introduces a mixing between ϕ and ∂A. This mixing cancels the mixing between ϕ and
∂A present in the original lagrangian (we derived it as a mixing between χ and ∂A
above). This cancellation makes the Rξ gauge particularly convenient.

10.3 QFT in condensed matter theory

We can only briefly mention a few central ideas, following Altland/Simons [29]. An older
classical textbook on this subject is Fetter/Walecka [30].

Consider a QM many-particle system. Each particle can be in a discrete set of states
which we label by k. (Think of the discrete momenta of particles in a box or of phonons
in crystal.)

The generic state can then be written as

|Ψ〉 = |nk1 nk2 · · · 〉 , (10.34)

with nk1 particles in state k1 etc. The Fock space representation is

|Ψ〉 =
∏
k

(a†k)
nk

√
nk!
|0〉 with [ak, a

†
q} = δkq , (10.35)

for bosons or fermions (which we will treat in parallel in this subsection).

The most general 1-particle state is

|ψ〉 =
∑
k

ψ̃ka
†
k|0〉 . (10.36)

To be specific, let k, q be momenta. (Let space-time be 1 + 1–dimensional, so we don’t
have to write arrows). Let furthermore

ψ(x) ≡
∑
k

eikxψ̃k and a(x) ≡
∑
k

eikxak , (10.37)

such that we can also write

|ψ〉 =

∫
x

ψ(x)a†(x)|0〉 . (10.38)

Next, take the Hamlitonian to be

Ĥ =
∑
k

k2

2m
a†kak =

∫
x

a†(x)
p̂2

2m
a(x) , (10.39)
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with p̂ = −i∂x. We clearly simple have a somewhat cumbersome description of free
1-particle QM, realized in the 1-particle sector of our Fock space.

However, the above Hamiltonian clearly also acts in anatural way on the whole
Fock space, including multi-particle states. It is the right Hamiltonian for the, still free,
many-particle QM system. It is also easy to give all those particles a certain x-dependent
potential V (x):

Ĥ =

∫
x

a†(x)

[
p̂2

2m
+ V (x)

]
a(x) . (10.40)

It is easy to see check that this is the right Hamiltonian for a many-particle system of non-
interacting particles, with each particle described by a standard Schrodinger equation
with potential V .

Now, the most interesting generalization arises as one adds interactions, which in
this approach is extremely easy: For example, let us allow give to each pair of particles
a potential energy V2(|x − x′|), with |x − x′| the distance between the particles. The
Hamiltonian now reads

Ĥ =

∫
x

a†(x)

[
p̂2

2m
+ V1(x)

]
a(x) +

1

2

∫
x

∫
x′
V2(x− x′)a†(x)a†(x′)a(x)a(x′) . (10.41)

Going back to 3 dimensions by x → ~x and ∂x → ∇x, we now have a highly-non-trivial
system of great practical interest. It calls for QFT and path integral methods.

Indeed, our system is a set of (bosonic or fermionic) harmonic oscillators, labelled by
~k or ~x. Let us introduce the universal notation index i for these possible further lables
(spin, different particle types, etc. Thus,

H = H(a, a†) with a ≡ {ai} (10.42)

is our (normal-ordered) Hamiltonian. When we discussed the path integral for fermions,
we learned how to treat such a system (both bosonic and fermionic) in the coherent-state
picture and to write down a path integral. We now simply have to repeat this step by
step.

The coherent states are

|ψ〉 = ea
†
iψi |0〉 with ai|ψ〉 = ψi|ψ〉 . (10.43)

We are interested in the thermodynamics and hence in the partition function (although
we could of course also condsider vacuum expectation values, as before, or other ampli-
tudes):

Z = tr e−β(Ĥ−µN̂) =
∑
n

〈n|e−β(Ĥ−µN̂)|n〉 . (10.44)

Here, for generality, we also introduced a chemical potential and the particle number
operator. The latter is of course also a normal-ordered expression in a and a†, so we
can treat it as an additonal piece to be added to Ĥ and nothing in the path integral
derivation changes.
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The crucial steps in the analysis are now the splitting of eβ(··· ) in many factors e∆β(··· )

and the insertion of

1 =

∫
Dψ̄Dψe−

∑
i ψ̄iψi |ψ〉〈ψ̄| . (10.45)

Following precisely the earlier derivation (but being careful with the i’s and signs since
we are now in the Euclidean theory), we find

Z =

∫
Dψ̄Dψ e−S , (10.46)

with periodic or antiperiodic boundary conditions, depending on the type of particle,
and

S =

∫ β

0

dτ [ψ̄∂τψ +H(ψ, ψ̄)− µN(ψ, ψ̄)] . (10.47)

We recall that H and N appearing above have to be read as the corresponding original
functions of a and a†, with a→ ψ and a† → ψ̄.

Splitting off the interaction part of H, we have

S =

∫ β

0

dτ

[
ψ̄∂τψ −

1

2m
ψ̄(−∇2)ψ + Hint − µN

]
. (10.48)

This is an example of an action for a non-relativistic QFT, in this case with the LO
field equation being the Schrodinger equation. One sees this immediately by varying the
above free part of S w.r.t. ψ̄. Of course, it is the imaginary-time Schrodinger equation,
but it returns to the familiar one upon τ → −it:

− ∂

∂τ
ψ = −∇

2

2m
ψ −→ i

∂

∂t
ψ = −∇

2

2m
ψ or ∂tψ = −i

(
−∇

2

2m

)
ψ . (10.49)

In the way derived this, it is an effective description of many-particle QM. Hence, as
opposed to our fundamental QFTs, the interaction can be non-local, i.e. V (|~x−~x′|) does
not have to be ∼ δ3(~x − ~x′). But is is also possible and very interesting to derive an
NR-QFT as the low-energy limit of our relativistic theories, see e.g. Sect. 7.6 of [9] and
Sect. III.5 of [31].
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