Problem Sheet 1

(Due: October 24, 2012)

Problem 1.1:

Show that the "Nambu-Goto" action

$$
\begin{equation*}
S_{\mathrm{NG}}=-m \int \mathrm{~d} \tau \sqrt{-\eta_{\mu \nu} \dot{X}^{\mu} \dot{X}^{\nu}}, \quad \mu, \nu=0, \ldots, D-1 \tag{1}
\end{equation*}
$$

of the relativistic particle is invariant under arbitrary reparametrizations $\tau \rightarrow \tau^{\prime}(\tau)$.

Problem 1.2:

Derive the equations of motion $\ddot{X}^{\mu}=0$ for the special parameter choice $\tau=s$, where s is the proper time $\left(\mathrm{d} s=\sqrt{-\eta_{\mu \nu} \mathrm{d} X^{\mu} \mathrm{d} X^{\nu}}\right)$ of the paricle.

Problem 1.3:

Derive the non-relativistic limit

$$
S_{\mathrm{NG}} \simeq \int \mathrm{~d} t\left(\frac{m}{2} \vec{v}^{2}-m\right)
$$

Problem 1.4:

Demonstrate the reparametrization invariance $\left(\tau \rightarrow \tau^{\prime}(\tau)\right)$ of the "Polyakov" action

$$
\begin{equation*}
S_{\mathrm{P}}=-\frac{m}{2} \int \mathrm{~d} \tau \sqrt{-h_{\tau \tau}}\left(h_{\tau \tau}^{-1} \frac{\mathrm{~d} X^{\mu}}{\mathrm{d} \tau} \frac{\mathrm{~d} X_{\mu}}{\mathrm{d} \tau}+1\right) . \tag{2}
\end{equation*}
$$

Problem 1.5:

Derive the "Nambu-Goto" (1) from the "Polyakov" (2) form as sketched in the lecture, i.e. use the equations of motion for $h_{\tau \tau}$ to eliminate $h_{\tau \tau}$ in (2).

Problem 1.6:

Show that

$$
\delta(\operatorname{det} A)=(\operatorname{det} A) \operatorname{tr}\left(A^{-1} \delta A\right)
$$

for any matrix A with $\operatorname{det} A \neq 0$
(a) by using the identity $\ln (\operatorname{det} A)=\operatorname{tr}(\ln A)$,
(b) by using the explicit formulae for $\operatorname{det} A$ and A^{-1} with the Levi-Civita ε-symbol.

Problem 1.7:

The generalization of the "Polyakov" action (2) to a p-brane is given by

$$
\begin{equation*}
S_{\mathrm{P}}^{p}=-\frac{T_{p}}{2} \int_{\Sigma_{\mathrm{P}}} \mathrm{~d}^{p+1} \xi \sqrt{-h} h^{a b} \partial_{a} X^{\mu} \partial_{b} X_{\mu}+\Lambda_{p} \int_{\Sigma_{\mathrm{P}}} \mathrm{~d}^{p+1} \xi \sqrt{-h}, \quad a, b=0, \ldots, p . \tag{3}
\end{equation*}
$$

(a) Show that (3) is diffeomorphism invariant.
(b) Derive the equations of motion for the world volume metric $h_{a b}$.
(c) Show that the ansatz

$$
h_{a b}=\alpha_{p} \partial_{a} X^{\mu} \partial_{b} X_{\mu}
$$

solves these equations and determine the constant α_{p}.
(d) Integrate out $h_{a b}$ to recover a Nambu-Goto-like form for the action of a p-brane. Discuss the special case $p=1$.
(e) What can you say about the behaviour of (3) under Weyl-rescalings? (Use the results of part (c).)

Problem 1.8:

Derive

$$
T^{a b}=-2 \pi T\left(G^{a b}-\frac{1}{2} h^{a b} h^{c d} G_{c d}\right), \quad a, b=1,2
$$

from the Polyakov action of the bosonic string.

Problem 1.9:

Can you give a symmetry argument showing that the trace of $T^{a b}$ must vanish identically?

