PROBLEM SHEET 1

(Due: October 24, 2012)

Problem 1.1:

Show that the "Nambu-Goto" action

$$S_{\rm NG} = -m \int d\tau \sqrt{-\eta_{\mu\nu} \dot{X}^{\mu} \dot{X}^{\nu}}, \quad \mu, \nu = 0, \dots, D-1$$
 (1)

of the relativistic particle is invariant under arbitrary reparametrizations $\tau \to \tau'(\tau)$.

Problem 1.2:

Derive the equations of motion $\ddot{X}^{\mu} = 0$ for the special parameter choice $\tau = s$, where s is the proper time $(ds = \sqrt{-\eta_{\mu\nu} dX^{\mu} dX^{\nu}})$ of the paricle.

Problem 1.3:

Derive the non-relativistic limit

$$S_{\rm NG} \simeq \int \mathrm{d}t \left(\frac{m}{2} \vec{v}^2 - m \right).$$

Problem 1.4:

Demonstrate the reparametrization invariance $(\tau \rightarrow \tau'(\tau))$ of the "Polyakov" action

$$S_{\rm P} = -\frac{m}{2} \int \mathrm{d}\tau \sqrt{-h_{\tau\tau}} \left(h_{\tau\tau}^{-1} \frac{\mathrm{d}X^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}X_{\mu}}{\mathrm{d}\tau} + 1 \right).$$
(2)

Problem 1.5:

Derive the "Nambu-Goto" (1) from the "Polyakov" (2) form as sketched in the lecture, i.e. use the equations of motion for $h_{\tau\tau}$ to eliminate $h_{\tau\tau}$ in (2).

Problem 1.6:

Show that

 $\delta(\det A) = (\det A) \operatorname{tr} \left(A^{-1} \delta A \right)$

for any matrix A with det $A \neq 0$

- (a) by using the identity $\ln(\det A) = \operatorname{tr}(\ln A)$,
- (b) by using the explicit formulae for det A and A^{-1} with the Levi-Civita ε -symbol.

Problem 1.7:

The generalization of the "Polyakov" action (2) to a *p*-brane is given by

$$S_{\rm P}^p = -\frac{T_p}{2} \int_{\Sigma_{\rm P}} \mathrm{d}^{p+1} \xi \sqrt{-h} \, h^{ab} \partial_a X^\mu \partial_b X_\mu + \Lambda_p \int_{\Sigma_{\rm P}} \mathrm{d}^{p+1} \xi \sqrt{-h}, \quad a, b = 0, \dots, p.$$
(3)

- (a) Show that (3) is diffeomorphism invariant.
- (b) Derive the equations of motion for the world volume metric h_{ab} .

(c) Show that the ansatz

$$h_{ab} = \alpha_p \,\partial_a X^\mu \partial_b X_\mu$$

solves these equations and determine the constant α_p .

- (d) Integrate out h_{ab} to recover a Nambu-Goto-like form for the action of a *p*-brane. Discuss the special case p = 1.
- (e) What can you say about the behaviour of (3) under Weyl-rescalings? (Use the results of part (c).)

Problem 1.8:

Derive

$$T^{ab} = -2\pi T \left(G^{ab} - \frac{1}{2} h^{ab} h^{cd} G_{cd} \right), \quad a, b = 1, 2$$

from the Polyakov action of the bosonic string.

Problem 1.9:

Can you give a symmetry argument showing that the trace of T^{ab} must vanish identically?